
Processing SPARQL Aggregate
Queries with Web Preemption

A. Grall, T. Minier, H. Skaf-Molli and P. Molli

LS2N, University of Nantes

ESWC 2020
Online.

May, 2020

How to execute aggregate queries
online and get complete results ?

2

Ex: Number of objects per class

On Wikidata: Timeout

3

On Dbpedia: Partial Results

4

Dumps ??
● Download the dump and compute locally:

● Well… Good luck… Tell me when it’s done… ;)
● Not Live Queries...

5

>100GO
Compressed

TPF with restricted web servers
terminates...

● But, browser executes:
For ?s in http(?s a ?c):

http(?s ?p ?o)
Group by ?c
count(?o)

● Nearly download SPO (~dump)
● Too much calls and data

transfer. Not realistic
6

SaGe with web preemption
terminates...

7

● The browser executes:
 ?o, ?c = http(?s a ?c;?p ?o):
 Group by ?c
 count(?o)

Better than TPF,
but still too much data transfer...

Thomas Minier, Hala Skaf-Molli and Pascal Molli. "SaGe: Web Preemption for Public SPARQL Query services"
in Proceedings of the 2019 World Wide Web Conference (WWW'19), San Francisco, USA, May 13-17, 2019.

8

Aggregate Queries
SPARQL Endpoints

Fragment, Web
preemption

● Fast when under
the quota

● But, no guarantee
of termination

● Terminates...
● But, prohibitive

data transfer, slow

How to compute SPARQL
aggregate queries online

and get complete results ?

9

Build partial aggregations distributed in
time with web preemption

Our approach

Web Preemption

“The capacity of a Web server to suspend
a running query after a time quantum with
the intention to resume it later.”

● There is no need for a QUOTA if you
have a quantum.

10

Web Preemption in action

11

Waiting queue of
SPARQL queries

Q1

Web Client

Preemptive Web
Server

Quantum = 60s

Web Preemption in action

12

Preemptive Web
Server

Quantum = 60s
Waiting queue of
SPARQL queries

Web Client

Q1

Web Preemption in action

13

Preemptive Web
Server

Quantum = 60s
Waiting queue of
SPARQL queries

Q1

Web Client

Execute Q1 for a
time quantum

Web Preemption in action

14

Preemptive Web
Server

Quantum = 60s
Waiting queue of
SPARQL queries

Q1
Quantum

exhausted
Q1S = Suspend(Q1)

Web Client

Web Preemption in action

15

Preemptive Web
Server

Quantum = 60s
Waiting queue of
SPARQL queries

Q1S + results

Web Client

Web Preemption in action

16

Preemptive Web
Server

Quantum = 60s
Waiting queue of
SPARQL queries

Print results
Send Q1S

Web Client

Web Preemption in action

17

Preemptive Web
Server

Quantum = 60s
Waiting queue of
SPARQL queries

Q1S

Web Client

Web Preemption in action

18

Preemptive Web
Server

Quantum = 60s
Waiting queue of
SPARQL queries

Q1S

Web Client

Web Preemption in action

19

Preemptive Web
Server

Quantum = 60s
Waiting queue of
SPARQL queries

Q1S Q1 = Resume(Q1S)

Web Client

Web Preemption in action

20

Preemptive Web
Server

Quantum = 60s
Waiting queue of
SPARQL queries

Q1

Web Client

Q1 execution
completed

Web Preemption in action

21

Preemptive Web
Server

Quantum = 60s
Waiting queue of
SPARQL queries

Web Client

Results

Web Preemption allows...
● A fair allocation of web server

resources across queries
● Better average completion time per

query
● Better time for first results per query

22

Aggregates on Client with web
preemtion

23

Current processing of aggregate

24

Aggregation is
done on CLIENT

Current processing of aggregate

25

So all <?c,?o> are
transfered !
-> prohibitive with
large datasets

Just execute Aggregation on server...

● PB: Aggregation is not Preemptable !
● When computing an aggregate

○ Need to keep a temporary table of
group keys.

