Knowledge Based Situation Discovery for Avionics Maintenance

Luis Palacios Medinacelli¹, Yue Ma², Chantal Reynaud², Gaëlle Lortal³

¹ CEA-LIST, Palaiseau, France ² LRI, Univ. Paris-Sud, CNRS, Université Paris-Saclay, France ³ LRASC, Thales Research & Technology, Palaiseau, France

Published by KCAP 2019

Situation Discovery for Avionics Maintenance

Journées RoD (Raisonner sur les Données)

Table of Contents

- The Approach: Situation Discovery
- 3) Situation Discovery in Avionics Maintenance

4 Evaluation

5 Conclusions and Further Work

< A >

Context

LRU: Line Replacement Unit SRU: Shop Replacement Unit

Situation Discovery for Avionics Maintenance

Journées RoD (Raisonner sur les Données)

Context

LRU: Line Replacement Unit SRU: Shop Replacement Unit

Our work concerns levels 2 and 3, i.e in shop maintenance.

Situation Discovery for Avionics Maintenance

Journées RoD (Raisonner sur les Données)

- ₹ ⊒ →

• □ > • □ > • □ > ·

Situation Discovery for Avionics Maintenance Jou

Published by KCAP 2019 4/31

æ

The signature of a failure provides all the necessary information to understand, identify and ultimately repair a failure.

Image: A matrix

Objective : From an application point of view

Support avionics maintenance by discovering Failure Signatures and proposing corrective actions, in such a way that the suggestions are explainable.

Situation Discovery for Avionics Maintenance

Journées RoD (Raisonner sur les Données)

Our problem has the following constraints:

∃ >

Image: Image:

э

Our problem has the following constraints:

• **Sparse data:** We can not rely on techniques that require large amounts of data to model a process (150 samples).

Image: A mage: A ma

Our problem has the following constraints:

- **Sparse data:** We can not rely on techniques that require large amounts of data to model a process (150 samples).
- No explicit model knowledge: for the diagnose process.

ъ

Image: A matrix

Our problem has the following constraints:

- **Sparse data:** We can not rely on techniques that require large amounts of data to model a process (150 samples).
- No explicit model knowledge: for the diagnose process.
- Number of suggested repair actions: The suggested components to be replaced should be minimized.

프 () () ()

• • • • • • • •

Our problem has the following constraints:

- **Sparse data:** We can not rely on techniques that require large amounts of data to model a process (150 samples).
- No explicit model knowledge: for the diagnose process.
- Number of suggested repair actions: The suggested components to be replaced should be minimized.
- **Provide an explanation for the given results:** Explainability of the system is important for technicians and security certification.

프 > - + 프 >

• • • • • • • • •

Objective : From a theoretical point of view

- Modeling the domain in a formal (ELO) ontology
- Discovering concepts represent failure signatures that allow us to associate repair actions

Table of Contents

Introduction

The Approach: Situation Discovery

3) Situation Discovery in Avionics Maintenance

4 Evaluation

Situation Discovery for Avionics Maintenance

Intuition

Concept Refinement

æ

< ロ > < 同 > < 回 > < 回 >

Representative Concept

Definition (A representative concept)

 \mathcal{O} : an ontology, Δ : the set of individuals in \mathcal{O} . Let $\mathcal{X} \subseteq \Delta$. For a concept *C*, we say that \mathcal{X} is represented by *C* if:

 $\mathcal{O} \models C(x)$ for all $x \in \mathcal{X}$, and

 $\mathcal{O} \not\models C(y)$ for any $y \in \Delta \setminus \mathcal{X}$.

∃ → < ∃ →</p>

< A >

Representative Concept

Definition (A representative concept)

 \mathcal{O} : an ontology, Δ : the set of individuals in \mathcal{O} . Let $\mathcal{X} \subseteq \Delta$. For a concept *C*, we say that \mathcal{X} is represented by *C* if:

 $\mathcal{O} \models C(x)$ for all $x \in \mathcal{X}$, and

 $\mathcal{O} \not\models C(y)$ for any $y \in \Delta \setminus \mathcal{X}$.

Proposition

Representability_C:

Does C represent X w.r.t. O?

can be solved in **PTime**.

Representative Concept

Definition (A representative concept)

 \mathcal{O} : an ontology, Δ : the set of individuals in \mathcal{O} . Let $\mathcal{X} \subseteq \Delta$. For a concept *C*, we say that \mathcal{X} is represented by *C* if:

 $\mathcal{O} \models C(x)$ for all $x \in \mathcal{X}$, and

 $\mathcal{O} \not\models C(y)$ for any $y \in \Delta \setminus \mathcal{X}$.

