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The story 1

1. In 2012 JRA sent me the paper

2. During my next visit we didn’t discuss about reals. I thought he did

used Rodin

3. In 2021 he resent the paper and asked me to use Rodin and the

plugin to manage the development

4. Job done during summer 2021 some errors are detected and cor-

rected

5. I started JRA’s development definitions, axioms and theorems step

by step

6. For this talk I read carefully JRA’s motivation
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Reminder: Naturals, Integers and Rationals 2

Algebraic properties of the naturals, integers rationals

Axioms N Z Q

Addition is associative
√ √ √

Addition is commutative
√ √ √

Addition has an identity
√ √ √

Addition has an inverse
√ √

Multiplication is associative
√ √ √

Multiplication is commutative
√ √ √

Multiplication has an identity
√ √ √

Identities are different
√ √ √

Distributivity of multiplication
√ √ √

Multiplication has an inverse
√

Reflexivity of order
√ √ √

Antisymmetry of order
√ √ √

Transitivity of order
√ √ √

Totality of order
√ √ √

Addition and order
√ √ √

Multiplication and order
√ √ √

3



Reminder: Reals 3

- Known from many centuries (Hippasus of Metapontum):

√
2 is not a rational

- For this, Pythagoras sentenced Hippasus to death by drowning

- Some new numbers are needed: the Reals

- How to construct them ?

- What additional algebraic properties do they have?
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Algebraic Axioms of the Reals 4

Axioms N Z Q R

Addition is associative
√ √ √ √

Addition is commutative
√ √ √ √

Addition has an identity
√ √ √ √

Addition has an inverse
√ √ √

Multiplication is associative
√ √ √ √

Multiplication is commutative
√ √ √ √

Multiplication has an identity
√ √ √ √

Identities are different
√ √ √ √

Distributivity of multiplication
√ √ √ √

Multiplication has an inverse
√ √

Reflexivity of order
√ √ √ √

Antisymmetry of order
√ √ √ √

Transitivity of order
√ √ √ √

Totality of order
√ √ √ √

Addition and order
√ √ √ √

Multiplication and order
√ √ √ √

Completeness (more later)
√
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Question 5

- Who remembers the Cauchy construction of the Real Numbers?

- Why I was interested?

- Browsing on Wikipedia

- Heavy frustrations in reading the referenced papers
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More on Frustrations (1) 7

- Proposed constructs are taken out of a hat

- You "see" them working but you do not "understand" why

- Lemmas follow each other without any explanations

- Many steps missing in proofs (when present)

- Backward references in papers are simply missing or erroneous
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More on Frustrations (2) 8

- Some heavy misprints

- You try to understand until you figure out this is just a misprint

- Example of statements:

there exists x such that a predicate on x and y hold, for all y

- It is not clear whether it means "∃x·∀y . . ." or "∀y ·∃x . . ."
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A Small Motivation 9

- Found in the paper by Ben Odgers and Nguyen Vo:

Notice that a real number α determines a function f : Z→ Z

given by f(n) = ip(αn), where "ip" means "integer part".

Then f(n)/n → α as n → ∞. From this motivation we

attempt to construct the real number system directly from the

set of integers.

- This is the only motivation found in the referenced articles
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Floor (bxc), Ceiling (dxe), and Integer Part (bxe) 10

bxc =̂ max ({n |n ∈ Z ∧ n ≤ x})

dxe =̂ min ({n |n ∈ Z ∧ n ≥ x})

bxe =̂

{ bxc if x ≥ 0

dxe if x ≤ 0

Examples:

b3.2c = 3 d3.2e = 4 b−3.2c = −4 d−3.2e = −3 b3.2e = 3 b−3.2e = −3

b0.2c = 0 d0.2e = 1 b−0.2c = −1 d−0.2e = 0 b0.2e = 0 b−0.2e = 0

Some properties of the integer part function:

−1 < x− bxe < 1 −1 ≤ bx+ ye − bxe − bye ≤ 1

x < 0⇒ bxe ≤ 0 x > 0⇒ bxe ≥ 0

11



The approx Function (the Function f of the Quotation) 11

approx ∈ R→ (Z→ Z)

approx(r)(n) =̂ bn ∗ re

Example:

approx(
√

2)(n) = bn ∗
√

2c (for n > 0)

= max({ k | k ∈ Z ∧ k ≤ n ∗
√

2 })

