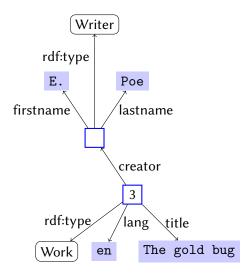
Several Link Keys Are Better than One, or Extracting Disjunctions of Link Key Candidates

Manuel Atencia Jérôme David Jérôme Euzenat

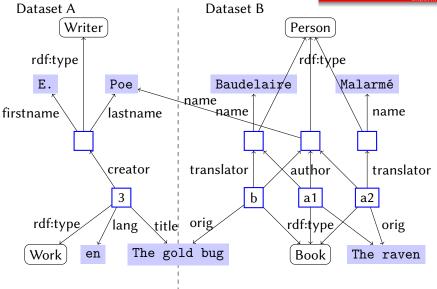
Montbonnot, France
Firstname.Lastname@inria.fr
https://moex.inria.fr

Partly funded by Elker ANR project (ANR-17-CE23-0007-01)

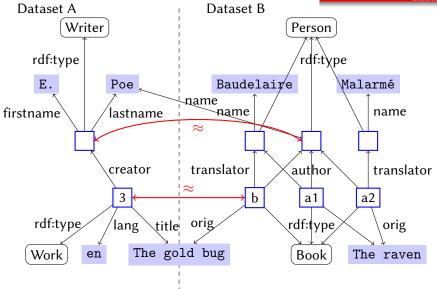
Data interlinking


Link keys

Link key candidates extraction (with FCA)


Extraction of disjunctions of link keys candidates

Experiments


Data interlinking

The problem: RDF data interlinking

The problem: RDF data interlinking

- NLP/IR based approaches
 - ► Change representation: from RDF space to VSM, or embedding spaces
 - Compute or learn a similarity on this new space
- Numerical specifications (Link Specifications)
 - Express or learn a similarity from RDF data
 - Generate links using frameworks such as SILK or LIMES
- Logical link specifications
 - Key-based: combine keys and alignments for deducing links
 - Link keys: can be extracted without requiring property alignment as input

- NLP/IR based approaches
 - ► Change representation: from RDF space to VSM, or embedding spaces
 - Compute or learn a similarity on this new space
- Numerical specifications (Link Specifications)
 - Express or learn a similarity from RDF data
 - Generate links using frameworks such as SILK or LIMES
- Logical link specifications
 - Key-based: combine keys and alignments for deducing links
 - Link keys: can be extracted without requiring property alignment as input

- There are models easy to interpret by humans
- They are logically grounded:
 - we can check consistency with the ontologies and data
 - subsumption between link keys or keys
- They produce links with high precision
 - but with limited recall

Objective: improve recall by considering combination of link keys

Link kevs

Link keys

Given two RDF dataset signatures:

$$D = \langle R, P, C \rangle$$
 and $D' = \langle R', P', C' \rangle$.

R: object properties, P: datatype properties, C: classes

A *link key expression* has the form

$$\langle \{\langle p_i, p_i' \rangle \}_{i \in EQ}, \{\langle q_j, q_j' \rangle \}_{j \in IN}, \langle c, c' \rangle \rangle$$

such that:

- \triangleright $p_i \in P \cup R$, $q_i \in P \cup R$ and $c \in C$
- $p'_i \in P' \cup R', q'_i \in P' \cup R' \text{ and } c' \in C'$
- EQ and IN are (possibly empty) finite sets of indices

A link key expression

$$\langle \{\langle \mathbf{p}_i, \mathbf{p}_i' \rangle\}_{i \in EQ}, \{\langle \mathbf{q}_j, \mathbf{q}_j' \rangle\}_{j \in IN}, \langle \mathbf{c}, \mathbf{c}' \rangle \rangle$$

is a *link key* iff the following holds:

For all pairs of instances o and o' belonging respectively to classes c and c',

if o and o' have the same sets of values (object) for each pairs of properties p_i and p'_i respectively,

and o and o' share at least one value (object) for each pairs of properties q_i and q'_i respectively,

then they are the same.

if
$$\bigwedge_{i \in EQ} p_i(o) = p_i'(o') \neq \emptyset$$
 and $\bigwedge_{j \in IN} q_j(o) \cap q_j'(o') \neq \emptyset$ then $\langle o, \text{owl:sameAs}, o' \rangle$

