QUERYING AND REPAIRING INCONSISTENT PRIORITIZED KNOWLEDGE BASES:

Complexity Analysis & Links with Abstract Argumentation

Meghyn Bienvenu Camille Bourgaux LaBRI - CNRS & University of Bordeaux DI ENS - CNRS, ENS Paris, & INRIA

Paper at KR'2020, long version on arXiv

Handling errors in data: restore consistency / alternative semantics

AR semantics:

likely answers

- $\cdot\,$ focus on answers that can be derived from each repair
- tuple is answer ⇔ holds w.r.t. all "possible worlds"

AR semantics:

likely answers

- \cdot focus on answers that can be derived from each repair
- tuple is answer ⇔ holds w.r.t. all "possible worlds"

Cautious (IAR) semantics:

surest answers

- · query the intersection of the repairs
- tuple is answer ⇔ derived from "safest" facts

AR semantics:

likely answers

- \cdot focus on answers that can be derived from each repair
- tuple is answer ⇔ holds w.r.t. all "possible worlds"

Cautious (IAR) semantics:

- · query the intersection of the repairs
- tuple is answer ⇔ derived from "safest" facts

Brave semantics:

- \cdot take union of answers over all repairs
- tuple is answer ⇔ derived from consistent set of facts

surest answers

possible answers

AR semantics:

likely answers

- \cdot focus on answers that can be derived from each repair
- tuple is answer ⇔ holds w.r.t. all "possible worlds"

Cautious (IAR) semantics:

- · query the intersection of the repairs
- tuple is answer ⇔ derived from "safest" facts

Brave semantics:

- · take union of answers over all repairs
- tuple is answer ⇔ derived from consistent set of facts

IAR-answers \subseteq AR-answers \subseteq brave-answers

possible answers

surest answers

Consider the following knowledge base (KB):

$$\mathcal{O} = \mathsf{Prof} \sqsubseteq \mathsf{PhD}, \mathsf{Postdoc} \sqsubseteq \mathsf{PhD}, \mathsf{Postdoc} \sqsubseteq \neg \mathsf{Prof} \}$$

$$\mathcal{D} = \{ \mathsf{Postdoc}(a), \mathsf{Prof}(a), \mathsf{Teaches}(a, c) \}$$

Inconsistent KB with two repairs:

 $\mathcal{R}_1 = \{ \mathsf{Postdoc}(a), \mathsf{Teaches}(a, c) \}$ $\mathcal{R}_2 = \{ \mathsf{Prof}(a), \mathsf{Teaches}(a, c) \}$

Consider the following knowledge base (KB):

 $\mathcal{O} = \operatorname{Prof} \sqsubseteq \operatorname{PhD}, \operatorname{Postdoc} \sqsubseteq \operatorname{PhD}, \operatorname{Postdoc} \sqsubseteq \neg \operatorname{Prof} \}$

$$\mathcal{D} = \{ \text{Postdoc}(a), \text{Prof}(a), \text{Teaches}(a, c) \}$$

Inconsistent KB with two repairs:

 $\mathcal{R}_1 = \{ \mathsf{Postdoc}(a), \mathsf{Teaches}(a, c) \}$ $\mathcal{R}_2 = \{ \mathsf{Prof}(a), \mathsf{Teaches}(a, c) \}$

Get the following results:

- IAR semantics: Teaches(a, c)
- **AR semantics:** PhD(*a*), Teaches(*a*, *c*)
- **brave semantics**: Postdoc(*a*), Prof(*a*), PhD(*a*), Teaches(*a*, *c*)

Want to exploit information about relative reliability of facts

In this work: focus on fact-level preferences

- \cdot priority relation \succ over set of facts
- · $\alpha \succ \beta$: α more trusted than β

Want to exploit information about relative reliability of facts

In this work: focus on fact-level preferences

- \cdot priority relation \succ over set of facts
- $\cdot \alpha \succ \beta$: α more trusted than β

Prioritized knowledge base \mathcal{K}_{\succ} consists of:

- \cdot a TBox (ontology) ${\cal T}$
- \cdot a ABox (dataset) $\mathcal A$
- \cdot a priority relation \succ over \mathcal{A}

Question: how to select 'best' repairs of a prioritized KB?

