Constructing the Real Numbers using RODIN and EBRP's plugin

Jean-Raymond Abrial Dominique cansell

March 2023

- 1. In 2012 JRA sent me the paper
- 2. During my next visit we didn't discuss about reals. I thought he did used Rodin
- 3. In 2021 he resent the paper and asked me to use Rodin and the plugin to manage the development
- 4. Job done during summer 2021 some errors are detected and corrected
- I started JRA's development definitions, axioms and theorems step by step
- 6. For this talk I read carefully JRA's motivation

Algebraic properties of the naturals, integers rationals

	1		
Axioms	\mathbb{N}	\mathbb{Z}	Q
Addition is associative Addition is commutative Addition has an identity Addition has an inverse Multiplication is associative Multiplication is commutative Multiplication has an identity Identities are different Distributivity of multiplication Multiplication has an inverse Reflexivity of order Antisymmetry of order Transitivity of order Totality of order Addition and order Multiplication and order	$ \begin{array}{c} \checkmark \\ \checkmark $	$ \sqrt[]{} \sqrt[]$	$ \begin{array}{c} \checkmark \\ \checkmark $

- Known from many centuries (Hippasus of Metapontum):

 $\sqrt{2}$ is not a rational

- For this, Pythagoras sentenced Hippasus to death by drowning
- Some new numbers are needed: the Reals
- How to construct them ?
- What additional algebraic properties do they have?

Axioms	\mathbb{N}	\mathbb{Z}	Q	R
Addition is associative Addition has an identity Addition has an inverse Multiplication is associative Multiplication is commutative Multiplication has an identity Identities are different Distributivity of multiplication Multiplication has an inverse Reflexivity of order Antisymmetry of order Transitivity of order Totality of order Addition and order Multiplication and order Completeness (more later)	$ \sqrt[]{} \\ \sqrt[]$	$ \sqrt[]{} \sqrt[]$	$ \sqrt[]{} \sqrt[]$	$ \begin{array}{c} \checkmark \\ \checkmark $

- Who remembers the Cauchy construction of the Real Numbers?
- Why I was interested?
- Browsing on Wikipedia
- Heavy frustrations in reading the referenced papers

Stephen Schanuel. Proposal without publication (early 80th)

Ross Street. An efficient construction of the real numbers. *Gazette Australian Math. Soc.* 12:57-58 (1985)

Ben Odgers and Nguyen Vo. Analysis of an efficient construction of the reals. Vacation Scholar Project (2002). http://www.math.mq.edu/street/efficient.pdf

Norbert A'Campo. A natural construction for the real numbers. arXiv:math. GN/0301015 v1 (2003)

Rob Arthan. The Eudoxus Real Numbers. arXiv:math/04054454 v1 (2003)

Ross Street. Update on the efficient reals *Macquarie University* (2003)

James Douglas, et al. The Efficient Real Numbers Macquarie University (2004)

- Proposed constructs are taken out of a hat
- You "see" them working but you do not "understand" why
- Lemmas follow each other without any explanations
- Many steps missing in proofs (when present)
- Backward references in papers are simply missing or erroneous

- Some heavy misprints
- You try to understand until you figure out this is just a misprint
- Example of statements:

there exists x such that a predicate on x and y hold, for all y

- It is not clear whether it means " $\exists x \cdot \forall y \dots$ " or " $\forall y \cdot \exists x \dots$ "

- Found in the paper by Ben Odgers and Nguyen Vo:

Notice that a real number α determines a function $f : \mathbb{Z} \to \mathbb{Z}$ given by $f(n) = ip(\alpha n)$, where "ip" means "integer part". Then $f(n)/n \to \alpha$ as $n \to \infty$. From this motivation we attempt to construct the real number system directly from the set of integers.

- This is the only motivation found in the referenced articles

$$\lfloor x
floor \ \widehat{=} \ \max\left(\{n \, | \, n \in \mathbb{Z} \ \land \ n \leq x\}
ight)$$

$$egin{array}{ll} \widehat{x} \end{array} \ \widehat{=} \ \min \left(\{ n \, | \, n \in \mathbb{Z} \ \land \ n \geq x \}
ight) \end{array}$$

$$egin{array}{rl} \lfloor x
ceil & \widehat{ert} & \operatorname{if} x \geq 0 \ \hline x
ceil & \operatorname{if} x \leq 0 \end{array}$$

Examples:

