# Link Prediction in Knowledge Graphs with Concepts of Nearest Neighbours [presented at ESWC'19, extended in journal Data Science]



### RoD (Reasoning on Data) Symposium Madics, July 7th, 2020

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTEMES ALÉATOIRES



(Sébastien Ferré)

Link Prediction in KGs with C-NNs

RoD'20 1 / 23

# Introduction

- Knowledge Graphs (KG) are widely used for
  - representation (RDF)
  - reasoning (RDFS, OWL)
  - querying (SPARQL)
- KGs are often incomplete and completing them manually is tedious
- Inductive inference by AI means is desirable and feasible
  - somebody born in Milano has probably Italian nationality
  - somebody speaking Spanish was probably born in Spain or Latin America

A > + = + + =

# Introduction

- Knowledge Graphs (KG) are widely used for
  - representation (RDF)
  - reasoning (RDFS, OWL)
  - querying (SPARQL)
- KGs are often incomplete and completing them manually is tedious
- Inductive inference by AI means is desirable and feasible
  - somebody born in Milano has probably Italian nationality
  - somebody speaking Spanish was probably born in Spain or Latin America

# Introduction

- Knowledge Graphs (KG) are widely used for
  - representation (RDF)
  - reasoning (RDFS, OWL)
  - querying (SPARQL)
- KGs are often incomplete and completing them manually is tedious
- Inductive inference by AI means is desirable and feasible
  - somebody born in Milano has probably Italian nationality
  - somebody speaking Spanish was probably born in Spain or Latin America

# Link Prediction (aka. KG Completion)

- Definition: predict the missing head or tail of a triple
  - given a KG and an incomplete triple (Pablo, bornIn, ?),
  - predict Spain, Mexico, Peru, ...
- Challenges as a learning task
  - complex multi-relational data
  - many relations to predict (e.g. bornIn)
    - many possible values for each relation (e.g., all countries)
  - multi-valued relations (e.g., actor from films to actors)

#### • Existing approaches

- latent features: tensor factorization, graph embeddings, ...
  ex: RESCAL, DistMult, TransE, HolE, ComplEx, R-GCN, ConvE
  + state-of-the-art performance, no explanations
- observed features: paths, graph patterns, ...
  ex: PRA (random walks), AMIE+, AnyBURL (association rules)
  + (partial) explanations, expressivity (mostly constant-free paths)
- both: costly learning phase

(日)

# Link Prediction (aka. KG Completion)

- Definition: predict the missing head or tail of a triple
  - given a KG and an incomplete triple (Pablo, bornIn, ?),
  - predict Spain, Mexico, Peru, ...
- Challenges as a learning task
  - complex multi-relational data
  - many relations to predict (e.g. bornIn)
    - many possible values for each relation (e.g., all countries)
  - Multi-valued relations (e.g., actor from films to actors)

#### • Existing approaches

- latent features: tensor factorization, graph embeddings, ...
  ex: RESCAL, DistMult, TransE, HolE, ComplEx, R-GCN, ConvE
  + state-of-the-art performance, no explanations
- observed features: paths, graph patterns, ...
  ex: PRA (random walks), AMIE+, AnyBURL (association rules)
  + (partial) explanations, expressivity (mostly constant-free paths)
- both: costly learning phase

(日)

# We propose a new kind of approach

From k-NN to C-NN (Concepts of Nearest Neighbours)

- instance = KG entity
- distance = graph pattern shared between two entities



#### Overview

#### Knowledge Graphs and Graph Patterns

- 2 Concepts of Nearest Neighbours (C-NN)
- 3 C-NN-based Link Prediction
- 4 Experimental Results
- 5 Conclusion and Perspectives

# Knowledge Graph = Entities + Relations + Triples



(Sébastien Ferré)