• **Pareto-optimal repair (P)**: cannot 'improve' \mathcal{R} by adding $\alpha \in \mathcal{R} \setminus \mathcal{A}$, then removing β_1, \ldots, β_n , with $\alpha \succ \beta_i$ $(1 \le i \le n)$

- **Pareto-optimal repair (P)**: cannot 'improve' \mathcal{R} by adding $\alpha \in \mathcal{R} \setminus \mathcal{A}$, then removing β_1, \ldots, β_n , with $\alpha \succ \beta_i$ $(1 \le i \le n)$
- **globally-optimal repair (G)**: cannot 'improve' \mathcal{R} by adding $\alpha_1, \ldots, \alpha_k$, removing β_1, \ldots, β_n , such that for every β_j , some $\alpha_i \succ \beta_j$

- **Pareto-optimal repair (P)**: cannot 'improve' \mathcal{R} by adding $\alpha \in \mathcal{R} \setminus \mathcal{A}$, then removing β_1, \ldots, β_n , with $\alpha \succ \beta_i$ $(1 \le i \le n)$
- **globally-optimal repair (G)**: cannot 'improve' \mathcal{R} by adding $\alpha_1, \ldots, \alpha_k$, removing β_1, \ldots, β_n , such that for every β_j , some $\alpha_i \succ \beta_j$
- \cdot completion-optimal repair (C): obtained by greedily selecting assertions according to some total order that extends \succ

- **Pareto-optimal repair (P)**: cannot 'improve' \mathcal{R} by adding $\alpha \in \mathcal{R} \setminus \mathcal{A}$, then removing β_1, \ldots, β_n , with $\alpha \succ \beta_i$ $(1 \le i \le n)$
- **globally-optimal repair (G)**: cannot 'improve' \mathcal{R} by adding $\alpha_1, \ldots, \alpha_k$, removing β_1, \ldots, β_n , such that for every β_j , some $\alpha_i \succ \beta_j$
- \cdot completion-optimal repair (C): obtained by greedily selecting assertions according to some total order that extends \succ

Related as follows:

 $CRep(\mathcal{K}_{\succ}) \subseteq GRep(\mathcal{K}_{\succ}) \subseteq PRep(\mathcal{K}_{\succ}) \subseteq Rep(\mathcal{K})$

For $X \in \{P, G, C\}$, can consider X-AR, X-IAR, X-brave semantics \cdot same definitions, but restrict to repairs from $XRep(\mathcal{K}_{\succ})$ Some natural reasoning tasks for optimal repairs X ∈ {P, G, C}
ISREP Decide if set of facts is X-optimal repair of K_≻
AR, IAR, BRAVE Decide whether K_≻ entails a given Boolean query under X-AR (resp. X-IAR, X-brave) semantics
UNIQUE Determine if there is a unique X-optimal repair
ENUM Enumerate all elements of XRep(K_≻)

Study the **data complexity** to understand difficulty of these tasks

Results below hold for typical OMQA settings:

- · **DL-Lite**_{\mathcal{R}} (OWL 2 QL) ontologies (+ other common DL-Lite dialects)
- · conjunctive queries (lower bounds for atomic queries)

	Standard	Pareto	Global	Completion
ISREP	in P	in P	coNP-c	in P
AR	coNP-c	coNP-c	П ^р _2-с	coNP-c
IAR	in AC ⁰	coNP-c	П ^р _2-с	coNP-c
BRAVE	in AC ⁰	NP-c	Σ_2^p -c	NP-c
UNIQUE	in P	coNP-c	Π ^p ₂ -c	in P
ENUM	DELAYP	not TotalP	not TotalP	DELAYP

Adding preferences increases complexity of most tasks

Two important open questions (for OMQA and DB settings):

- · Which notion of optimal repair is 'most natural'?
- · How to obtain lower complexity while exploiting preferences?

To help answer these questions:

develop connections with argumentation

Argumentation framework (AF) is a pair (Args, ~) where:

- · Args is a finite set of arguments
- $\cdot \rightsquigarrow$ is an **attack relation** between arguments
 - $\cdot \ \alpha \rightsquigarrow \beta$: α attacks β

Key notion: extension ~ 'coherent' position (subset of arguments)

Argumentation framework (AF) is a pair (Args, ~>) where:

- · Args is a finite set of arguments
- $\cdot \rightsquigarrow$ is an **attack relation** between arguments
 - $\cdot \ \alpha \rightsquigarrow \beta$: α attacks β

Key notion: extension ~ 'coherent' position (subset of arguments)

Several different notions of extension, in particular:

- · **preferred extension**: \subseteq -maximal conflict-free self-defending set
- stable extension: conflict-free, attacks all non-included arguments

Stable extensions are also preferred extensions

Coherent AF: stable and preferred extension coincide

Many variants of AFs have been studied

Set-based AFs (SETAFs):

· allow collective attacks $S \rightsquigarrow \alpha$ (S finite set of arguments)

Preference-based AFs (PAFs):

- · add preference relation between arguments
- \cdot preference information refines attacks, extensions

Many variants of AFs have been studied

Set-based AFs (SETAFs):

· allow collective attacks $S \rightsquigarrow \alpha$ (S finite set of arguments)

Preference-based AFs (PAFs):

- · add preference relation between arguments
- \cdot preference information refines attacks, extensions

In our work:

- · define their common generalization: PSETAFs
- prove new results for PAFs, SETAFs, and PSETAFs

Many variants of AFs have been studied

Set-based AFs (SETAFs):

· allow collective attacks $S \rightsquigarrow \alpha$ (S finite set of arguments)

Preference-based AFs (PAFs):

- · add preference relation between arguments
- \cdot preference information refines attacks, extensions

In our work:

- · define their common generalization: PSETAFs
- prove new results for PAFs, SETAFs, and PSETAFs

Theorem: Every strongly symmetric PSETAF with a transitive preference relation is coherent.

