J. Lhez, <u>C. Le Duc</u>, T. Dong, M.Lamolle Projet ANR-ELKER

July 6, 2020

Outline

- 1 Network of aligned ontologies with link keys
- 2 Decentralized reasoning and existing approaches
- 3 Syntax and semantics with link keys
- 4 Algorithm for decentralized reasoning
- 5 Implementation and evaluation

-Network of aligned ontologies with link keys

Outline

1 Network of aligned ontologies with link keys

- 2 Decentralized reasoning and existing approaches
- 3 Syntax and semantics with link keys
- 4 Algorithm for decentralized reasoning
- 5 Implementation and evaluation

Network of aligned ontologies with link keys

Reasoning with link keys

Example

```
Ontology O_1 (American Hospital):

Flu(Corona)

Flu \sqsubseteq InfectuousDisease

Ontology O_2 (French Hospital)

GrippeSaisonniere \sqsubseteq Grippe

Grippe \sqsubseteq Maladielnfectueuse

Grippe \sqsubseteq -Diabete

Alignment axioms A_{12}:

Flu \rightarrow Grippe

InfectuousDisease \rightarrow Maladielnfectueuse

{\langle cough, toux \rangle, \langle fever, fievre \rangle \}linkkey\langleFlu, Maladielnfectueuse\rangle

Reasoning:

O_1 \cup O_2 \cup A_{12} \models \{ \langle cough, toux \rangle, \langle fever, fievre \rangle \}linkkey\langleFlu, GrippeSaisonniere\rangle?
```

Decentralized reasoning and existing approaches

Outline

1 Network of aligned ontologies with link keys

2 Decentralized reasoning and existing approaches

- 3 Syntax and semantics with link keys
- 4 Algorithm for decentralized reasoning
- 5 Implementation and evaluation

Decentralized reasoning and existing approaches

Existing approaches

Different approaches

Centralized approach

Merging all axioms and correspondences together and performing reasoning on the obtained unique ontology (Pellet)

Decentralized approach

Considering the ontologies separately and perform exchanges (Drago, Draon)

Issues

- Existing distributed approaches require a lot of exchanges
- None of them supports link keys

Syntax and semantics with link keys

Outline

- 1 Network of aligned ontologies with link keys
- 2 Decentralized reasoning and existing approaches
- 3 Syntax and semantics with link keys
- 4 Algorithm for decentralized reasoning
- 5 Implementation and evaluation

Syntax and semantics with link keys

Alignment Syntax

- Concept correspondence: $C \rightarrow D$ or $C \leftarrow D$ with $C \in sub(O_i)$ and $D \in sub(O_j)$
- Individual correspondence: a ≈ b (a ≉ b) with a ∈ Voc_I(O_i) and b ∈ Voc_I(O_j)
- Link key: $\{\langle P_k, Q_k \rangle\}_{k=1}^n$ linkkey $\langle C, D \rangle$ with $P_k \in \text{Voc}_R(O_i)$, $Q_k \in \text{Voc}_R(O_j)$, $C \in \text{sub}(O_i)$, $D \in \text{sub}(O_j)$

Syntax and semantics with link keys

Alignment semantics

- If $a \approx b$ is in A_{ij} then $a^{\mathcal{I}} = b^{\mathcal{J}}$
- If $a \not\approx b$ is in A_{ij} then $a^{\mathcal{I}} \neq b^{\mathcal{J}}$
- If $C \to D$ is in A_{ij} then $D^{\mathcal{J}} = \emptyset$ implies $C^{\mathcal{I}} = \emptyset$.
- Example: Doctor \rightarrow Disease but Doctor $\not\sqsubseteq$ Disease

 $\mathsf{Developer} \to \mathsf{Computer} \ \mathsf{but} \ \mathsf{Developer} \not\sqsubseteq \mathsf{Computer}$

If
$$\{\langle P_k, Q_k \rangle\}_{k=1}^n | \text{linkkey} \langle C, D \rangle$$
 is in A_{ij} and $x^{\mathcal{I}} \in C^{\mathcal{I}}$,
 $y^{\mathcal{J}} \in D^{\mathcal{J}}$, $\langle a^{\mathcal{I}}, (z_k)^{\mathcal{I}} \rangle \in P_k^{\mathcal{I}}$, $\langle b^{\mathcal{J}}, (z_k)^{\mathcal{J}} \rangle \in Q_k^{\mathcal{J}}$ for all
 $1 \leq k \leq n$, then $a^{\mathcal{I}} = b^{\mathcal{J}}$.

