Introduction	

Experiments and Results

< ロ > < 同 > < 回 > < 回 >

Conclusion 00

Using Grammar-based Genetic Programming for Mining Disjointness Axioms Involving Complex Class Expressions

Thu Huong Nguyen Andrea G. B. Tettamanzi

Université Côte d'Azur, CNRS, Inria, I3S, Sophia Antipolis, France

Symposium MaDICS 2020, July 6, 2020

Introduction •000	Grammar-Based GP for Disjointness Axioms Discovery	Experiments and Results	Conclusion

Motivation

- Linked Open Data (LOD) has made a huge number of interconnected RDF triples freely available for sharing and reuse
- Shared schemas and ontologies are needed to support reasoning
- Manual acquisition of axioms:
 - is exceedingly expensive and time-consuming
 - depends on the availability of domain specialists and knowledge engineers

イロト 不得 トイヨト イヨト ヨー ろくで

Introduction: Ontology Learning

Top-down construction of ontologies has limitations

- aprioristic and dogmatic
- does not scale well
- does not lend itself to a collaborative effort

Bottom-up, grass-roots approach to ontology and KB creation

• start from RDF facts and learn OWL 2 axioms

Recent contributions towards OWL 2 ontology learning

- FOIL-like algorithms for learning concept definitions
- statistical schema induction via association rule mining
- light-weight schema enrichment (DL-Learner framework)

All these methods apply and extend ILP techniques.

Experiments and Results

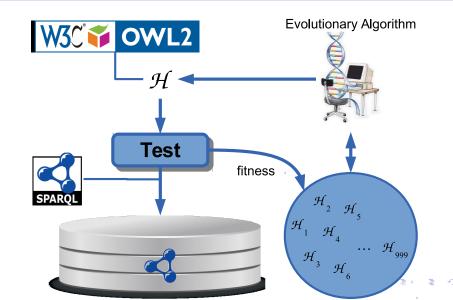
イロン 不得 とうほう イロン 二日

Conclusion

Class Disjointness Axiom Learning

Problem:

We focus on learning OWL class disjointness axioms involving existential quantification $(\exists r.C)$ and value restriction $(\forall r.C)$


Class disjointness axioms are important

- to check the correctness of a knowledge base
- to derive new knowledge

Method:

Grammar-Based Genetic Programming

Introduction 000●	Grammar-Based GP for Disjointness Axioms Discovery	Experiments and Results	Conclusion 00
Synopsis			

Introd	

Grammatical Evolution

- A grammar-based form of Genetic Programming
- Search space distinguished from solution (= program) space
- Search space consists of variable-length bitstrings
- Bitstrings are mapped into programs thanks to a BNF grammar

In the mapping process, codons are used consecutively to choose production rules in the BNF grammar according to the function:

	[Nur	nber	of produ	ctions
production = codon modulo	for	the	current	non-
-	tern	ninal		

Experiments and Results

Conclusion 00

Static Part of the Grammar

```
Axiom := ClassAxiom
ClassAxiom := DisjointClasses
DisjointClasses := 'DisjointClasses' '(' ClassExpression1 ' 'ClassExpression2 ')'
ClassExpression1 := Class
   ObjectSomeValuesFrom
   ObjectAllValuesFrom
   ObjectIntersection
ClassExpression2 := ObjectSomeValuesFrom
  | ObjectAllValuesFrom
ObjectIntersectionOf := 'ObjectIntersectionOf' '(' Class ' ' Class ')'
ObjectSomeValuesFrom := 'ObjectSomeValuesFrom' '(' ObjectPropertyOf ' ' Class ')'
ObjectAllValuesFrom := 'ObjectAllValuesFrom' '(' ObjectPropertyOf ' ' Class ')'
```

Grammar-Based GP for Disjointness Axioms Discovery

Experiments and Results

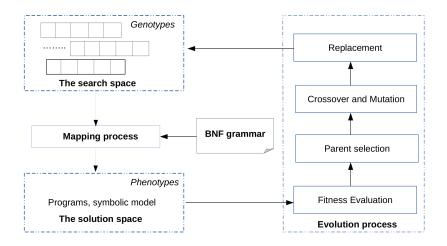
Conclusion

Dynamic Part of the Grammar

 $Class := \dots$

SELECT ?class WHERE { ?instance rdf:type ?class . }

```
ObjectPropertyOf := . . .
```

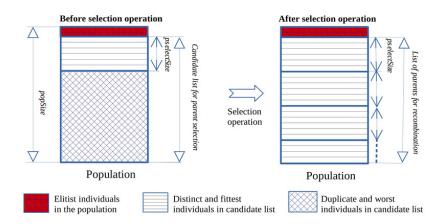

```
SELECT ?property
WHERE {
    ?subject ?property ?object .
    FILTER (isIRI(?object))
}
```