Link kevs

		D (Employé:	s)			D' (Staff)		
id	prenom	datenaiss	poste	bât.	firstname	birthdate	position	building	id
i ₂	Paul	1967	Dir.	B2	Paul		Dir.	B2	<i>z</i> ₂
i 3	Mary	1963	Dir.	B1	Mary		Dir.	B1	Z 3
i_4	John	1963	Pr.	B1	John		Pr.	B1	z_4
i_6	Bill	1980	Pr.	B1	William	1980	Pr.		<i>z</i> ₆
i 7	Ana	1947	Dir.	B2	Ana	1947	Dir.		Z 7
i 8	John	1967	Pr.	B2	John	1967	Pr.		Z 8

Example of link key expressions:

- $k = \langle \{\}, \{\langle datenaiss, birthdate \rangle\}, \langle Employe, Staff \rangle \rangle$
- $h = \langle \{\langle datenaiss, birthdate \rangle\}, \{\langle poste, position \rangle\} \langle Employe, Staff \rangle \rangle$
- $l = \langle \{\langle datenaiss, birthdate \rangle, \langle poste, position \rangle \}, \{\langle poste, position \rangle \}, \langle Employe, Staff \rangle \rangle$

And generated links:

$$L_k^{D,D'} = \{ \langle i_7, z_7 \rangle, \langle i_8, z_8 \rangle, \langle i_6, z_6 \rangle, \langle i_2, z_8 \rangle \}$$

$$L_l^{D,D'} = L_h^{D,D'} = \{ \langle i_7, z_7 \rangle, \langle i_8, z_8 \rangle, \langle i_6, z_6 \rangle \}$$

Link kevs

		D (Employé:	s)			D' (Staff)		
id	prenom	datenaiss	poste	bât.	firstname	birthdate	position	building	id
i ₂	Paul	1967	Dir.	B2 _	Paul		Dir.	B2	<i>z</i> ₂
i_3	Mary	1963	Dir.	B1 \	Mary		Dir.	B1	Z 3
<i>i</i> 4	John	1963	Pr.	B1	John		Pr.	B1	Z 4
i_6	Bill	1980	Pr.	B1 ←	→ William	1980	Pr.		<i>z</i> ₆
i 7	Ana	1947	Dir.	B2 ←	Ana	1947	Dir.		Z 7
<i>i</i> ₈	John	1967	Pr.	B2 ←	→ John	1967	Pr.		Z 8

Example of link key expressions:

- $k = \langle \{\}, \{\langle datenaiss, birthdate \rangle\}, \langle Employe, Staff \rangle \rangle$
- $h = \langle \{\langle datenaiss, birthdate \rangle\}, \{\langle poste, position \rangle\} \langle Employe, Staff \rangle \rangle$
- $l = \langle \{\langle \text{datenaiss}, \text{birthdate} \rangle, \langle \text{poste}, \text{position} \rangle \}, \{\langle \text{poste}, \text{position} \rangle \}, \langle \text{Employe}, \text{Staff} \rangle \rangle$

And generated links:

$$L_k^{D,D'} = \{ \langle i_7, z_7 \rangle, \langle i_8, z_8 \rangle, \langle i_6, z_6 \rangle, \langle i_2, z_8 \rangle \}$$

$$L_I^{D,D'} = L_h^{D,D'} = \{\langle i_7, z_7 \rangle, \langle i_8, z_8 \rangle, \langle i_6, z_6 \rangle\}$$

D (Employés)	D' (Staff
--------------	-----------

g id	build	position	birthdate	firstname	bât.	poste	datenaiss	prenom	id
<i>z</i> ₂	B2	Dir.		Paul	B2	Dir.	1967	Paul	<i>i</i> ₂
Z 3	B1	Dir.		Mary	B1	Dir.	1963	Mary	i_3
Z4	B1	Pr.		John	B1	Pr.	1963	John	<i>i</i> 4
<i>z</i> ₆		Pr.	1980	→ William		Pr.	1980	Bill	i_6
Z 7		Dir.	1947	→ Ana	B2 ←	Dir.	1947	Ana	i 7
<i>z</i> ₈		Pr.	1967	→ John	B2 ←	Pr.	1967	John	<i>i</i> ₈
		Pr. Pr. Dir.	1947	John → William → Ana	B1 B1 ← B2 ←	Pr. Pr. Dir.	1963 1980 1947	John Bill Ana	i ₄ i ₆ i ₇

Example of link key expressions:

