

Mining Significant Maximum Cardinalities in Knowledge Bases

Arnaud Giacometti - Béatrice Markhoff - Arnaud Soulet

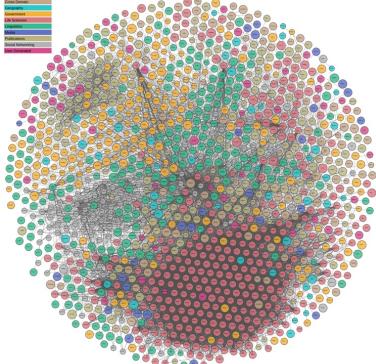
LIFAT – Université de Tours (France)

Presentation Outline

Motivation and Related Works
Hypothesis for computing true Maximum Cardinalities
Significant Maximum Cardinality
Mining Algorithm
Experiments
Conclusion

Using Web Knowledge Bases

Automatically Generated with


- Crowdsourcing
- Extraction / Integration

Used for

- Enriching Datasets
- Linking Datasets in LOD
- Knowledge Discovery

• ..

Need to know when knowledge is completed

Linked Open Data (2008...

ഹ

Related Works

Interest of information about roles

- Data mining on web knowledge bases
- Characterize query answers

Mining role cardinality for individual

- Exogenous approaches
- Endogenous approaches (PCA)

Mining role cardinality for concept

- Contextual keys
- Mandatory roles
- Role minimum/maximum cardinalities

[Darari ISWC'13] [Galarraga WWW'13] [Razniewski SIGMOD'15] [Galarraga WebDB'17] [Tanon ISWC'17]

[Galarraga WWW'13] [Galarraga WSDM'17] [Mirza ISWC'18]

[Pernelle JWS'13] [Symeonidou ISWC'17] [Munoz DEXA'17] [Lajus WWW'18]

A Look on Role Cardinalities in DBpedia

	Person / birthYear				
i	n_i	$ au_{i}$	$\widetilde{ au}_i$		
1	$159,\!841$	0.999	0.996		
2	91	0.928	0.775		
3	4	0.571	0.000		
4	2	0.667	0.000		
5		1.000	0.000		

Take into account Incorrect Facts

Incorrectness

- About one hundred persons have 2, 3, 4 or 5 declared birth years
- Maximum cardinality

≠ Bigest observed cardinality

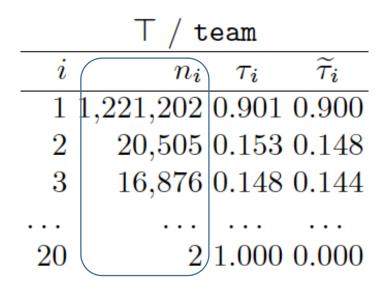
Person / birthYear				
i	n_i	$ au_{m{i}}$	$\widetilde{ au}_{m{i}}$	
1	$159,\!841$	0.999	0.996	
2	91	0.928	0.775	
3	4	0.571	0.000	
4	2	0.667	0.000	
5		1.000	0.000	

Another Look on Role Cardinalities in DBpedia

${ t Person} \ / \ { t parent}$				
i	n_i	$ au_{i}$	$\widetilde{ au}_i$	
1	$10,\!643$			
2			0.975	
3	75	0.882	0.718	
4	9	0.900	0.420	
6		1.000	0.000	

Take into account Incompleteness

Incompleteness


- More than half of the persons have only one declared parent
- Maximum cardinality
 - ≠

Most frequently observed cardinality

${ t Person} \ / \ { t parent}$				
i	n_i	$ au_{i}$	$\widetilde{ au}_i$	
1	$10,\!643$			
2		0.991		
3	75	0.882	0.718	
4	9	0.900	0.420	
6		1.000	0.000	

More on Role Cardinalities in DBpedia

Closer Look on Role Cardinalities in DBpedia

	\top / team			
i	n_{i}	$ au_{i}$	$\widetilde{ au}_{m{i}}$	
1	$1,\!221,\!202$	0.901	0.900	
2	20,505	0.153	0.148	
3	$16,\!876$	0.148	0.144	
20	2	1.000	0.000	

FootballMatch / team				
i	n_i	$ au_{i}$	$\widetilde{ au_i}$	
1		0.008		
2	3,092	0.998	0.971	
3		0.500		
4		0.667		
5	1	1.000	0.000	