= max({ k | k ∈ N ∧ k2 ≤ 2 ∗ n2 })

n 1 10 100 1, 000 10, 000

max({ k | k ∈ N ∧ k2 ≤ 2 ∗ n2 }) 1 14 141 1, 414 14, 142

max({ k | k∈N ∧ k2≤2∗n2 })
n

1 1.4 1.41 1.414 1.4142

12



Properties of the Function approx 12

P1 : ∀ r · r ∈ R ⇒ approx(r)(0) = 0

P2 : ∀ r, n · r ∈ R ∧ n < 0 ⇒ approx(r)(n) = −approx(r)(−n)

P3 : ∀ r,m, n · r ∈ R ∧ m ∈ N1 ∧ n ∈ N1
⇒
| approx(r)(m+ n)− approx(r)(m)− approx(r)(n) | ≤ 1

P4 : ∀ r, n · r ∈ R ∧ r > 0 ∧ n ∈ N ⇒ approx(r)(n) ≤ approx(r)(n+ 1)

P5 : lim
n→∞

approx(r)(n)

n
= r
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Approximation of the function approx by a Function f 13

The difference between the two is bounded

(∃ k · k ∈ N ∧ (∀n · n ∈ Z ⇒ | f(n)− approx(r)(n) | ≤ k)) ⇒ lim
n→∞

f(n)

n
= r

Equivalent conditions:

finite({n · n ∈ Z | f(n)− approx(r)(n) })

∃ a, b · a ∈ Z ∧ b ∈ Z ∧ (∀n · n ∈ Z ⇒ f(n)− approx(r)(n) ∈ a .. b)
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Values of approx for Integers and Rationals 14

For an integer i, we have:

approx(i)(n) = bi ∗ ne = i ∗ n

Given a rational pq where p and q are integers (with q 6= 0), we have:

approx(pq)(n) =

{
max({k | k ∈ N ∧ k ∗ q ≤ p ∗ n}) if p ∗ q ∗ n ≥ 0

min({k | k ∈ Z ∧ k ∗ q ≥ p ∗ n}) if p ∗ q ∗ n ≤ 0
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Approximation of the Arithmetic Operations 15

approx(r + s)(n) approx(r)(n) + approx(s)(n)

approx(−r)(n) −approx(r)(n)

approx(r ∗ s)(n) approx(r)(approx(s)(n))

approx(1
r)(n) max({ k | k ∈ N ∧ approx(r)(k) ≤ n})
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Example: Approximation of the Product of two Reals 16

Supposing r ∗ s ∗ n > 0, we have:

approx(r ∗ s)(n) = br ∗ s ∗ nc

= br ∗ bs ∗ nc+ r ∗ s ∗ n− r ∗ bs ∗ ncc

= br ∗ bs ∗ nc+ r ∗ (s ∗ n− bs ∗ nc)c

≤ 1 + br ∗ bs ∗ ncc+ br ∗ (s ∗ n− bs ∗ nc)c applying a property of floor
(bx+ yc ≤ 1 + bxc+ byc)

< 1 + br ∗ bs ∗ ncc+ brc applying a property of floor
(x− bxc < 1)

= approx(r)(approx(s)(n)) + 1 + brc

We also have:

approx(r)(approx(s)(n)) ≤ approx(r ∗ s)(n)
applying two properties of floor

(bxc ≤ x and x ≤ y⇒ bxc ≤ byc)

From these, we deduce the following:

0 ≤ approx(r ∗ s)(n)− approx(r)(approx(s)(n)) ≤ brc

That is:

| approx(r ∗ s)(n)− (approx(r) ◦ approx(s))(n) | ≤ brc
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Axioms of the Reals (1) 17

1. Addition is associative: x+ (y + z) = (x+ y) + z

2. Addition is commutative: x+ y = y + x

3. Addition has an identity: x+ 0 = x

4. Addition has an inverse: x+ (−x) = 0

5. Multiplication is associative: x ∗ (y ∗ z) = (x ∗ y) ∗ z
6. Multiplication is commutative: x ∗ y = y ∗ x
7. Multiplication has an identity: x ∗ 1 = x

8. Additive and multiplicative identities are different: 0 6= 1

9. Distributivity of multiplication: x ∗ (y + z) = (x ∗ y) + (x ∗ z)
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Axioms of the Reals (2) 18