- $k = \langle \{\}, \{\langle datenaiss, birthdate \rangle\}, \langle Employe, Staff \rangle \rangle$
- $h = \langle \{\langle datenaiss, birthdate \rangle\}, \{\langle poste, position \rangle\} \langle Employe, Staff \rangle \rangle$
- $l = \langle \{\langle \text{datenaiss}, \text{birthdate} \rangle, \langle \text{poste}, \text{position} \rangle \}, \{\langle \text{poste}, \text{position} \rangle \}, \langle \text{Employe}, \text{Staff} \rangle \rangle$

And generated links:

$$L_k^{D,D'} = \{ \langle i_7, z_7 \rangle, \langle i_8, z_8 \rangle, \langle i_6, z_6 \rangle, \langle i_2, z_8 \rangle \}$$

$$L_I^{D,D'} = L_h^{D,D'} = \{\langle i_7, z_7 \rangle, \langle i_8, z_8 \rangle, \langle i_6, z_6 \rangle\}$$

Let be two link key expressions over datasets D and D':

$$k = \langle E, I, \langle c, c' \rangle \rangle$$
 and $h = \langle F, J, \langle c, c' \rangle \rangle$

(intensional) subsumption

$$k \leq h$$
, if $E \subseteq F$ and $I \subseteq J$
 \implies if $k \leq h$, then $L_k^{D,D'} \supseteq L_h^{D,D'}$, written $k \leq^{D,D'} h$

meet

$$k\triangle h = \langle E \cap F, I \cap J, \langle c, c' \rangle \rangle$$

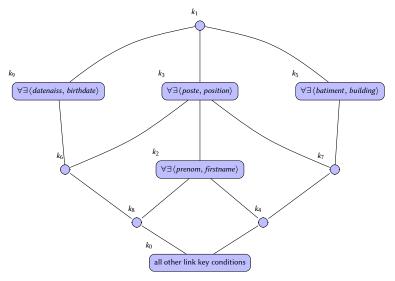
$$\implies L_{k\triangle h}^{D,D'} \supseteq L_k^{D,D'} \cup L_k^{D,D'}$$

join

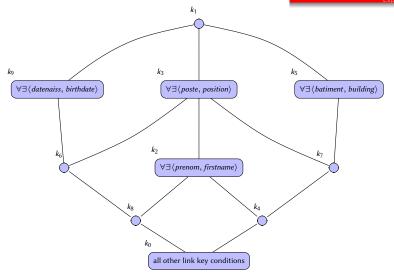
$$k \nabla h = \langle E \cup F, I \cup J, \langle c, c' \rangle \rangle$$

$$\implies L_{\iota \nabla h}^{D,D'} = L_{\iota}^{D,D'} \cap L_{\iota}^{D,D'} \rangle$$

Link key candidates extraction (with FCA


Link key candidates extraction (with FCA)

- We provide a method for extracting link key candidates
 - subset of link key expressions that can generate links between the datasets
- It is based on Formal Concept Analysis


The formal context for link key candidates $\langle G, M, I \rangle$ is:

G		$\exists \langle p_i, p_j' angle$			$orall \langle p_i, p_j' angle$	
:	٠.	:	٠	٠	:	·
$\langle o, o' angle$		1 iff $p^D(o) \cap p'^{D'}(o') \neq \emptyset$			$1 \text{ iff } p^D(o) = p'^{D'}(o')$	•••
:	٠٠.	÷	٠.	٠	:	٠.

Link key candidates extraction (with FCA

Link key candidates extraction (with FCA

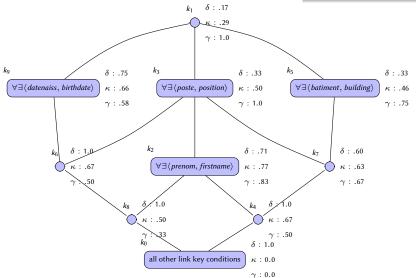
How to select the "good" candidates?