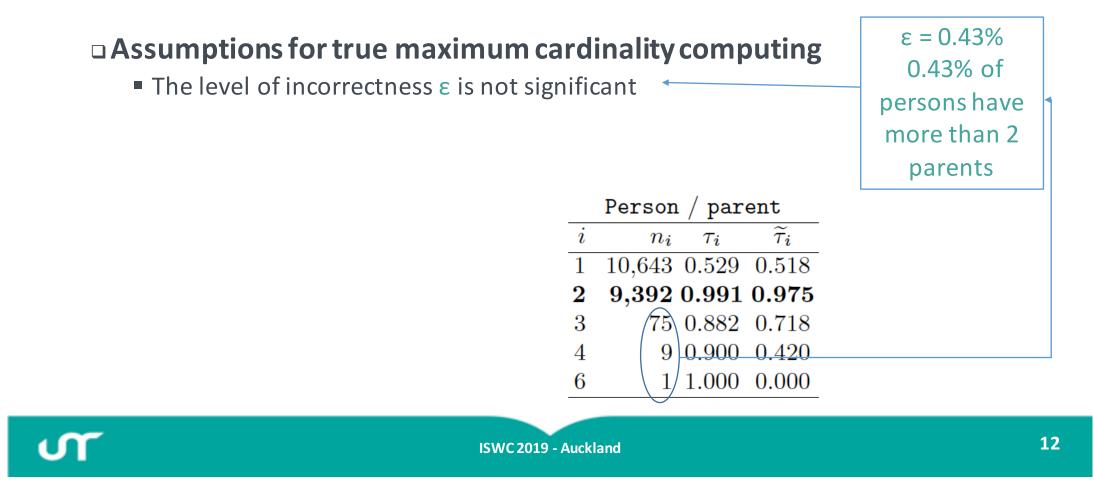
Take into account Context and Distribution

		op / team	Fo	otballMat	tch /	/ team
_	i	$n_i \tau_i \widetilde{\tau_i}$	i	n_{i}	$ au_{i}$	$\widetilde{ au}_i$
_	1 1	$1,221,202 \ 0.901 \ 0.900$	1	$26 \ 0.$	008	0.000
	2	$20,505 \ 0.153 \ 0.148$	2	3,092 0.	998	0.971
	3	$16,876\ 0.148\ 0.144$	3	$3 \ 0.$	500	0.000
			4	$2 \ 0.$	667	0.000
	20	$2\ 1.000\ 0.000$	5	1 1.	000	0.000

Context

- Maximum Cardinality is context dependant
- Not always meaningful to compute a Maximum Cardinality

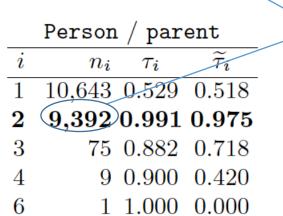
Computing True Maximum Cardinalities


If all individuals in KB have only 1 parents?

a For M the true maximum cardinality of role r

- ε, level of incorrectness of a role r: represents the probability to observe an individual having more than M times role r
- λ, degree of completeness of role r: represents the probability to observe an individual having M times role r

Assumptions: Level of Incorrectness


Assumptions: Degree of Completeness

Assumptions for true maximum cardinality computing

- The level of incorrectness ε is not significant
 - The degree of completeness λ is significantly higher \checkmark

ε = 0.43%

For $\varepsilon = 0.43\%$, λ greater than 7% is sufficient

ഹ

Likelihood of a Maximum Cardinality i

□Conditional probability $P(X = i | X \ge i)$

$$\Box \textbf{Likelihood } \tau_i^{C,R}(\mathcal{K}) = \frac{n_i^{C,R}}{n_{\geq i}^{C,R}}$$

□Without incorrectness: $P(X = i | X \ge i) = 1 \Leftrightarrow i$ is the true maximum

Examples of Likelihood Values

15

Problem

 $\Box \tau_6^{\text{Person, parent}}(DBpedia) = 1$

□ Without incorrectness: $P(X = i | X \ge i) = 1 \Leftrightarrow i$ is the true maximum card.