Translation of a prioritized KB $\mathcal{K}_{\succ} = (\mathcal{T}, \mathcal{A}, \succ)$ into a PSETAF $F_{\mathcal{K},\succ}$:

- \cdot use $\boldsymbol{\mathcal{A}}$ as the arguments
- \cdot use \succ as the preference
- the attacks are of the form $C \setminus \{\alpha\} \rightsquigarrow \alpha$, with *C* a minimal \mathcal{T} -inconsistent subset of \mathcal{A}

Translation of a prioritized KB $\mathcal{K}_{\succ} = (\mathcal{T}, \mathcal{A}, \succ)$ into a PSETAF $F_{\mathcal{K},\succ}$:

- \cdot use $\boldsymbol{\mathcal{A}}$ as the arguments
- \cdot use \succ as the preference
- the attacks are of the form $C \setminus \{\alpha\} \rightsquigarrow \alpha$, with *C* a minimal \mathcal{T} -inconsistent subset of \mathcal{A}

Theorem: Pareto-optimal repair of $\mathcal{K}_{\succ} \Leftrightarrow$ stable extension of $F_{\mathcal{K},\succ}$.

Theorem: If \succ **transitive**, or \mathcal{K} has only **binary conflicts**, then **Pareto-optimal repair** of $\mathcal{K}_{\succ} \Leftrightarrow$ **preferred extension** of $F_{\mathcal{K},\succ}$.

Translation of a prioritized KB $\mathcal{K}_{\succ} = (\mathcal{T}, \mathcal{A}, \succ)$ into a PSETAF $F_{\mathcal{K},\succ}$:

- \cdot use $\boldsymbol{\mathcal{A}}$ as the arguments
- \cdot use \succ as the preference
- the attacks are of the form $C \setminus \{\alpha\} \rightsquigarrow \alpha$, with C a minimal \mathcal{T} -inconsistent subset of \mathcal{A}

Theorem: Pareto-optimal repair of $\mathcal{K}_{\succ} \Leftrightarrow$ stable extension of $F_{\mathcal{K},\succ}$.

Theorem: If \succ **transitive**, or \mathcal{K} has only **binary conflicts**, then **Pareto-optimal repair** of $\mathcal{K}_{\succ} \Leftrightarrow$ **preferred extension** of $F_{\mathcal{K},\succ}$.

Globally- and completion-optimal repairs:

 $\cdot\,$ no corresponding notion of extension

Grounded extension: deterministically constructed as follows

- $\cdot\,$ add all arguments with no incoming attacks
- iteratively add arguments whose incoming attacks are defended by the already selected facts

Grounded extension: deterministically constructed as follows

- \cdot add all arguments with no incoming attacks
- iteratively add arguments whose incoming attacks are defended by the already selected facts

Inspires new grounded semantics:

· query set of facts in grounded extension of $F_{\mathcal{K},\succ}$

Desirable properties:

- tractable (PTIME-complete) data complexity, for DL-Lite KBs
- · computable via logic programming (well-founded semantics)
- · amenable to preprocessing
- more productive than recent Elect semantics (Belabbes et al. 2019)

Contributions

- · complexity analysis of optimal repairs
- · clarified relationship with argumentation
- new tractable grounded semantics

Topics for future work

- · design SAT-based procedures for (co)NP reasoning tasks
- further study properties of PSETAFs
- · explore how to specify / elicit priority relations

DL-Lite KBs general KBs & DBs DL-Lite KBs, DBs

QUESTIONS?

Cited papers:

Staworko, Chomicki, and Marcinkowski. Prioritized repairing and consistent query answering in relational databases. Ann. Math. Artif. Intell. 64(2-3):209–246, 2012.

Belabbes, Benferhat, and Chomicki. Elect: An inconsistency handling approach for partially preordered lightweight ontologies. Proc. of LPNMR, 2019.

Surveys of inconsistency-tolerant OMQA:

Bienvenu and Bourgaux. Inconsistency-tolerant querying of description logic knowledge bases. Reasoning Web, 2016.

Bienvenu. A Short Survey on Inconsistency Handling in Ontology-Mediated Query Answering. KI, 2020.