● O(Suspend/Resume(Aggregate))~
size(Aggregate) != constant time

● Not preemptable
 26

Problem statement

● Define a preemptable aggregation
operator such that the complexity
in time and space of suspending
and resuming is bounded in
constant time

27

Key Idea

28

● Web preemption creates partition of
mappings per quantum
○ Compute partial Aggregates per

quantum
○ Client merge partial aggregate

● Correct because aggregation
functions are decomposable

Decomposability of Aggregation

29

● A function f is (self) decomposable [1] if:
● f(X ⨄ Y) = f(X) ♢ f(Y)

○ where ♢ is a merge operator
● Ex: COUNT(X ⨄ Y) = COUNT(X) + COUNT(Y)
● Ex: Max(X ⨄ Y) = max(MAX(X),MAX(Y))
● etc...

[1] Yan, W.P., Larson, P.A.: Eager aggregation and lazy aggregation. In: 21th International Conference on Very Large Data Bases, VLDB. pp. 345–357 (1995)

Decomposability of Aggregation

30[1] Yan, W.P., Larson, P.A.: Eager aggregation and lazy aggregation. In: 21th International
Conference on Very Large Data Bases, VLDB. pp. 345–357 (1995)

Decomposability of Aggregation

31[1] Yan, W.P., Larson, P.A.: Eager aggregation and lazy aggregation. In: 21th International
Conference on Very Large Data Bases, VLDB. pp. 345–357 (1995)

● f = COUNT(?c)
● γ(V,{f},Ω1 ⊎ Ω2) st.

○ γ(V,{f},Ω1) = {{?c → 2}}
○ γ(V,{f},Ω2) = {{?c→ 5}}

● γ(V,{f},Ω1 ⊎ Ω2) = {{?c → 2◇5 = 2+5 = 7}}

Decomposability of Aggregation

32

Decomposability of Aggregation

33

Decomposability of Aggregation

34[1] Yan, W.P., Larson, P.A.: Eager aggregation and lazy aggregation. In: 21th International
Conference on Very Large Data Bases, VLDB. pp. 345–357 (1995)

Decomposability of Aggregation

35[1] Yan, W.P., Larson, P.A.: Eager aggregation and lazy aggregation. In: 21th International
Conference on Very Large Data Bases, VLDB. pp. 345–357 (1995)

Size of (1) >> size of (2)

Partial Aggregate with Distinct

36

No Distinct / Distinct

37

Size of (1) << size of (2)

SaGe: A preemptive SPARQL query engine

38

39

Server language
Triple pattern, ⋈, ∪,

SELECT, FILTER, Ɣ

Client language

OPTIONAL, ⃟
solution modifiers
Smart Web Client

Preemptive Web
server

SaGe distributes Physical Query
Operators between Server and Client

Server language
Triple pattern, ⋈, ∪,

SELECT, FILTER

Client language
OPTIONAL

solution modifiers

Smart Web Client

Preemptive Web
server

Sage-AGG

Experimental Study

40

Experimental Study

1. What is the data transfer reduction obtained with partial
aggregations?

2. What is the speed up obtained with partial aggregations?
3. What is the impact of time quantum on data transfer and

execution time?

41

Data

42

Experimental Setup
● Workload of 18 queries from SPORTAL queries [1]

○ Most queries don’t terminate under quota
● Engines

○ TPF
○ SaGe
○ SaGe-AGG (our proposal)
○ Virtuoso (as the optimal)

43

[1] Hasnain, A., Mehmood, Q., e Zainab ang Aidan Hogan, S.S.: SPORTAL: profiling the content of public
SPARQL endpoints. Int. J. Semantic Web Inf. Syst. 12(3), 134–163 (2016)

44

Traffic and execution time

DISTINCT QUERIES NO DISTINCT QUERIES !!

Execution
time

Data
Transfer

45

Impact of Quantum, BSBM1K

Execution
time

Data
Transfer

DBpedia Experiment : Execution Time

46

DBpedia Experiment : Traffic

47

Conclusion
● We defined an preemptable aggregate

operator for Public SPARQL services
● Allow to execute aggregate queries on

public endpoint that terminates
● Allow to compute statistics online, (no

dump ;)

48

Perspectives

● Support for CONSTRUCT and REDUCED
○ Same approach

● Speed up execution time with
parallelism
○ Require range partitioning of data

49

Processing SPARQL Aggregate
Queries with Web Preemption

A. Grall, T. Minier, H. Skaf-Molli and P. Molli

LS2N, University of Nantes

ESWC 2020
Online.

May, 2020

DBpedia Experiment

51