9 / 24

Syntax and semantics with link keys

Consistency

Let $N = \langle \{O_i\}_{i=1}^n, \{A_{ij}\}_{i,j=1, i \neq j}^n \rangle$ be a network of aligned ontologies. N is consistent if there is a model $\mathcal{I} = \{\mathcal{I}_i\}_{i=1}^n$ of O_i for all $1 \leq i \leq n$ such that:

- **1** For each correspondence $a \approx b$ (resp. $a \not\approx b$) in A_{ij} with i < j, $a^{\mathcal{I}_i} = b^{\mathcal{I}_j}$ (resp. $a^{\mathcal{I}_i} \neq b^{\mathcal{I}_j}$).
- 2 There is no pair of correspondences a ≈ b, a ≈ b in A_{ij} (A_{ij} is clash-free)
- **3** For each correspondence $C \to D$ in A_{ij} with i < j, if $D^{\mathcal{I}_j} = \emptyset$ then $C^{\mathcal{I}_i} = \emptyset$.
- 4 For each correspondence $\{\langle P_k, Q_k \rangle\}_{k=1}^n$ linkkey $\langle C, D \rangle$ in A_{ij} with i < j, if $(a_k^i)^{\mathcal{I}_i} = (a_k^j)^{\mathcal{I}_j}$, $\langle a^{\mathcal{I}_i}, (a_k^j)^{\mathcal{I}_i} \rangle \in P_k^{\mathcal{I}_i}$, $\langle b^{\mathcal{I}_j}, (a_k^j)^{\mathcal{I}_j} \rangle \in Q_k^{\mathcal{I}_j}$ for all $1 \le k \le n$, $a^{\mathcal{I}_i} \in C^{\mathcal{I}_i}$, $b^{\mathcal{I}_j} \in D^{\mathcal{I}_j}$ then $a^{\mathcal{I}_i} = b^{\mathcal{I}_j}$.

Syntax and semantics with link keys

Reducing entailment to consistency

Definition

• N *entails* a link key α ($N \models \alpha$) if every model \mathcal{I} of N satisfies α .

Reduction

• Let $\langle \{O_1, O_2\}, A_{12} \rangle$ be a network of aligned ontologies in \mathcal{ALC} . It holds that:

 $\begin{array}{l} \langle \{O_1, O_2\}, A_{12} \rangle \models (\{\langle P_i, Q_i \rangle\}_{i=1}^m \textit{ linkkey } \langle C, D \rangle) \textit{ iff } \\ \langle \{O'_1, O'_2\}, A'_{12} \rangle \textit{ is inconsistent} \end{array}$

where $O_1^\prime,\,O_2^\prime$ and A_{12}^\prime can be linearly built from $O_1,\,O_2$ and A_{12}

Algorithm for decentralized reasoning

Outline

- 1 Network of aligned ontologies with link keys
- 2 Decentralized reasoning and existing approaches
- 3 Syntax and semantics with link keys
- 4 Algorithm for decentralized reasoning
- 5 Implementation and evaluation

Algorithm for decentralized reasoning

Propagating individual equalities

Individual equalities need to be propagated

• If there is $a_i^1 \approx a_j^1 \in A_{ij}$ and $O_i \models a_i^1 \approx a_i^2$ then we add $a_i^2 \approx a_i^1$ to A_{ij} .

Link keys can trigger to propagate. For each link key $\{\langle P_k, Q_k \rangle\}_{k=1}^n$ linkkey $\langle C, D \rangle$:

• If $P_i(a, x_i) \in O_i, Q_i(b, x_i) \in O_j$ then add $a \approx b$ to A_{ij}

Algorithm for decentralized reasoning

Propagating concept unsatisfiability

Subsumption transitivity may also lead to propagating

• If there is $C_i^1 \to C_j^1 \in A_{ij}$ and $O_j \models C_j^1 \sqsubseteq C_j^2$, we add $C_i^1 \to C_j^2$ to A_{ij}

This allows to propagate unsatisfiability through the network:

• For each axiom $D \to C \in A_{ij}$, if $O_j \models C \sqsubseteq \bot$, then $D \sqsubseteq \bot$ is added to O_i

Algorithm for decentralized reasoning

Propagating over the network

```
function PROPAGATEOVERNETWORK(\langle \{O_i\}_{i=1}^n, \{A_{ij}\}_{i,j=1, i \neq j}^n \rangle)

while O_i, O_j, A_{ij} are unstationary for all 1 \le i < j \le n do

for 1 \le i < j \le n do

while O_i, O_j, A_{ij} are unstationary do

if propagateEqual(O_i, O_j, A_{ij}) returns false then

return false

end if

if propagateUnsat(O_i, O_j, A_{ij}) returns false then

return false

end if

end while

end for

end while

return true

end function
```

Remark

A stationary state is reached when there is nothing left to propagate.