Proposition

Representability_C:

```
Does C represent X w.r.t. O?
```

can be solved in **PTime**. **Representability**_n:

```
Is there a concept C with |C| < n that represents \mathcal{X} w.r.t. \mathcal{O}?
```

is **ExpTime**. If n is bounded by a constant, then Representability_n is in **PTime**.

Situation Discovery

The concepts representing a set \mathcal{X} are equivalent in the sense of their instances.

We call each of these equivalent classes a situation in \mathcal{O} .

Definition (Situation in \mathcal{O})

 \mathcal{O} : an ontology; Δ : the set of individuals in \mathcal{O} ; $\mathcal{X} \subseteq \Delta$. A situation for \mathcal{X} in \mathcal{O} is the set:

 $||\mathcal{X}||_{\Delta}^{\mathcal{O}} = \{C \mid C \text{ represents } \mathcal{X} \text{ w.r.t. } \mathcal{O} \text{ and } \Delta\}.$

Situation Discovery - All Situations

Definition (SD_n)

\mathcal{O} : an ontology; Δ : the set of individuals in \mathcal{O} ; $\mathcal{X} \subseteq \Delta$; n > 0;

SD_n: Does there exist a situation C for some $\mathcal{X}' \subseteq \mathcal{X}$ in \mathcal{O} with $|C| \leq n$?

Situation Discovery - All Situations

Definition (SD_n)

 \mathcal{O} : an ontology; Δ : the set of individuals in \mathcal{O} ; $\mathcal{X} \subseteq \Delta$; n > 0;

SD_n: Does there exist a situation C for some $\mathcal{X}' \subseteq \mathcal{X}$ in \mathcal{O} with $|C| \leq n$?

Proposition

 SD_n is in **ExpTime**. If $|\mathcal{X}|$ and n are bounded by a constant, SD_n is in **PTime**.

12/31

Situation Discovery - All Situations

Definition (SD_n)

 \mathcal{O} : an ontology; Δ : the set of individuals in \mathcal{O} ; $\mathcal{X} \subseteq \Delta$; n > 0;

SD_n: Does there exist a situation C for some $\mathcal{X}' \subseteq \mathcal{X}$ in \mathcal{O} with $|C| \leq n$?

Proposition

 SD_n is in **ExpTime**. If $|\mathcal{X}|$ and n are bounded by a constant, SD_n is in **PTime**.

---- An algorithm for finding situations for a set of individuals

PARIS

Consider:

$$C \equiv \exists r_1.\top$$

ABox = { $r_1(x, y), A(y), r_2(x, z), B(z)$ }

< < >> < <</>

Consider:

$$C \equiv \exists r_1.\top$$

$$ABox = \{r_1(x, y), A(y), r_2(x, z), B(z)\}$$

The graph representation of *x*:

Consider:

$$C \equiv \exists r_1.\top$$

ABox = { $r_1(x, y), A(y), r_2(x, z), B(z)$ }

The graph representation of *x*:

Some assertions are unnecessary

Consider:

$$C \equiv \exists r_1.\top$$

$$ABox = \{r_1(x, y), A(y), r_2(x, z), B(z)\}$$

We can extract those necessary assertions

Minimal ABox = $\{r_1(x, y)\}$

프 () () ()

Consider:

$$C \equiv \exists r_1.\top$$

$$ABox = \{r_1(x, y), A(y), r_2(x, z), B(z)\}$$

< < >> < <</>

Consider:

$$C \equiv \exists r_1.\top$$

$$ABox = \{r_1(x, y), A(y), r_2(x, z), B(z)\}$$

< < >> < <</>

Consider:

$$C \equiv \exists r_1.\top$$

$$ABox = \{r_1(x, y), A(y), r_2(x, z), B(z)\}$$

$$\begin{array}{l} C_1' \equiv \exists r_1.\top \sqcap \exists r_2.1 \\ C_2' \equiv \exists r_1.(\top \sqcap A) \end{array}$$

< < >> < <</>

Situation Discovery for Avionics Maintenance

The Most Specific Representative (MSR)

Definition (Most Specific Representative MSR)

Given a set of individuals $\mathcal{X} = \{x_1, \dots, x_n\}$ and the set of its representative concepts $||\mathcal{X}|| = \{\mathcal{S} \mid \mathcal{S} \text{ represents } \mathcal{X}\}$, the Most Specific Representative of the set \mathcal{X} , written MSR_{\mathcal{X}}, is the concept $\mathcal{S}_i \in ||\mathcal{X}||$ such that:

 $\forall \mathscr{S}_j \in ||\mathcal{X}||$, we find $\mathscr{S}_i \sqsubseteq \mathscr{S}_j$.