Grammar-Based GP for Disjointness Axioms Discovery

Experiments and Results

Conclusion 00

Grammatical Evolution Process



Grammar-Based GP for Disjointness Axioms Discovery $\texttt{oooo} \bullet \texttt{oooo}$

Experiments and Results

Conclusion 00

Parent Selection

Introduction	Grammar-Based GP for Disjointness Axioms Discovery	Experiments and Results	Conclusion
	000000000		
Evaluation			

Possibility Theory

Definition (Possibility Distribution)

$$\pi:\Omega\to [0,1]$$

Definition (Possibility and Necessity Measures)

$$\Pi(A) = \max_{\omega \in A} \pi(\omega);$$

$$N(A) = 1 - \Pi(\bar{A}) = \min_{\omega \in \bar{A}} \{1 - \pi(\omega)\}.$$

For all subsets $A \subseteq \Omega$,

$$(a) = 1 - N(\overline{A})$$
 (duality);

• N(A) > 0 implies $\Pi(A) = 1$, $\Pi(A) < 1$ implies N(A) = 0. In case of complete ignorance on A, $\Pi(A) = \Pi(\bar{A}) = 1$.

Grammar-Based GP for Disjointness Axioms Discovery

Experiments and Results

Conclusion 00

Evaluation

Content of an Axiom

Definition (Content of Axiom ϕ)

```
Given an RDF datset \mathcal{K}\text{,}
```

$$\operatorname{content}(\phi) = \{\psi : \phi \models_{\mathcal{K}} \psi\}$$

obtained through the instantiation of ψ to the vocabulary of ${\cal K}.$

Let
$$\phi = \mathsf{Dis}(C, D)$$

$$\operatorname{content}(\phi) = \{\neg C(r) \lor \neg D(r) : r \text{ is a resource in } \mathcal{K}\}$$

Introd	uction

Experiments and Results

Evaluation

Confirmation and Counterexample of an Axiom

Given $\psi \in content(\phi)$ and an RDF dataset \mathcal{K} , three cases:

- $\mathcal{K} \models \psi : \longrightarrow \psi$ is a *confirmation* of ϕ ;
- **2** $\mathcal{K} \models \neg \psi : \longrightarrow \psi$ is a *counterexample* of ϕ ;
- $\begin{tabular}{ll} \bullet & \mathcal{K} \not\models \psi \mbox{ and } \mathcal{K} \not\models \neg \psi \colon \longrightarrow \psi \mbox{ is neither of the above } \end{tabular}$

Definition

Given axiom $\phi,$ let us define

- $u_{\phi} = \|content(\phi)\|$ (a.k.a. the *support* of ϕ)
- u_{ϕ}^+ = the number of confirmations of ϕ
- $\textit{\textbf{u}}_{\phi}^{-}\,$ = the number of counterexamples of ϕ

Introduction	Grammar-Based GP for Disjointness Axioms Discovery	Experiments and Results	Conclusion
	00000000		
Evaluation			

Axiom Evaluation

Definition (Generality)

 $g_{\phi} = \min\{\|[C]\|, \|[D]\|\}$, where C, D are class expressions.

Definition (Possibility)

$$\Pi(\phi) = 1 - \sqrt{1 - \left(rac{u_\phi - u_\phi^-}{u_\phi}
ight)^2}$$

Definition (Fitness)

$$f(\phi) = g_{\phi} \cdot \Pi(\phi)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへ⊙

Introduction	

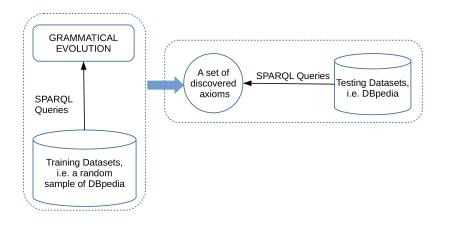
Experimental Protocol

Experimental Protocol

- Training-Testing Model
- Experiments are divided into two phases:
 - mining class disjointness axioms with GE from a training RDF dataset, i.e., a 1% random sample of DBpedia 2015-04
 - esting the resulting axioms against the test dataset, i.e., the entire DBpedia 2015-04
- An objective benchmark to evaluate the effectiveness of the method.