Person / parent			
i	$n_i au_i \qquad \widetilde{ au}_i$	-	
1	$10,\!643\ 0.529\ 0.518$	-	
2	$9,392\ 0.991\ 0.975$		
3	$75 \ 0.882 \ 0.718$		
4	$9 \ 0.900 \ 0.420$		
6	1(1.000)0.000	_	

Correction Using Hoeffding's Inequality

Hoeffding's inequality

S

- True for any distribution
- Upper bound of the deviation when estimating $P(X = i | X \ge i)$

$$\Box \operatorname{\mathsf{Pessimistic}} \operatorname{\mathsf{likelihood}} \ \widetilde{\tau}_i(\mathcal{K}) = \max\left\{\frac{n_i}{n_{\geq i}} - \sqrt{\frac{\log(1/\delta)}{2n_{\geq i}}}, 0\right\}$$

□ Given a confidence level $1 - \delta$ we have $P(X = i | X \ge i) \ge \tilde{\tau}_i(\mathcal{K})$

Examples of Pessimistic Likelihood Values

For $1 - \delta = 99\%$

	Person / parent			
i	n_i	$ au_i$	$\langle \widetilde{\tau}_i \rangle$	
1	$10,\!643$			
2	9,392	0.991	0.975	
3	75	0.882	0.718	
4	9	0.900	0.420	
6	1	1.000((0.000)	

Significant Maximum Cardinality w.r.t. ${\mathcal K}$

 \Box minimum likelihood threshold $min_{ au}$

 \Box M is a Significant Maximum Cardinality iff M = arg max_{i>1} $\widetilde{\tau_i}$ and $\widetilde{\tau_M} \ge min_{\tau}$

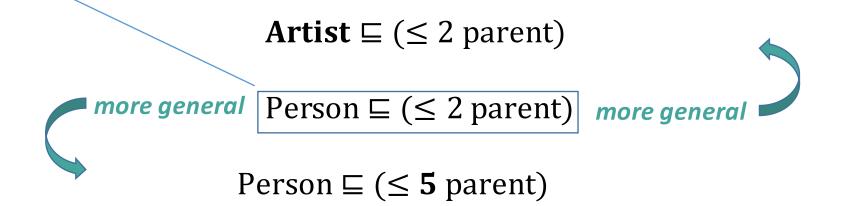
	${ t Person} \ / \ { t parent}$			
i	n_{i}	$ au_i$	$\widetilde{ au}_i$	
1	$10,\!643$	0.529	0.518	
2	9,392	0.991	0.975	
3	75	0.882	0.718	
4	9	0.900	0.420	
6	1	1.000	0.000	

For $1 - \delta = 99\%$ and $min_{\tau} = 0.97$ the maximum cardinality of role parent for persons in DBpedia is 2

Algorithm: concept as context

Contextual Constraint

■ Individuals of concept *C* have at most *M* role *R* in *K*:


 $C \sqsubseteq (\leq M R)$

 $\Box Concept hierarchy: Artist \sqsubseteq Person$

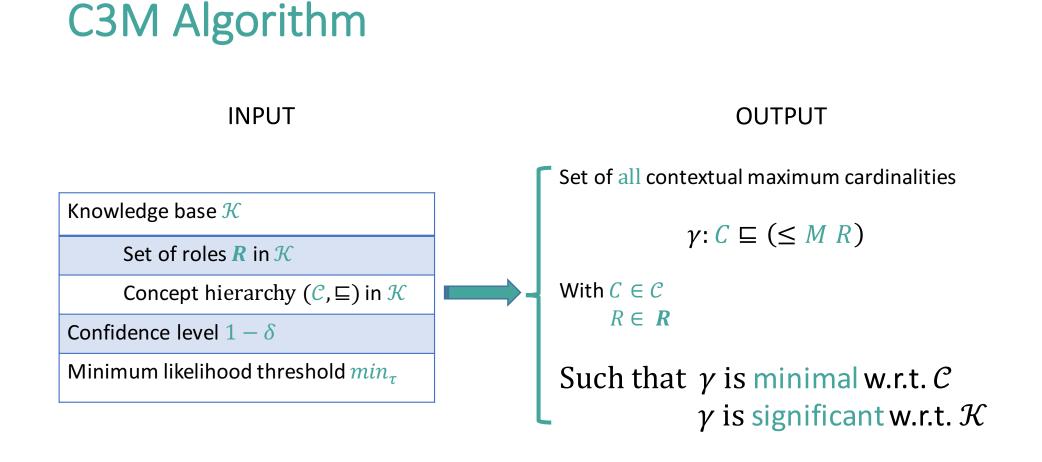


Image: Minimal Contextual Constraint

ഹ

On the Web Knowledge Base Scale...