Let $k = \langle E, I, \langle c, c' \rangle \rangle$ be a link key expression,

Discriminability

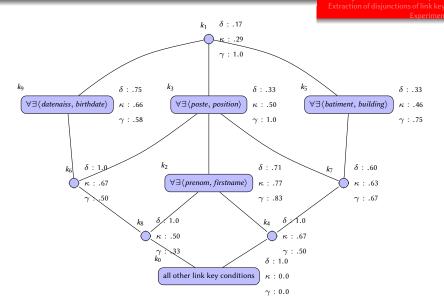
$$\delta^{D,D'}(k) = \begin{cases} 1.0 & \text{if } L_k^{D,D'} = \varnothing \\ \frac{\min(|\pi(L_k^{D,D'})|, |\pi'(L_k^{D,D'})|)}{|L_k^{D,D'}|} & \text{otherwise} \end{cases}$$

Coverage


$$\gamma^{D,D'}(k) = \begin{cases} 1.0 & \text{if } c^D = c'^{D'} = \varnothing \\ \frac{|\pi(L_k^{D,D'}) \cup \pi'(L_k^{D,D'})|}{|c^D \cup c'^{D'}|} & \text{otherwise} \end{cases}$$

hmean

$$\kappa^{D,D'}(k) = rac{2 imes \gamma^{D,D'}(k) imes \delta^{D,D'}(k)}{\gamma^{D,D'}(k)+\delta^{D,D'}(k)}$$


with
$$\pi(L) = \{o \in D; \langle o, o' \rangle \in L\}$$
 and $\pi'(L) = \{o' \in D'; \langle o, o' \rangle \in L\}$
If $h \leq^{D,D'} k$, then $\gamma^{D,D'}(h) \geq \gamma^{D,D'}(k)$

Link key candidates extraction (with FCA

Extracted link key candidates $(\langle K, \leq \rangle)$

Link key candidates extraction (with FCA

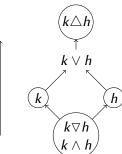
There is no perfect candidate link key

Extraction of disjunctions of link keys can

Extraction of disjunctions of link keys candidates

Conjunction of link key expressions

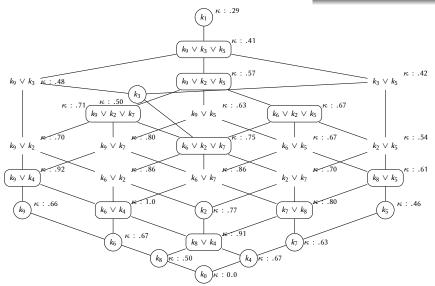
Notation: $k \wedge h$

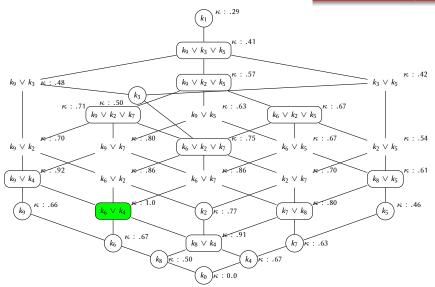

Link set: $L_{k \wedge h}^{D,D'} = L_k^{D,D'} \cap L_h^{D,D'}$

Disjunction of link key expressions

Notation: $k \vee h$

Link set: $L_{k \lor h}^{D,D'} = L_{k}^{D,D'} \overline{\cup L_{h}^{D,D'}}$


nore links



- \vee and \wedge are commutative and associative.
- \wedge is equivalent to ∇ : we only need to search for \vee .

Extraction of disjunctions of link keys can

- 1. Compute the link key candidates lattice
- 2. Enumerate antichains of link key candidates
- 3. Select the best one

Extraction of disjunctions of link keys can

In our example:

- ► 10 candidates
- 30 antichains (12 maximal antichains)

In our example:

- 10 candidates
- 30 antichains (12 maximal antichains)

But...

- ▶ The number of antichains of a lattice is difficult to establish a priori, the worst case being 2ⁿ
- ► The best disjunction does not necessarily contains the best link key candidate (with respect to κ)
- The best disjunction is not necessarily a maximal one

In our example:

- 10 candidates
- 30 antichains (12 maximal antichains)

But...

- ▶ The number of antichains of a lattice is difficult to establish a priori, the worst case being 2^n
- ► The best disjunction does not necessarily contains the best link key candidate (with respect to κ)
- The best disjunction is not necessarily a maximal one

So we cannot perform an exhaustive search...we need heuristics.

Two heuristics:

- top-k:
 - 1. select the top-k candidates according to some evaluation measure (κ) ,
 - 2. perform an exhaustive enumeration of antichains on this selection
- expand-best:
 - 1. Select the best antichain (starting from the atomic ones),
 - Replace it by its expansion (all antichains containing this one),
 - 3. Stop the process after x iterations without improvement,
 - 4. Return the best antichain.

Experiments

Hypothesis:

Disjunctions of link key candidates generate better link sets, in terms of F-measure, than single link key candidates.