 $\lfloor 3.2 \rfloor = 3 \quad \lceil 3.2 \rceil = 4 \quad \lfloor -3.2 \rfloor = -4 \quad \lceil -3.2 \rceil = -3 \quad \lfloor 3.2 \rceil = 3 \quad \lfloor -3.2 \rceil = -3 \\ \lfloor 0.2 \rfloor = 0 \quad \lceil 0.2 \rceil = 1 \quad \lfloor -0.2 \rfloor = -1 \quad \lceil -0.2 \rceil = 0 \quad \lfloor 0.2 \rceil = 0 \quad \lfloor -0.2 \rceil = 0 \\ \ \ 0.2 \rceil = 0 \quad \lfloor -0.2 \rceil = 0 \quad \lfloor -0.2 \rceil = 0 \\ \ \ 0.2 \rceil = 0 \quad \lfloor -0.2 \rceil = 0 \quad \lfloor -0.2 \rceil = 0 \\ \ \ 0.2 \rceil = 0 \quad \lfloor -0.2 \rceil = 0 \quad \lfloor -0.2 \rceil = 0 \quad \lfloor -0.2 \rceil = 0 \\ \ \ 0.2 \rceil = 0 \quad \lfloor -0.2 \rceil = 0 \quad \lfloor -0.$

Some properties of the integer part function:

$$egin{aligned} -1 < x - \lfloor x
ceil < 1 & -1 \leq \lfloor x + y
ceil - \lfloor x
ceil - \lfloor y
ceil \leq 1 \ x < 0 \Rightarrow \lfloor x
ceil \leq 0 & x > 0 \Rightarrow \lfloor x
ceil \geq 0 \end{aligned}$$

 $ext{approx} \in \mathbb{R} o (\mathbb{Z} o \mathbb{Z})$ $ext{approx}(r)(n) \ \widehat{=} \ \lfloor n * r
ceil$

Example:

$$egin{aligned} \mathsf{approx}(\sqrt{2})(n) &= \lfloor n*\sqrt{2}
floor & (ext{for } n>0) \ &= \max(\{\,k\,|\,k\in\mathbb{Z} \ \land \ k\leq n*\sqrt{2}\,\}) \ &= \max(\{\,k\,|\,k\in\mathbb{N} \ \land \ k^2\leq 2*n^2\,\}) \end{aligned}$$

n	1	10	100	1,000	10,000
$\max(\{k k\in\mathbb{N}\ \wedge\ k^2\leq 2*n^2\})$	1	14	141	1,414	14, 142
$rac{\max(\set{k k \in \mathbb{N} \land k^2 \leq 2*n^2})}{n}$	1	1.4	1.41	1.414	1.4142

$$\mathsf{P1}: \quad \forall r \cdot r \in \mathbb{R} \Rightarrow \operatorname{approx}(r)(0) = 0$$

$$\mathsf{P2}: \quad \forall \, r, n \cdot r \in \mathbb{R} \ \land \ n < 0 \ \Rightarrow \ \mathsf{approx}(r)(n) = -\mathsf{approx}(r)(-n)$$

$$\begin{array}{lll} \mathsf{P3}: & \forall \, r,m,n \cdot \ r \in \mathbb{R} \ \land \ m \in \mathbb{N}_1 \ \land \ n \in \mathbb{N}_1 \\ \Rightarrow \\ & | \, \mathsf{approx}(r)(m+n) - \mathsf{approx}(r)(m) - \mathsf{approx}(r)(n) \, | \leq 1 \end{array}$$

$$\mathsf{P4}: \quad \forall \, r, n \cdot \, r \in \mathbb{R} \ \land \ r > 0 \ \land \ n \in \mathbb{N} \ \Rightarrow \ \mathsf{approx}(r)(n) \leq \mathsf{approx}(r)(n+1)$$

P5:
$$\lim_{n \to \infty} \frac{\operatorname{approx}(r)(n)}{n} = r$$

The difference between the two is bounded

 $(\exists k \cdot k \in \mathbb{N} \land (\forall n \cdot n \in \mathbb{Z} \Rightarrow | f(n) - \operatorname{approx}(r)(n) | \leq k)) \Rightarrow \lim_{n \to \infty} \frac{f(n)}{n} = r$

Equivalent conditions:

 $\operatorname{finite}(\{ n \cdot n \in \mathbb{Z} \, | \, f(n) - \operatorname{approx}(r)(n) \, \})$