We have provided definitions, specifications an algorithms to:

Situation Discovery for Avionics Maintenance

Journées RoD (Raisonner sur les Données)

Published by KCAP 2019 15/31

э

We have provided definitions, specifications an algorithms to:

• Obtain the refinements of a concept C.

We have provided definitions, specifications an algorithms to:

- Obtain the refinements of a concept C.
- Obtain the MSR for an individual x.

We have provided definitions, specifications an algorithms to:

- Obtain the refinements of a concept C.
- Obtain the MSR for an individual x.
- \bullet Obtain the MSR for a set ${\mathcal X}$ of individuals.

We have provided definitions, specifications an algorithms to:

- Obtain the refinements of a concept C.
- Obtain the MSR for an individual x.
- \bullet Obtain the MSR for a set ${\mathcal X}$ of individuals.
- \bullet Discover and characterize all situations present in an ontology $\mathcal{O}.$

15/31

Table of Contents

The Approach: Situation Discovery

Situation Discovery in Avionics Maintenance

Evaluation

Situation Discovery for Avionics Maintenance

Intuition

Situation Discovery for Avionics Maintenance

Journées RoD (Raisonner sur les Données)

æ

The Data Sources - .AR files

The Data Sources - Corrective Actions

Corrective actions for **Elevator and Aileron Computer (ELAC)**. We distinguish between composed and individual actions.

Ar File	SRU1 Type	SRU1 Component	SRU1 repere topo
20094-777-777.AR	MPU ANA	AMPLI	U30 U44
20182-777-777.AR	MSP DG	EPLD	U28
20030-777-777.AR	MSP DG	EPLD RAM	U25 U35 U36

The Data Sources - Corrective Actions

Corrective actions for **Elevator and Aileron Computer (ELAC)**. We distinguish between composed and individual actions.

Situation Discovery for Avionics Maintenance

iniversité

Situation Discovery for Avionics Maintenance

Journées RoD (Raisonner sur les Données)

Published by KCAP 2019 20/31

Situations in Avionics Maintenance

The .AR files become the individuals we want to distinguish.

```
Definition (Signature in \mathcal{O})
```

Given a set of .AR files $\{f_1, \ldots, f_n\}$ and an ontology \mathcal{O} , the signature \mathscr{S} of $\{f_1, \ldots, f_n\}$ is their MSR.

20/31

Image: A matrix

Situations in Avionics Maintenance

The .AR files become the individuals we want to distinguish.

Definition (Signature in \mathcal{O})

Given a set of .AR files $\{f_1, \ldots, f_n\}$ and an ontology \mathcal{O} , the signature \mathscr{S} of $\{f_1, \ldots, f_n\}$ is their MSR.

Definition (Most Specific Signature)

Given an .AR file f_x and an ontology \mathcal{O} that contains learned signatures. Let $f_x \in \mathscr{S}_1, \ldots, \mathscr{S}_n$ be the signatures for f_x . A most specific signature for f_x is defined by:

$$\mathscr{S}_{f_{X}} = \{\mathscr{S}_{i} \mid \not\exists \mathscr{S}_{j} \text{ with } \mathscr{S}_{j} \sqsubset \mathscr{S}_{i}\}$$

The KB is trained with historical data to learn the signatures.

21/31

.⊒ →

With the signatures available, we can classify new, unseen .AR files.

21/31

ъ

Situation Discovery for Avionics Maintenance Journées RoD (Raisonner sur les Données) Published by KCAP 2019

For each signature a set of files is associated.

< ∃⇒

< 一型

Situations in Avionics Maintenance

Consult - Overview

The historical data tells us the corresponding corrective actions.

- ₹ ⊒ →

< < >> < <</>

These actions become the suggestions for the technician.