DBpedia

- ≥ 483,000 concepts
- ≥ 60,000 roles

- ≥ 500,000 concepts
- ≥ 93,000 roles

First Pruning Criteria: Significant $\widetilde{\tau_M} \ge min_{\tau}$

□ Significant only if there is enough individuals of *C* having role *R*

If $|C \sqcap \exists R. \top| < \frac{\log(1/\delta)}{2(1-min_{\tau})^2}$ then no constraint

 γ : $C' \sqsubseteq (\leq M R)$ with $C' \sqsubseteq C$

can be significant w.r.t. ${\mathcal K}$

For $1 - \delta = 99\%$ and $min_{\tau} = 0.97$: at least 2558 individuals

S

Second Pruning Criteria: Minimal

lf

 $\gamma_1: C \sqsubseteq (\leq 1 R)$

Then no constraint

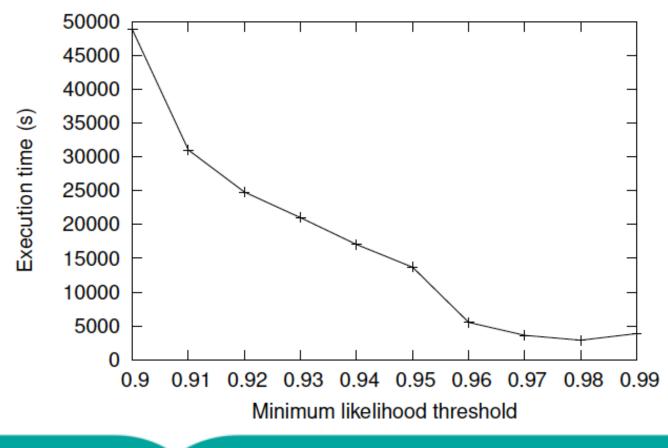
 $\gamma_2: C' \sqsubseteq (\leq M R), C' \sqsubseteq C, M \ge 1$

can be minimal w.r.t. $\mathcal{K}'s$ hierarchy of concepts

Experiments

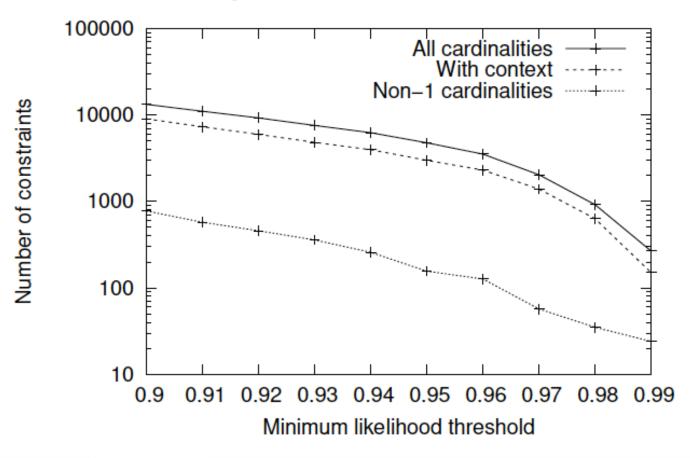
All programs and some of the result sets: https://github.com/asoulet/c3m

DBpedia


500 million triples / 480,000 concepts / 60,000 roles All experiments done with $1 - \delta = 99\%$

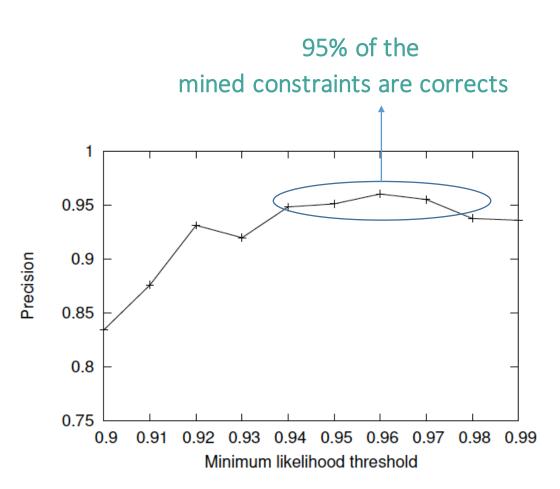
Queried online via its SPARQL Endpoint

TESTED KNOWLEDGE BASES NOT NEED TO BE DOWNLOADED



Good Scalability

ഗ


Manageable and interesting constraints

High Precision

Based on a built ground truth

Conclusion

Contributions

- A method for computing a Significant maximum cardinality in a Web knowledge base, based on a likelihood measure and Hoeffding's inequality
- An algorithm for enumerating the set of all Minimal significant maximum cardinalities in a Web knowledge base

Program Features

- High scalability, high precision, also interesting information about KB content generation
- No need to download Web knowledge bases

Future Work

- Compute other Web knowledge base features
- Use more reasonning (equivalent classes or properties, owl:sameAs, etc.)

Merci