 $\exists \, a, b \cdot a \in \mathbb{Z} \ \land \ b \in \mathbb{Z} \ \land \ (\forall n \cdot n \in \mathbb{Z} \ \Rightarrow \ f(n) - \operatorname{approx}(r)(n) \in a \mathrel{.\,.} b)$

For an integer *i*, we have:

 $\operatorname{approx}(i)(n) = \lfloor i * n \rceil = i * n$

Given a rational $\frac{p}{q}$ where p and q are integers (with $q \neq 0$), we have:

$$\operatorname{approx}(\frac{p}{q})(n) = \begin{cases} \max(\{k \mid k \in \mathbb{N} \land k * q \le p * n\}) & \text{if } p * q * n \ge 0\\ \min(\{k \mid k \in \mathbb{Z} \land k * q \ge p * n\}) & \text{if } p * q * n \le 0 \end{cases}$$

approx(r+s)(n)	$\operatorname{approx}(r)(n) + \operatorname{approx}(s)(n)$
approx(-r)(n)	$-\operatorname{approx}(r)(n)$
approx(r * s)(n)	$\operatorname{approx}(r)(\operatorname{approx}(s)(n))$
$approx(rac{1}{r})(n)$	$\max(\{k k\in\mathbb{N}\ \wedge\ approx(r)(k)\leq n\})$

Supposing r * s * n > 0, we have:

$$\begin{aligned} \mathsf{approx}(r*s)(n) &= \lfloor r*s*n \rfloor \\ &= \lfloor r*\lfloor s*n \rfloor + r*s*n - r*\lfloor s*n \rfloor \rfloor \\ &= \lfloor r*\lfloor s*n \rfloor + r*(s*n - \lfloor s*n \rfloor) \rfloor \\ &\leq 1 + \lfloor r*\lfloor s*n \rfloor \rfloor + \lfloor r*(s*n - \lfloor s*n \rfloor) \rfloor & \underset{(\lfloor x+y \rfloor \leq 1 + \lfloor x \rfloor + \lfloor y \rfloor)}{\text{applying a property of floor}} \\ &< 1 + \lfloor r*\lfloor s*n \rfloor \rfloor + \lfloor r \rfloor & \underset{(x-\lfloor x \rfloor < 1)}{\text{applying a property of floor}} \end{aligned}$$

We also have:

 $\begin{aligned} \operatorname{approx}(r)(\operatorname{approx}(s)(n)) \leq \operatorname{approx}(r*s)(n) & \qquad \operatorname{applying two properties of floor} \\ (\lfloor x \rfloor \leq x \quad \operatorname{and} \quad x \leq y \Rightarrow \lfloor x \rfloor \leq \lfloor y \rfloor) \end{aligned}$

From these, we deduce the following:

$$0 \leq \operatorname{approx}(r \ast s)(n) - \operatorname{approx}(r)(\operatorname{approx}(s)(n)) \leq \lfloor r \rfloor$$

That is:

 $|\operatorname{approx}(r*s)(n) - (\operatorname{approx}(r) \circ \operatorname{approx}(s))(n)| \leq \lfloor r \rfloor$

- 1. Addition is associative: x + (y + z) = (x + y) + z
- 2. Addition is commutative: x + y = y + x
- 3. Addition has an identity: x + 0 = x
- 4. Addition has an inverse: x + (-x) = 0
- 5. Multiplication is associative: x * (y * z) = (x * y) * z
- 6. Multiplication is commutative: x * y = y * x
- 7. Multiplication has an identity: x * 1 = x
- 8. Additive and multiplicative identities are different: $0 \neq 1$
- 9. Distributivity of multiplication: x * (y + z) = (x * y) + (x * z)

- 10. Multiplication has an inverse: $x \neq 0 \Rightarrow x * \frac{1}{x} = 1$
- 11. Reflexivity of order: $x \leq x$
- 12. Antisymmetry of order: $x \leq y \land y \leq x \Rightarrow x = y$
- 13. Transitivity of order: $x \leq y \land y \leq z \Rightarrow x \leq z$
- 14. Totality of order: $x \leq y \lor y \leq x$
- 15. Addition and order: $x \leq y \Rightarrow x + z \leq y + z$
- 16. Multiplication and order: $x \leq y \land 0 \leq z \Rightarrow x * z \leq y * z$
- Completeness. Every non empty set of reals with an upper (lower) bound has a least upper (greatest lower) bound.