Datasets:

- Persons and Restaurants datasets (OAEI 2010)
- Doremus datasets (OAEI 2016)
- SPIMBench (OAEI 2018)
- Libraries

Settings:

- Candidates extracted with Linkex using inverse, 2-length composition of properties
- Basic normalization of strings: remove diacritics, tokenize strings and sort the resulting bag of tokens
- Disjunctions extracted with top-k ($k = 10 \dots 30$, step = 5) and expand-best strategies

Experiments

OAEI2010

	S	ingle o	andidate	es	Disjunctions					
Task	#cand	Prec.	F-meas.	Rec.	Strategy	Prec.	F-meas.	Rec.		
Restaurants	20	0.477	0.58	0.741	top-10	0.483	0.596	0.777		
Restaurants					expand-best	0.481	0.594	0.777		
Person1	613	1	0.974	0.95	top-10 expand-best	1	1	1		
reisoni	013	ı			expand-best	1	1	1		
Person2	521	0.206	0.27	0.39	top-10 expand-best	0.348	0.425	0.545		
reisonz	321	21 0.206 0.27		0.39	expand-best	0.265	0.369	0.608		

Doremus (OAEI 2016)

	S	ingle c	andidate	es	Disjunctions					
Task	#cand	Prec.	F-meas.	Rec.	Strategy	Prec.	F-meas.	Rec.		
Doromus 1	27	0.833	0.714	0.625	top-10 expand-best	0.793	0.754	0.719		
Dorellius 1	21				expand-best	0.806	0.794	0.781		
Doromus 2	101	1 0.833 0.712	0.712	0.622	top-10	0.829	0.799	0.771		
Dorellius 2	101		0.712		expand-best	0.830	0.802	0.776		
Doremus 3	20	0.622	0.571	0.682	top-10	0.569	0.667	0.805		
Dorellius 3	38 0	0.022	0.571	0.003	top-10 expand-best	0.596	0.694	0.829		

Experiments

SPIMBench (OAEI 2018)

			andidate		Disjunctions				
Task	#cand	Prec.	F-meas.	Rec.	Strategy	Prec.	F-meas.	Rec.	
SDIMBonch	2 277	0.016	0.704	0.772	top-10	0.816	0.794	0.773	
of imbelien	2 211	0.010	0.794	0.773	top-10 expand-best	0.805	0.788	0.773	

Libraries (only partial reference)

			andidate		Disjunctions				
Task	#cand	Prec.	F-meas.	Rec.	Strategy	Prec.	F-meas.	Rec.	
Librarios	022	0.656	0.614	0.579	top-10	0.563	0.616	0.679	
Libraries	733	0.030	0.014	0.576	top-10 expand-best	0.363	0.474	0.681	

- Top-10 strategy always find a disjunction better than (or equals to) the best single link key candidate
- Expand-best strategy always generates longer disjunctions than the top-10 strategy

In general disjunctions of link keys improve single results (F-measure)

Experiments

- Definition of disjunction of link keys and semantics
- Relations between disjunctions and other link key expression
- Provide extraction strategies for extraction of disjunctions
- Fully unsupervised: no training sets nor alignments

Experiments

- Better evaluation measures
 - the measures are not always able to select te best disjunction
 - monotonic measres
- More complete and efficient extraction strategies
- Beyond disjunction composition

		k Do		us Dat					
QΑ	D2010								
				candidat			i giunci		_
	Task	ecand	Prec	F-meas	Rec.			F-meas	
	Restauranto	20	0.471	0.58	0.741	top-10 expand-best	0.0k3 0.0k1	0.594	0.77
	Person 1	613	-1	6976	0.96	top-10 expand-best	1	- 1	7
	Person2	521	0.204	0.27	0.29	top-10 expand-best		0.425	
Dar	eesus (OAE)	2016)					_		_
		- 5	ingle i		к	Di		005	_
	Task	tand	Pinc.	Feneral.	Rec.	Strategy	Proc.	F-meas.	Rec.
	Dorwerus 1	27	0.833	0.716	0.625	tup-50 espand-best	0.792	0.750	0.78
	Dorwerus 2	101	0.833	0.712	0.622	1ap-50 exceed-best	0.839	0.799	6.77
	Dorwood 2	28	0.622	0.571	0.683	1ap-50 expand-best	8.549 8.556	0.667	6.300

https://moex.inria.fr

@ inria . fr

Manuel . Atencia

Jerome . David

Jerome . Euzenat