Link Prediction in KGs with C-NNs

# Knowledge Graph = Entities + Relations + Triples



### Knowledge Graph = Entities + Relations + Triples



# Graph Patterns, Queries, and Answers



# Graph Patterns, Queries, and Answers



# Graph Patterns, Queries, and Answers



### Overview

- Knowledge Graphs and Graph Patterns
- 2 Concepts of Nearest Neighbours (C-NN)
- 3 C-NN-based Link Prediction
- 4 Experimental Results
- 5 Conclusion and Perspectives

# Graph Concepts (from Graph-FCA [Ferré, 2015])

Starting from two entities:



A graph concept is a pair (A, Q), satisfying:

- *A* = *ans*(*Q*): extension, set of concept instances
- Q = msq(A): intension, concept description

< 6 b

# **Conceptual Distance**

#### Definition

The conceptual distance between two entities  $e_i$ ,  $e_j$  is defined as the most specific graph concept that contains them:

- $\delta(e_i, e_j) = (A_{ij}, Q_{ij})$  where
  - $Q_{ij} = msq(\{e_i, e_j\})$ : what they have in common
  - $A_{ij} = ans(Q_{ij})$ : which entities range between them
  - $\delta$  is a symbolic distance
    - distances are partially ordered (concept inclusion)
  - $\delta$  verifies distance axioms (positivity, symmetry, triangular ineq.)
    - with bottom concept as zero
    - with concept union as addition
  - numerical measures can be derived
    - $dist(e_i, e_j) = |ext(\delta(e_i, e_j))|$ : distance as number of answers
    - $sim(e_i, e_j) = |int(\delta(e_i, e_j))|$ : similarity as size of the query

# Concepts of Nearest Neighbours (C-NN)

Given a knowledge graph K = (E, R, T), and an entity  $e \in E$ :

$$CNN(e, K) = \{\delta(e, e') \mid e' \in E\}$$

Example for e = Charlotte (6 C-NNs)



11/23

### **Overview**

- 1 Knowledge Graphs and Graph Patterns
- 2 Concepts of Nearest Neighbours (C-NN)
- 3 C-NN-based Link Prediction
  - 4 Experimental Results
- 5 Conclusion and Perspectives

# Generation of Inference Rules from C-NNs

- Compared to k-NN classification
  - concepts of neighbours instead of neighbour instances
  - inference rules instead of labelling class
- For each  $\delta = (A, Q) \in CNN(e_i)$ , where  $Q = x \leftarrow P$
- Two kinds of rules are generated for the target relation *r<sub>k</sub>* 
  - by-copy rules:  $P o (x, r_k, e_j)$  for  $e_j \in range(r_k)$ 
    - ★ if somebody was born in Spain, then she probably speaks Spanish
    - inferred entities: { e<sub>j</sub> }

$$conf := rac{|ans(x \leftarrow P, (x, r_k, e_j))|}{|ans(x \leftarrow P)|}$$

**by-analogy rules:**  $P \rightarrow (x, r_k, y)$  for  $y \in Vars(P), y \neq x$ 

- $\star$  e<sub>i</sub> is to e<sub>j</sub> as x is to y in P (analogical proportion)
- if somebody has a father whose wife is Y, then she probably has Y as a mother

\* inferred entities:  $ans(y \leftarrow P, (x = e_i))$ 

$$conf = \frac{|ans((x, y) \leftarrow P, (x, r_k, y))|}{|ans((x, y) \leftarrow P)|}$$

# Generation of Inference Rules from C-NNs

- Compared to k-NN classification
  - concepts of neighbours instead of neighbour instances
  - inference rules instead of labelling class
- For each  $\delta = (A, Q) \in CNN(e_i)$ , where  $Q = x \leftarrow P$
- Two kinds of rules are generated for the target relation *r<sub>k</sub>* 
  - **()** by-copy rules:  $P \rightarrow (x, r_k, e_j)$  for  $e_j \in range(r_k)$ 
    - if somebody was born in Spain, then she probably speaks Spanish
    - ★ inferred entities: {e<sub>j</sub>}