This axiom characterizes the Reals

Every non empty set of reals A with an upper bound m has a LUB u

$$egin{array}{lll} orall A & \subseteq \mathbb{R} \ A &
eq arnothing & X &
eq arnothing & A &
eq arnothing & X &
eq arnothing & A &
eq arnothing & X &
eq arnothing & arnothing & A &
eq arnothing & arnothin & arnothing & arnothin &$$

- We supposed that the set of Reals $\mathbb R$ was given to us
- We defined the function approx

$$\mathsf{approx} \in \mathbb{R} \to (\mathbb{Z} \to \mathbb{Z})$$

- The image of \mathbb{R} under the function approx is a included in $\mathbb{Z} \to \mathbb{Z}$:

$$\mathsf{approx}[\mathbb{R}] \subseteq \mathbb{Z} \to \mathbb{Z}$$

-The idea for constructing the reals is to go the other way around

- To start from a certain set **R** of functions from \mathbb{Z} to itself:

 $\mathsf{R} \subseteq \mathbb{Z} \to \mathbb{Z}$

- To characterize this set
- To define an equivalence relation on this set
- To define the arithmetic operations and the order relation
- To prove the 17 axioms of the reals as mere theorems

- What has been done on approx will help us as useful hints

Q1: f(0) = 0

Q2:
$$\forall n \cdot n < 0 \Rightarrow f(n) = -f(-n)$$

Q3: $\exists k \cdot k \in \mathbb{N} \land (\forall m, n \cdot m \in \mathbb{N}_1 \land n \in \mathbb{N}_1 \Rightarrow |f(m+n) - f(m) - f(n)| \leq k)$

- \boldsymbol{k} is said to be an additivity constant for f

$$\mathbf{R} \ \widehat{=} \ \left\{ f \mid f \in \mathbb{Z} \to \mathbb{Z} \ \land \ \mathbf{Q1} \ \land \ \mathbf{Q2} \ \land \ \mathbf{Q3} \right\}$$

- We use the following properties of approx as hints

$$\mathsf{P1}: \quad \forall \, r \cdot r \in \mathbb{R} \, \Rightarrow \, \operatorname{approx}(r)(0) = 0$$

$$\mathsf{P2}: \quad \forall \, r, n \cdot r \in \mathbb{R} \ \land \ n < 0 \ \Rightarrow \ \mathsf{approx}(r)(n) = -\mathsf{approx}(r)(-n)$$

$$\begin{array}{lll} \mathsf{P3}: & \forall \, r,m,n \cdot \ r \in \mathbb{R} \ \land \ m \in \mathbb{N}_1 \ \land \ n \in \mathbb{N}_1 \\ \Rightarrow \\ & | \, \mathsf{approx}(r)(m+n) - \mathsf{approx}(r)(m) - \mathsf{approx}(r)(n) \, | \leq 1 \end{array}$$

- Again, we use what has been done on approximating approx as a hint
- The difference between f and g in ${f R}$ is bounded

$$f = g \hspace{0.2cm} \widehat{=} \hspace{0.2cm} \exists k \cdot k \in \mathbb{N} \hspace{0.2cm} \wedge \hspace{0.2cm} (\hspace{0.2cm} orall n \cdot n > 0 \hspace{0.2cm} \Rightarrow \hspace{0.2cm} |f(n) - g(n)| \leq k \hspace{0.2cm})$$

- It induces an equivalence relation

$$f = f$$
 $f = g \Rightarrow g = f$ $f = g \land g = h \Rightarrow f = h$

- The Reals will thus be modelled as the quotient set $\mathrm{R}/=$

According to what we said about approx(r), an integer *i* is represented by the following function f_i :

$$f_i(n) = i * n$$

The integer 0 is represented by a function 0 of **R** with:

 $\mathbf{0}(n)=0$

Any bounded function f is "equal" to **0** since $f(n) - \mathbf{0}(n) = f(n)$:

$$f = \mathbf{0} \iff \exists k \cdot k \in \mathbb{N} \land (\forall n \cdot n > 0 \Rightarrow |f(n)| \leq k)$$

The integer 1 is represented by a function 1 of **R** with:

 $\mathbf{1}(n) = n$

$$f = \mathbf{0} \Leftrightarrow \exists a, b \cdot a \in \mathbb{Z} \land b \in \mathbb{Z} \land (\forall n \cdot n \in \mathbb{N} \Rightarrow f(n) \in a \dots b)$$