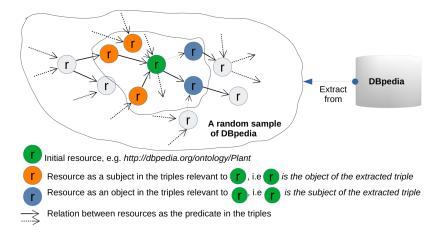
Grammar-Based GP for Disjointness Axioms Discovery

Experiments and Results


イロト 不得 トイヨト イヨト

3

Conclusion


Experimental Protocol

Training-Testing Model

Introduction	Grammar-Based GP for Disjointness Axioms Discovery	Experiments and Results	Conclusion			
0000	00000000	0000000	00			
Experimental Proto	Experimental Protocol					

Training Set Construction

Introduction 0000	Grammar-Based GP for Disjointness Axioms Discovery	Experiments and Results	Conclusion 00
Experimental Proto	ocol		
Experime	ental Setup		

- 20 different runs on different parameter settings
- To allow fair comparisons, we define total effort

k =total number of fitness evaluations

• maxGenerations is set so that

 $popSize \cdot maxGenerations = k$

Parameter	Value		
Total effort k	100,000; 200,000; 300,000; 400,000		
initLenChrom	6		
pCross	80%		
pMut	1%		
popSize	1000; 2000; 5000; 10000	-	500

Introduction 0000	Grammar-Based GP for Disjointness Axioms Discovery	Experiments and Results	Conclusion 00		
Experimental Protocol					
Measuring Accuracy					

Since $\Pi(\phi)$ may be viewed as a fuzzy degree of membership, we use a fuzzy extension of the usual definition of *precision*, based on fuzzy set cardinality

$$\|F\| = \sum_{x \in \Delta} F(x),$$

The value of precision can thus be computed against the test dataset, i.e., DBpedia 2015-04, according to the formula

$$\text{precision} = \frac{\|\text{true positives}\|}{\|\text{discovered axioms}\|} = \frac{\sum_{\phi} \Pi_{\text{DBpedia}}(\phi)}{\sum_{\phi} \Pi_{\text{Training}}(\phi)}$$

Introduc	tion

Experiments and Results

Conclusion 00

Results

Axioms Discovered Over 20 Runs

popSize k	1000	2000	5000	10000
100000	8806	11389	4684	4788
200000	6204	13670	10632	9335
300000	5436	10541	53021	14590
400000	5085	9080	35102	21670

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

Grammar-Based GP for Disjointness Axioms Discovery

Experiments and Results

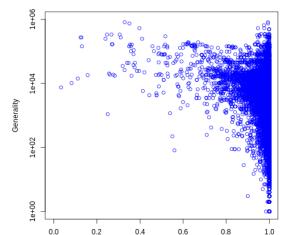
Conclusion 00

Results

Average Precision per Run (±std)

popSize k	1,000	2,000	5,000	10,000
100,000	0.981	0.999	0.998	0.998
100,000	± 0.019	± 0.002	±0.002	±0.003
200,000	0.973	0.979	0.998	0.998
200,000	± 0.024	± 0.011	± 0.001	±0.002
300,000	0.972	0.973	0.993	0.998
300,000	± 0.024	± 0.014	± 0.007	± 0.001
400,000	0.972	0.969	0.980	0.998
400,000	±0.024	± 0.018	± 0.008	± 0.001

Grammar-Based GP for Disjointness Axioms Discovery


Experiments and Results

Conclusion

3⇒

Results

Π and g Distribution of Discovered Axioms

popSize = 5000, k=300000

Possibility

Introduction	
Results	

Experiments and Results

Conclusion 00

Examples of Discovered Axioms

 $\begin{array}{ll} {\sf Dis}(\forall {\sf author.Place}, \ \forall {\sf placeofBurial.Place}) & \Pi(\phi) = 1.0; \ g_{\phi} = 4 \\ {\sf Dis}({\sf Writer}, \ \forall {\sf writer.Agent}) & \Pi(\phi) = 0.982; \ g_{\phi} = 79, 464 \\ {\sf Dis}({\sf Journalist}, \ \forall {\sf distributor.Agent}) & \Pi(\phi) = 0.992; \ g_{\phi} = 32, 533 \\ {\sf Dis}({\sf Stadium}, \ \forall {\sf birthPlace.Place}) & \Pi(\phi) = 1.0; \ g_{\phi} = 10, 245 \\ \end{array}$

Conclusions and Future Work

- Grammar-based GP method for mining disjointness axioms involving complex class expressions
- The use of a training-testing model allows to objectively validate the method, while also alleviating the computational bottleneck of SPARQL endpoints
- The experimental results confirm that the proposed method is capable of discovering highly accurate and general axioms
- Future Work:
 - Mining disjointness axioms involving operators such as owl:hasValue and owl:OneOf
 - Forbid atomic classes at the root of class expressions
 - Refining the evaluation of candidate axioms with some measure of their complexity

Introduction 0000	Grammar-Based GP for Disjointness Axioms Discovery	Experiments and Results	Conclusion ○●
The End			

Thank you for your attention!