$$conf := rac{|ans(x \leftarrow P, (x, r_k, e_j))|}{|ans(x \leftarrow P)|}$$

**2** by-analogy rules:  $P \rightarrow (x, r_k, y)$  for  $y \in Vars(P), y \neq x$ 

- \*  $e_i$  is to  $e_j$  as x is to y in P (analogical proportion)
- ★ if somebody has a father whose wife is Y, then she probably has Y as a mother
- ★ inferred entities:  $ans(y \leftarrow P, (x = e_i))$

$$conf = \frac{|ans((x, y) \leftarrow P, (x, r_k, y))|}{|ans((x, y) \leftarrow P)|}$$

# Scoring and Ranking Inferred Entities

Maximum Confidence (introduced for AnyBURL [Meilicke, 2019])

- The score of each inferred entity e<sub>i</sub> is
  - the list of rule confidence measures (above 0.01)
  - in decreasing order
  - from all rules inferring e<sub>j</sub>
  - ex: 0.94 0.86 0.33 ...
- Ranking of all inferred entities
  - in decreasing lexicographic order

| e1 | 0.94 | 0.86 | 0.33 |
|----|------|------|------|
| e2 | 0.94 | 0.86 |      |
| e3 | 0.94 | 0.67 | 0.43 |
| e4 | 0.55 | 0.43 | 0.33 |
|    |      |      |      |

### **Overview**

- Knowledge Graphs and Graph Patterns
- 2 Concepts of Nearest Neighbours (C-NN)
- 3 C-NN-based Link Prediction
- Experimental Results
- 6 Conclusion and Perspectives

# Example of correct inferences

On the Mondial dataset, with timeout = 0.1+0.1s

- mountain "Reuss" is in mountain range Alps (0.50 0.38 0.27)
  28 C-NNs, best explanation: *located in a place speaking Italian and German* (by-copy rule)
- mountain "Matterhorn" is located in Switzerland (0.42 0.36 0.29) 30 C-NNs, best explanation: two mountains in the same range tend to have the same location (by-analogy rule)
- river "Araguaia" is located in Brazil (0.93 0.92 0.92)
  47 C-NNs, best explanation: a water shares location with an island it contains (by-analogy rule)

# Experimental Results: WordNet Benchmarks

|                        | WN18 |      |      | WN18RR |      |      |  |  |
|------------------------|------|------|------|--------|------|------|--|--|
| Approach               | H@1  | H@10 | MRR  | H@1    | H@10 | MRR  |  |  |
| Freq                   | 1.8  | 5.0  | 2.9  | 1.5    | 4.4  | 2.6  |  |  |
| Latent-based           |      |      |      |        |      |      |  |  |
| DISTMULT               | 70.1 | 94.3 | 81.3 | -      | -    | -    |  |  |
| ANALOGY                | 93.9 | -    | 94.2 | -      | -    | -    |  |  |
| KB_LR                  | -    | 95.1 | 93.6 | -      | -    | -    |  |  |
| R-GCN+                 | 69.7 | 96.4 | 81.9 | -      | -    | -    |  |  |
| ConvE                  | 93.5 | 95.5 | 94.2 | 39.0   | 48.0 | 46.0 |  |  |
| ComplEx-N3             | -    | 96.0 | 95.0 | -      | 57.0 | 48.0 |  |  |
| CrossE                 | 74.1 | 95.0 | 83.0 | -      | -    | -    |  |  |
| Rule-based             |      |      |      |        |      |      |  |  |
| AMIE+                  | 87.2 | 94.8 | -    | 35.8   | 38.8 | -    |  |  |
| RuleN                  | 94.5 | 95.8 | -    | 42.7   | 53.6 | -    |  |  |
| AnyBURL                | 93.9 | 95.6 | 95.0 | 44.6   | 55.5 | 48.0 |  |  |
| C-NN (ours)            | 96.7 | 97.2 | 96.9 | 44.4   | 51.9 | 46.9 |  |  |
| C-NN – best other      | +2.2 | +0.8 | +1.9 | -0.2   | -5.1 | -1.1 |  |  |
| C-NN – best rule-based | +2.2 | +1.4 | +1.9 | -0.2   | -3.6 | -1.1 |  |  |