Consult the KB - HMI

0

e-Diag 🐐 Home 🏠 Upload 🖒 Feedback

THALES

Positi	ve = 9 / 50		Positi	vo = 24 / 50
		Positive = 24 /		ve - 247 Ju
t Board Locati	on Type	# Event	Board Loca	tion Type
CARTE CSP-DG U22 CARTE CSP-DG U25	AMPLI	1 2\$	CARTE MSP-DG Q6	5 AMPLI
	CARTE CSP-DG U22 CARTE CSP-DG U25	Board Location Type CARTE CSP-DG U22 AMPLI CARTE CSP-DG U25 EPLD	Board Location Type # Event CARTE CSP-DG U22 AMPLI CARTE CSP-DG U25 EPLD	Board Location Type AMPLI CARTE CSP-DG U22 AMPLI CARTE CSP-DG U25 EPLD

1 NEW UPLOAD

Figure: The suggested corrective actions for the consulted file.

Situation Discovery for Avionics Maintenance

Journées RoD (Raisonner sur les Données)

Published by KCAP 2019 22/31

Feedback - Overview

Two main tasks on the feedback process:

• Integrate new corrective actions: added to the historical data.

Feedback - Overview

Two main tasks on the feedback process:

- Integrate new corrective actions: added to the historical data.
- **Discover new signatures:** incrementally enrich the knowledge base (ontology).

Table of Contents

- The Approach: Situation Discovery
- 3) Situation Discovery in Avionics Maintenance

Situation Discovery for Avionics Maintenance

Similar Approaches - DL-learner

Actions Per File - DL-Learner vs. TAMO

Files

Figure: The less number of actions the better.

Situation Discovery for Avionics Maintenance

Journées RoD (Raisonner sur les Données)

Published by KCAP 2019 25/31

< ロ > < 同 > < 回 > < 回 >

Relevance and Specificity of the Suggestions by TAMO

X-axis: each consulted file Y-axis: the number of relevant individual actions

Figure: The suggestions for the test files, when consulting the knowledge base learned from 100 files. In the figure are shown the correct atomic actions (green) and the correct composed actions (orange).

Note that: only 30% of the files have the possibility to be correctly classified due to data sparsity.

26/31

Evolution of the KB - Number and Specificity of Signatures

X-axis: each signature Y-axis: the valued of Precision/Recall/F-score

• 50 files consulted against a knowledge base trained with 25 files.

27/31

Evolution of the KB - Number and Specificity of Signatures

X-axis: each signature Y-axis: the valued of Precision/Recall/F-score

< D > < P > < P >

Table of Contents

Introduction

- 2) The Approach: Situation Discovery
- 3) Situation Discovery in Avionics Maintenance

4 Evaluation

B → < B

Situation Discovery for Avionics Maintenance Journées

Journées RoD (Raisonner sur les Données)

Published by KCAP 2019 29/31

æ

We have formally defined the situation discovery problem and provided upper bounds and algorithms to compute them.

The discovered concepts provide a meaningful description of the main features shared by the individuals in the situation.

프 () () ()

Image: A matrix

We have formally defined the situation discovery problem and provided upper bounds and algorithms to compute them.

The discovered concepts provide a meaningful description of the main features shared by the individuals in the situation.

Application to an Avionics Maintenance task by characterizing failure signatures as that of discovering situations.

29/31

We have formally defined the situation discovery problem and provided upper bounds and algorithms to compute them.

The discovered concepts provide a meaningful description of the main features shared by the individuals in the situation.

Application to an Avionics Maintenance task by characterizing failure signatures as that of discovering situations.

More expressive DLs The current approach in \mathcal{ELO} . Natural extensions to be considered are disjunction (\Box) and negation (\neg).

29/31

< ロ > < 同 > < 回 > < 回 >

We have formally defined the situation discovery problem and provided upper bounds and algorithms to compute them.

The discovered concepts provide a meaningful description of the main features shared by the individuals in the situation.

Application to an Avionics Maintenance task by characterizing failure signatures as that of discovering situations.

More expressive DLs The current approach in \mathcal{ELO} . Natural extensions to be considered are disjunction (\Box) and negation (\neg). Parallel Processing The modifications made split the ABox in several consistent partitions. Each ABox can be consulted by a separate process (i.e. parallel processing) and then aggregate the results.

・ロト ・同ト ・ヨト ・ヨト

Thanks for your attention

Situation Discovery for Avionics Maintenance

Journées RoD (Raisonner sur les Données)

▶ ▲ ■ ▶ ▲ ■ ▶ ■ ∽ ९ ୯ Published by KCAP 2019 30/31

Response Times 50 files consulted against V1 and V2 of the prototype.

- On the background the consult time using V1 (KB trained with 50 files).
- On the front most the consult time with V2 (KB trained with 50 files).
- On the middle (green) consult time V2 (KB trained with 100 files).

< 17 ▶