10. Multiplication has an inverse: x 6= 0 ⇒ x ∗ 1
x = 1

11. Reflexivity of order: x ≤ x
12. Antisymmetry of order: x ≤ y ∧ y ≤ x ⇒ x = y

13. Transitivity of order: x ≤ y ∧ y ≤ z ⇒ x ≤ z
14. Totality of order: x ≤ y ∨ y ≤ x
15. Addition and order: x ≤ y ⇒ x+ z ≤ y + z

16. Multiplication and order: x ≤ y ∧ 0 ≤ z ⇒ x ∗ z ≤ y ∗ z
17. Completeness. Every non empty set of reals with an upper

(lower) bound has a least upper (greatest lower) bound.
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More on Completeness 19

This axiom characterizes the Reals

Every non empty set of realsA with an upper boundm has a LUB u

∀A ·A ⊆ R
A 6= ∅
∃m ·m ∈ R ∧ (∀x · x ∈ A⇒ x ≤ m)
⇒
∃u · u ∈ R

(∀x · x ∈ A ⇒ x ≤ u)
(∀v · v ∈ R ∧ (∀x · x ∈ A ⇒ x ≤ v) ⇒ u ≤ v)
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What we Have Done so Far 20

- We supposed that the set of Reals R was given to us

- We defined the function approx

approx ∈ R→ (Z→ Z)

- The image of R under the function approx is a included in Z→ Z:

approx[R] ⊆ Z→ Z

-The idea for constructing the reals is to go the other way around
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Approach for Constructing the Reals 21

- To start from a certain set R of functions from Z to itself:

R ⊆ Z→ Z

- To characterize this set

- To define an equivalence relation on this set

- To define the arithmetic operations and the order relation

- To prove the 17 axioms of the reals as mere theorems

- What has been done on approx will help us as useful hints
22



Characterization of the set R 22

Q1 : f(0) = 0

Q2 : ∀n · n < 0 ⇒ f(n) = −f(−n)

Q3 : ∃k · k ∈ N ∧ (∀m,n ·m ∈ N1 ∧ n ∈ N1 ⇒ |f(m+ n)− f(m)− f(n)| ≤ k)

- k is said to be an additivity constant for f

R =̂ { f | f ∈ Z→ Z ∧ Q1 ∧ Q2 ∧ Q3 }

- We use the following properties of approx as hints

P1 : ∀ r · r ∈ R ⇒ approx(r)(0) = 0

P2 : ∀ r, n · r ∈ R ∧ n < 0 ⇒ approx(r)(n) = −approx(r)(−n)

P3 : ∀ r,m, n · r ∈ R ∧ m ∈ N1 ∧ n ∈ N1

⇒
| approx(r)(m+ n)− approx(r)(m)− approx(r)(n) | ≤ 1
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Equivalence Relation on the Set R 23

- Again, we use what has been done on approximating approx as a hint

- The difference between f and g in R is bounded

f = g =̂ ∃k · k ∈ N ∧ ( ∀n · n > 0 ⇒ |f(n)− g(n)| ≤ k )

- It induces an equivalence relation

f = f f = g ⇒ g = f f = g ∧ g = h ⇒ f = h

- The Reals will thus be modelled as the quotient set R/=

24



Embedding Z in R 24

According to what we said about approx(r), an integer i is repre-

sented by the following function fi:

fi(n) = i ∗ n

The integer 0 is represented by a function 0 of R with:

0(n) = 0

Any bounded function f is "equal" to 0 since f(n)− 0(n) = f(n):

f = 0 ⇔ ∃k · k ∈ N ∧ (∀n · n > 0 ⇒ |f(n)| ≤ k )

The integer 1 is represented by a function 1 of R with:

1(n) = n
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"Positive" and "Negative" Members of R, their Properties 25

f = 0 ⇔ ∃a, b · a ∈ Z ∧ b ∈ Z ∧ (∀n · n ∈ N ⇒ f(n) ∈ a .. b)

⇔ ∃a, b · a ∈ Z ∧ b ∈ Z ∧ (∀n · n ∈ N ⇒ f(n) ≥ a ∧ f(n) ≤ b)

We have then:

¬ f = 0 ⇔ ¬∃a, b · a ∈ Z ∧ b ∈ Z ∧ (∀n · n ∈ N ⇒ f(n) ≥ a ∧ f(n) ≤ b)

⇔ ∀a, b · a ∈ Z ∧ b ∈ Z ⇒ (∃n · n ∈ N ∧ (f(n) < a ∨ f(n) > b))