## Experimental Results: Freebase Benchmarks

|                        | FB15k |      |      | FB15k-237 |       |      |  |  |
|------------------------|-------|------|------|-----------|-------|------|--|--|
| Approach               | H@1   | H@10 | MRR  | H@1       | H@10  | MRR  |  |  |
| Freq                   | 14.3  | 28.5 | 19.2 | 17.5      | 35.6  | 23.6 |  |  |
| Latent-based           |       |      |      |           |       |      |  |  |
| DISTMULT               | 52.2  | 81.4 | 63.4 | 10.6      | 37.6  | 19.1 |  |  |
| ANALOGY                | 64.6  | -    | 72.5 | -         | -     | -    |  |  |
| KB_LR                  | 74.2  | 87.3 | 79.0 | 22.0      | 48.2  | 30.6 |  |  |
| R-GCN+                 | 60.1  | 84.2 | 69.6 | 15.1      | 41.7  | 24.9 |  |  |
| ConvE                  | 67.0  | 87.3 | 74.5 | 23.9      | 49.1  | 31.6 |  |  |
| ComplEx-N3             | -     | 91.0 | 86.0 | -         | 56.0  | 37.0 |  |  |
| CrossE                 | 63.4  | 87.5 | 72.8 | 21.1      | 47.4  | 29.9 |  |  |
| Rule-based             |       |      |      |           |       |      |  |  |
| AMIE+                  | 64.7  | 85.8 | -    | 17.4      | 40.9  | -    |  |  |
| RuleN                  | 77.2  | 87.0 | -    | 18.2      | 42.0  | -    |  |  |
| AnyBURL                | 80.4  | 89.0 | 83.0 | 23.0      | 47.9  | 30.0 |  |  |
| C-NN (ours)            | 82.7  | 89.0 | 84.9 | 22.2      | 44.6  | 29.6 |  |  |
| C-NN – best other      | +2.3  | -2.0 | -1.1 | -1.7      | -11.4 | -7.4 |  |  |
| C-NN – best rule-based | +2.3  | 0.0  | +1.9 | -0.8      | -3.3  | -0.4 |  |  |

(Sébastien Ferré)

• • • • • • • • • • • •

### Overview

- 1 Knowledge Graphs and Graph Patterns
- 2 Concepts of Nearest Neighbours (C-NN)
- 3 C-NN-based Link Prediction
- 4 Experimental Results
- 5 Conclusion and Perspectives

### Conclusion

We have proposed a symbolic approach to link prediction that

- is competitive with both rule-based and latent-based approaches
- provides explanations for each inference
  - local explainability (not global explainability)
- avoids the training phase (instance-based learning)
  - which enables application to dynamic KG
- has a controllable runtime (anytime algorithm)
  - timeout is the only significant hyperparameter

#### In short

An adaptation of k-NN classification to knowledge graphs with conceptual distances.

4 **A** N A **B** N A **B** 

### Perspectives

- To extend graph patterns ex: inequalities; richer filters on numbers, strings, dates
- To optimize the computation of C-NNs ex: partitioning strategies, parallelization
- To explore other kinds of inference ex: structured prediction, ...
- To evaluate on other tasks ex. relation extraction

# The End

Thanks for listening !

# Algorithmic and Practical Aspects

[see ESWC'18 paper on approximate query answering]

- CNN(e, K) are computed by incrementally partitioning E
  - triples describing e are used as discriminating features
  - PRO: the number of clusters is bounded by |E|
- the partitioning algorithm is anytime
  - only coarser partition if stopped before completion
- previous experiments have shown greater efficiency compared to
  - computing conceptual distances with each entity
  - applying query relaxation to the description of e

A (10) A (10)