Algorithm for decentralized reasoning

Example: use of the algorithm

Oi	Alignment	O_j
$a \approx c$	a pprox b	D(f)
C(e)	cpprox d	Q(f, b)
P(e, a)	$\{\langle P, Q \rangle\}$ linkkey $\langle C, D \rangle$	$F \sqsubseteq \bot$
$E \sqsubseteq \bot$	H ightarrow F	
	$E \leftarrow G$	
$H \sqsubseteq \bot$	approx d, cpprox b	bpprox d
	e pprox f	$G \sqsubseteq \bot$

Propagating through individual correspondences Propagating through link key correspondences Propagating through concept correspondences

Algorithm for decentralized reasoning

Result 1 : Global consistency reducible to local consistencies

Let $\langle \{O_i\}_{i=1}^n, \{A_{ij}\}_{i,j=1, i\neq j}^n \rangle$ be a network of aligned ontologies. $\widehat{O_i}$ $(1 \leq i \leq n)$ denotes the resulting consistent ontologies obtained by calling *propagateOverNetwork*($\langle \{O_i\}_{i=1}^n, \{A_{ij}\}_{i,j=1, i\neq j}^n \rangle$). It holds that $\widehat{O_i}$ is consistent for all $1 \leq i \leq n$ and $\widehat{A_{ij}}$ is clash-free for all $1 \leq i < j \leq n$ iff the network $\langle \{O_i\}_{i=1}^n, \{A_{ij}\}_{i,j=1, i\neq j}^n \rangle$ is consistent. Algorithm for decentralized reasoning

Result 2 : Complexity

Let $\langle \{O_i\}_{i=1}^n, \{A_{ij}\}_{i,j=1,i\neq j}^n \rangle$ be a network of aligned ontologies. The algorithm *propagateOverNetwork*($\langle \{O_i\}_{i=1}^n, \{A_{ij}\}_{i,j=1,i\neq j}^n \rangle$) runs in polynomial time in the size of the network if each check of entailment or consistency occurring in the algorithms is considered as an oracle.

Remark

Our approach adds axioms and assertions to ontologies and alignments monotonously.

Each call to a local reasoner considered as oracle.

Implementation and evaluation

Outline

- 1 Network of aligned ontologies with link keys
- 2 Decentralized reasoning and existing approaches
- 3 Syntax and semantics with link keys
- 4 Algorithm for decentralized reasoning
- 5 Implementation and evaluation

Implementation and evaluation

Implementation

APIs used

- Alignment API
- OWL API
- OWLLink API

Implementation and evaluation

Evaluation

Ontology 1	Ontology 2	Alignment	IDDL	APPROX
lasted	Sigkdd	iasted-sigkdd (without link keys)	3.5s	9 ms
Conference	Ekaw	conference-ekaw (without link keys)	7.5s	11 ms
Cmt	Edas	cmt-edas (without link keys)	7.5s	16 ms
FMA	SNOMED	FMA-SNOMED (without link keys)	> 15 minutes	81 s
FMA	NCI	FMA-NCI (without link keys)	> 15 minutes	10 s

Table: Execution time for checking consistency of ontology networks according to different semantics

Ontology 1	Ontology 2	Alignment	Consistency in APPROX
lasted	Sigkdd	iast-sigkdd (with link keys)	9 ms
Conference	Ekaw	conference-ekaw (with link keys)	11 ms
Cmt	Edas	cmt-edas (with link keys)	17 ms

Table: Execution time (in milliseconds) for checking consistency of ontology networks with link keys

- Conclusion

Outline

- 1 Network of aligned ontologies with link keys
- 2 Decentralized reasoning and existing approaches
- 3 Syntax and semantics with link keys
- 4 Algorithm for decentralized reasoning
- 5 Implementation and evaluation

- Conclusion

Conclusion and Future Work

- Conclusion
 - Reasoning with link keys in alignments
 - A weakened semantics for concept correspondences
 - A decentralized algorithm requiring a polynomial amount of exchanges
 - Experimental results confirm the complexity result
- Future Work
 - Better datasets (larger, medical datasets)
 - Adding role correspondences
 - Adding existential link keys

Conclusion

This work has been partially supported by the ANR project ELKER (ANR-17-CE23-0007-01)