⇔ (∀a · a ∈ Z ⇒ (∃n · n ∈ N ∧ f(n) < a)) ∨
(∀b · b ∈ Z ⇒ (∃n · n ∈ N ∧ f(n) > b))

This suggests the following:

NEG(f) =̂ ∀a · a ∈ Z ⇒ (∃n · n ∈ N ∧ f(n) < a)

POS(f) =̂ ∀b · b ∈ Z ⇒ (∃n · n ∈ N ∧ f(n) > b)

We can prove

POS(f) ⇒ ¬NEG(f)

POS(f),NEG(f), and f = 0 are incompatible

POS(f) ∨ NEG(f) ∨ f = 0
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"Positive" and "Negative" Members of R, their Properties 26

This suggests the following using Rodin: POS , NEG are sets.

f ∈ NEG =̂ ∀a · a ∈ Z ⇒ (∃n · n ∈ N ∧ f(n) < a)

f ∈ POS =̂ ∀b · b ∈ Z ⇒ (∃n · n ∈ N ∧ f(n) > b)

We can prove

POS ∩ NEG =
POS ∩ {f | f = 0} = ∅
NEG ∩ {f | f = 0} = ∅
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"Positive" and "Negative" Members of R, their Properties 27

This suggests the following using Rodin: POS , NEG are sets.

NEG =̂ { f |f ∈ R∧∀a· a ∈ Z⇒ (∃n · n ∈ N ∧ f(n) < a)}

POS =̂ { f |f ∈ R∧∀b · b ∈ Z⇒ (∃n · n ∈ N ∧ f(n) > b)}

ZERO =̂ {f | f ∈ R ∧ f = 0}

We can prove

POS ∪ NEG ∪ ZERO = R

It’s a partition

28



Definitions of Arithmetic Operations in R 28

- As suggested from approx, we propose:

(f+g)(n) f(n) + g(n)

(-f)(n) −f(n)

(f*g)(n) f(g(n))

inv(f)(n)

(where f ∈ POS)
max ({ k | k ∈ N ∧ f(k) ≤ n })

- One has to prove that the RHS are in R

- One has to prove the axioms as mere theorems
29



Definitions of Arithmetic Operations in R 29

To prove that f*g ∈ R we need to prove that a k such

|f(g(m+ n))− f(g(m))− f(g(n))| ≤ k
exists but we cannot use Q3

because we don’t have the sign of g(m+ n), g(m) and g(n).

Using Q3 we can prove:

∃k · ∀m,n ·
m ∈ Z ∧ n ∈ Z
⇒
|f(m+ n)− f(m)− f(n)| ≤ k
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Definitions of Arithmetic Operations in R 30

- As suggested from approx, we propose:

(f+g)(n) f(n) + g(n)

(-f)(n) −f(n)

(f*g)(n) f(g(n))

inv(f)(n)

(where f ∈ POS)
max ({ k | k ∈ N ∧ f(k) ≤ n })

- One has to prove that the RHS are in R

- One has to prove the axioms as mere theorems
31



Definitions of Arithmetic Operations in R 31

- As suggested from approx, we propose:

(f+g)(n) f(n) + g(n)

(-f)(n) −f(n)

(f*g)(n) f(g(n))

inv(f)(n)

(where f ∈ POS)
max (
{ k | k ∈ N ∧ (∀x · x ∈ 0..k⇒ f(x) ≤ n )})

- { k | k ∈ N ∧ f(k) ≤ n } is not bounded!

- { k | k ∈ N ∧ (∀x · x ∈ 0..k ⇒ f(x) ≤ n )} is bounded
32



Properties of Arithmetic Operations in R 32

- Equivalence conservation

If f = f ′ and g = g′ then

f+g = f ′+g′

f*g = f ′*g
′

-g = -g′

inv(f) = inv(f ′)

33



Properties of Arithmetic Operations in R 33

+ : commutative, associative, 0 neutral.

