Discussion on

Uncertainty handling in Logic Programming

Lluis Godo

IIIA - CSIC, Barcelona, Spain

SUM 2010, Tolouse, September 27-29, 2010
Uncertainty / Fuzziness

- **uncertainty**

 due to incomplete information or randomness on Boolean events

 truth-degrees $\in \{0, 1\}$

 can be evaluated in a quantitative / qualitative way

 uncertainty measures on possible worlds

 uncertainty degrees $\in [0, 1]$ (usually)

 various models: probabilistic, possibilistic, belief functions, etc.

- **fuzziness**

 partial satisfaction of gradual properties

 truth-degrees $\in [0, 1]$ (usually)

 full compositional laws for compound formulas
Logic Programming and Uncertainty

A variety of logic programming languages handling different uncertainty and fuzzy models. One can classify them by:

- Uncertainty / fuzzy model chosen:
 - probabilistic l.p.
 - possibilistic l.p.
 - belief l.p.
 - fuzzy (choices of aggregation operations)

- Annotation-based / implication-based rules

 annotated rule: \[A : \mu \leftarrow B_1 : \mu_1 \land \ldots \land B_n : \mu_n \]

 (a interpretation makes true or false each basic annotated fact)

 weighted implication: \[(A \leftarrow B_1 \land \ldots \land B_n, \mu) \]

 (mv-valued interpretation of facts / rules)
Logic Programming and Uncertainty

- **definite programs**: no negation involved
 fix point semantics (minimal models)

- **normal programs**: negation by failure in the body of the rules
 links to non-monotonic reasoning: \(\text{not } A = A \) is not believed, \(\neg A \) is consistent
 answer set semantics (stable models): minimal models of program reducts (Gelfond-Lifschitz reduction)

- **extended programs**: negation by failure + classical negation
 answer set semantics: coherent stable models

- **disjunctive programs**
 disjunctions in the head of rules
 qualitative form of uncertainty
Annotated logic programming languages

- Generalized Annotated Programs GAP (Kifer-Subrahmanian, 89)

- Probabilistic logic programs PLP (Ng-Subrahmanian, 92)
 Hybrid Probabilistic logic programs (Dekhtyar-Subrahmanian, 97)
 (Saad 06)

- Action probabilistic programs (Khuller et al., 07), (Simari et al., SUM 2010)

- Extended fuzzy logic programs (Saad, SUM 2009)
 Disjunctive Extended fuzzy logic programs (Saad, SUM 2010)
Conditional / Implication -based approaches

- **Conditional probability-based logic programs** (Lukasiewicz, 2001)

 rules: \((A \leftarrow B, [\alpha, \beta])\)

 interpretations: \(Pr : 2^{HB} \rightarrow [0, 1]\) probability function

 \(Pr \models (A \leftarrow B, \alpha) \iff Pr(A \mid B) \in [\alpha, \beta]\)

 inference: linear optimization techniques

- **Possibilistic logic programs** (Dubios-Lang-Prade, 1991)

 rules: \((A \leftarrow B, \alpha)\)

 interpretations: \(N : 2^{HB} \rightarrow [0, 1]\) necessity function

 \(N \models (A \leftarrow B, \alpha) \iff N(\neg B \lor A) \geq \alpha\)

 Immediate Consequence operator based on weighted modus ponens:
 from \((A \leftarrow B, \alpha)\) and \((B, \beta)\) derive \((A, \min(\alpha, \beta))\)
Conditional / Implication -based approaches

• Fuzzy / many-valued logic programs
 rules: \((A \leftarrow B, \alpha)\)

\[I : At \rightarrow [0, 1] \text{ extends to rules by } I(A \leftarrow B) = I(A) \Rightarrow I(B), \text{ where } \Rightarrow \text{ is the residuum of a conjunctive aggregation operator (t-norm)} \]

\[I \models (A \leftarrow B, \alpha) \text{ iff } I(A) \Rightarrow I(B) \geq \alpha \text{ iff } I(B) \geq I(A) \ast \alpha \]

Immediate Consequence operator based on fuzzy modus ponens:
from \((A \leftarrow B, \alpha)\) and \((B, \beta)\) derive \((A, \alpha \ast \beta)\)
Implication-based logic programming languages

• Answer set semantics for possibilistic logic programs
 - (Nicolás et al., 2005, 2006)
 - (Bauters-Schockaert-De Cock-Vermeir, 2010)
 - (Nieves-Osorio, 2007)

• Residuated Logic programs (Damasio-Pereira, 2001)
 truth-values domain: abstract residuated lattice

• Normal logic programs over lattices and bilattices (Straccia, 2005)

• Answer set semantics for fuzzy L.P.s
 - (Madrid-Ojeda, 2009)
 - (Janssen, Schockaert, Vermeir, De Cock, 2009)
Discussion

- Annotated versus implication based approaches:
 - extendability?
 - expressiveness?
 - applicability? (Simari et al, SUM 2010)

- Fuzzy logic programming languages:
 - weak link to well-established systems of formal fuzzy logic (e.g. Łukasiewicz, Gödel, product logics)
 - answer set semantics: introducing non-monotonicity into fuzzy logics (fuzzy equilibrium logic - Schockaert et al.)

- Integration of uncertainty and fuzziness handling
 - disjunctive Fuzzy LP (Saad, SUM 2010)

- Scalability