* : associative

* : commutative by equivalence f*g = g*f

* : distributivity over + by equivalence f*(g+h) = (f*g)+(f*h)

* : 1 neutral by equivalence f*inv(f) = 1
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Order in R 34

f ≤≤≤≤≤ g =̂ f+(-g) ∈ NEGZ =̂ g+(-f) ∈ POSZ

NEGZ =̂ NEG ∪ ZERO POSZ =̂ POS ∪ ZERO

Axiom 11 (reflexivity), :f+(-f) ∈ ZERO

Axiom 12 (antisymmetry) only by equivalence

f ≤≤≤≤≤ g ∧ g ≤≤≤≤≤ f ⇒ f = g

Axiom 13 (transitivity), and Axiom 14 (totality) of relation induced by

≤≤≤≤≤ hold trivially.
35



About the Proofs: Some Useful Lemmas 35

(∃n · n ∈ N ∧ f(n) > k) ⇒ (∀n · n ∈ N ⇒ f(n) ≥ −k)

where f has additivity constant k

f ∈ POS ⇒ (∀n · n ∈ N ⇒ f(n) ≥ −k ) where f has additivity constant k

f ∈ POS ⇔ ∃n · n ∈ N ∧ f(n) > k where f has additivity constant k

- The additivity constant can always be reduced to 1 (see later)

g < f ⇒ ∀n · n ∈ N ⇒ g(n)− f(n) ≤ 2

where f and g have additivity constant 1

g < f ⇔ ∃n · f(n)− g(n) > 2

where f and g have additivity constant 1
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Completeness 36

Given a non-empty subset S of R (with only additivity constant 1) and a member
M of R (additivity constant 1) such that:

∀ f · f ∈ S ⇒ f < M

We have thus (according to previous lemma):

∀ f · f ∈ S ⇒ (∀n · n ∈ N ⇒ f(n) ≤M(n) + 2)

We define sup as follows:

sup ∈ P(S) \ {∅}→ (Z→ Z)

sup(S)(n) =̂


max ({f · f ∈ S | f(n) }) if n > 0
0 if n = 0

−sup(S)(−n) if n < 0

Note that sup(S) is well-defined

We prove that sup(S) is:
1. a member of R
2. a least upper bound of S
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Completeness 37

sup(S) ∈ R

∀ f · f ∈ S ⇒ f ≤≤≤≤≤ sup(S)

∀ t · t ∈ R ∧ (∀ f · f ∈ S ⇒ f ≤≤≤≤≤ t) ⇒ sup(S) ≤≤≤≤≤ t

additivity constant is less than 3 but we can reduce this constant to 1
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Reduce additivity constant to 1 38

- Reminder

approx ∈ R→ (Z→ Z)

approx(r)(n) =̂ bn ∗ re

Can we do this with R and Z?
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Reduce additivity constant to 1 39

- Yes

APPROX ∈ R→ (Z→ Z) APPROX(f)(fn) =̂ bbb f*fn ee

We have defined maxR using the plugin and we prove that

- 1 ≤≤≤≤≤ APPROX(f)(fm+fn) - APPROX(f)(fm) - APPROX(f)(fn) ≤≤≤≤≤ 1

40



Reduce additivity constant to 1 : context maxR 40

constants: b, Z, leq, maxR

Axioms:

b ∈ Z �� Z
{x 7→ y|x ∈ Z ∧ y ∈ Z ∧ b(x) ≤ b(y)} ⊆ leq
(Z � leq � Z) ∩ (Z � leq � Z)−1 ⊆ id
Definition

maxR = (λs · s ∈ P 1(Z)∧
(∃M ·M ∈ Z ∧ (∀x · x ∈ s⇒ x 7→M ∈ leq)
| b−1(max(b[s])))

Theorems

maxR ∈ dom(maxR)→ Z

∀s · s ∈ dom(maxR)⇒maxR(s) ∈ s
∀s · s ∈ dom(maxR)⇒ (∀f · f ∈ s⇒ f 7→ maxR(s) ∈ leq)

41



Reduce additivity constant to 1 41

- Reminder: a bijection

b ∈ Z �� Z b(fi) =̂ fi(1) (= i)

then we define the function approx as follows:

approx ∈ R→ (Z→ Z) approx(f)(n) =̂ b(APPROX(f)(fn))

−1 ≤ approx(f)(m+n)− approx(f)(m)− approx(f)(n) ≤ 1

Equivalence of approx(f) and f
42



Conclusion 42

- Real = approx[R]/ =

- All 17 axioms on reals are proved

- Nothing is complicated in this construction (simple concepts)

- However, some of the proofs are a bit hairy (done with Rodin)

- If interested by the proofs, have a look at the paper:

"Constructing the Reals (an Exercise in Mathematical Methodology)"

- The implementation of Reals in Rodin will NOT be done in this way

- We’ll use an axiomatic approach using the 17 (without type Z↔ Z)
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