 $\Leftrightarrow \exists a, b \cdot a \in \mathbb{Z} \land b \in \mathbb{Z} \land (\forall n \cdot n \in \mathbb{N} \Rightarrow f(n) \ge a \land f(n) \le b)$
We have then:

$$\neg f = \mathbf{0} \Leftrightarrow \neg \exists a, b \cdot a \in \mathbb{Z} \land b \in \mathbb{Z} \land (\forall n \cdot n \in \mathbb{N} \Rightarrow f(n) \ge a \land f(n) \le b)$$

$$\Leftrightarrow \forall a, b \cdot a \in \mathbb{Z} \land b \in \mathbb{Z} \Rightarrow (\exists n \cdot n \in \mathbb{N} \land (f(n) < a \lor f(n) > b))$$

$$\Leftrightarrow (\forall a \cdot a \in \mathbb{Z} \Rightarrow (\exists n \cdot n \in \mathbb{N} \land f(n) < a)) \lor$$

$$(\forall b \cdot b \in \mathbb{Z} \Rightarrow (\exists n \cdot n \in \mathbb{N} \land f(n) > b))$$

This suggests the following:

$$\begin{split} \mathsf{NEG}(f) \ & \widehat{=} \ \forall a \cdot a \in \mathbb{Z} \ \Rightarrow \ (\exists n \cdot n \in \mathbb{N} \ \land \ f(n) < a) \\ \mathsf{POS}(f) \ & \widehat{=} \ \forall b \cdot b \in \mathbb{Z} \ \Rightarrow \ (\exists n \cdot n \in \mathbb{N} \ \land \ f(n) > b) \end{split}$$

We can prove

$$POS(f) \Rightarrow \neg NEG(f)$$

 $POS(f), NEG(f), and f = 0$ are incompatible
 $POS(f) \lor NEG(f) \lor f = 0$

This suggests the following using Rodin: POS, NEG are sets.

 $f \in \mathsf{NEG} \ \hat{=} \ orall a \cdot a \in \mathbb{Z} \ \Rightarrow \ (\exists n \cdot n \in \mathbb{N} \ \land \ f(n) < a)$

 $f \in \mathsf{POS} \ \widehat{=} \ orall b \cdot b \in \mathbb{Z} \ \Rightarrow \ (\exists n \cdot n \in \mathbb{N} \ \land \ f(n) > b)$

We can prove

POS \cap NEG=POS \cap $\{f \mid f = 0\} = \varnothing$ NEG \cap $\{f \mid f = 0\} = \varnothing$

27

This suggests the following using Rodin: **POS**, **NEG** are sets. **NEG** $\hat{=} \{ f | f \in \mathbb{R} \land \forall a \cdot a \in \mathbb{Z} \Rightarrow (\exists n \cdot n \in \mathbb{N} \land f(n) < a) \}$ **POS** $\hat{=} \{ f | f \in \mathbb{R} \land \forall b \cdot b \in \mathbb{Z} \Rightarrow (\exists n \cdot n \in \mathbb{N} \land f(n) > b) \}$ **ZERO** $\hat{=} \{ f | f \in \mathbb{R} \land f = 0 \}$

We can prove

 $\mathsf{POS} \ \cup \ \mathsf{NEG} \ \cup \ \mathsf{ZERO} = R$

It's a partition

- As suggested from approx, we propose:

(f+g)(n)	f(n) + g(n)
(-f)(n)	-f(n)
$(f\star g)(n)$	f(g(n))
$inv(f)(n)$ (where $f \in POS$)	$\max\left(\set{k k \in \mathbb{N} \ \land \ f(k) \leq n} ight)$

- One has to prove that the RHS are in R
- One has to prove the axioms as mere theorems

To prove that $f * g \in \mathbb{R}$ we need to prove that a k such $|f(g(m+n)) - f(g(m)) - f(g(n))| \leq k$ exists but we cannot use Q3

because we don't have the sign of g(m + n), g(m) and g(n). Using Q3 we can prove:

$$egin{aligned} & m \in \mathbb{Z} \ \land \ n \in \mathbb{Z} \ \exists k \cdot orall m, n \cdot \ \Rightarrow \ & \left|f(m+n) - f(m) - f(n)
ight| \leq k \end{aligned}$$

- As suggested from approx, we propose:

(f+g)(n)	f(n) + g(n)
(-f)(n)	-f(n)
$(f\star g)(n)$	f(g(n))
$inv(f)(n)$ (where $f \in POS$)	$\max\left(\set{k k \in \mathbb{N} \ \land \ f(k) \leq n} ight)$

- One has to prove that the RHS are in R
- One has to prove the axioms as mere theorems

- As suggested from approx, we propose:

(f+g)(n)	f(n) + g(n)
(-f)(n)	-f(n)
(f*g)(n)	f(g(n))
$inv(f)(n)$ (where $f \in POS$)	$\max ig(\{k k \in \mathbb{N} \land (orall x \cdot x \in 0k \Rightarrow f(x) \leq n ig) \}$

- { $k \, | \, k \in \mathbb{N} \ \land \ f(k) \leq n$ } is not bounded!

- { $k \, | \, k \in \mathbb{N} \ \land \ (orall x \cdot x \in 0..k \ \Rightarrow \ f(x) \leq n \,)$ } is bounded

- Equivalence conservation
- If f = f' and g = g' then

$$f + g = f' + g'$$

$$f \star g = f' \star g'$$

$$inv(f) = inv(f')$$

- + : commutative, associative, **0** neutral.
- * : associative
- * : commutative by equivalence $f \star g = g \star f$
- * : distributivity over + by equivalence $f_*(g+h) = (f_*g)+(f_*h)$
- * : **1** neutral by equivalence $f_*inv(f) = 1$

$f \leq g \cong f+(-g) \in NEGZ \cong g+(-f) \in POSZ$ NEGZ \cong NEG \cup ZERO POSZ \cong POS \cup ZERO Axiom 11 (reflexivity), : $f+(-f) \in$ ZERO

Axiom 12 (antisymmetry) only by equivalence

$$f \leq g \land g \leq f \Rightarrow f = g$$

Axiom 13 (transitivity), and Axiom 14 (totality) of relation induced by \leq hold trivially.

$$(\exists \, n \cdot n \in \mathbb{N} \ \land f(n) > k) \ \Rightarrow \ (\forall \, n \cdot n \in \mathbb{N} \ \Rightarrow \ f(n) \geq -k)$$

where f has additivity constant k

$$f \in \mathsf{POS} \Rightarrow (\forall n \cdot n \in \mathbb{N} \Rightarrow f(n) \ge -k)$$
 where f has additivity constant k

 $f \in \mathsf{POS} \Leftrightarrow \exists n \cdot n \in \mathbb{N} \land f(n) > k$ where f has additivity constant k

- The additivity constant can always be reduced to 1 (see later)

$$g \leq f \Rightarrow \forall n \cdot n \in \mathbb{N} \Rightarrow g(n) - f(n) \leq 2$$

where f and g have additivity constant 1

$$g \leq f \Leftrightarrow \exists n \cdot f(n) - g(n) > 2$$

where f and g have additivity constant 1

Given a non-empty subset S of **R** (with only additivity constant 1) and a member M of **R** (additivity constant 1) such that:

 $\forall \, f \cdot f \in S \ \Rightarrow \ f \blacktriangleleft M$

We have thus (according to previous lemma):

$$orall f \cdot f \in S \; \Rightarrow \; (orall n \cdot n \in \mathbb{N} \; \Rightarrow \; f(n) \leq M(n) + 2)$$

We define **sup** as follows:

$$egin{aligned} \sup \in \mathbb{P}(S) \setminus \{ arnothing \} o (\mathbb{Z} o \mathbb{Z}) \ & ext{if } n > 0 \ & ext{if } n = 0 \ & ext{of } 0 & ext{if } n = 0 \ & ext{of } - \sup(S)(-n) & ext{if } n < 0 \end{aligned}$$

Note that $\sup(S)$ is well-defined

We prove that $\sup(S)$ is:

- 1. a member of ${\boldsymbol{\mathsf{R}}}$
- 2. a least upper bound of \boldsymbol{S}

$\sup(S) \in \mathrm{R}$

$\forall f \cdot f \in S \ \Rightarrow \ f \leq \sup(S)$

$\forall t \cdot t \in \mathbf{R} \land (\forall f \cdot f \in S \Rightarrow f \leq t) \Rightarrow \sup(S) \leq t$

additivity constant is less than 3 but we can reduce this constant to 1

- Reminder

$$\operatorname{approx} \in \mathbb{R} o (\mathbb{Z} o \mathbb{Z})$$
 $\operatorname{approx}(r)(n) \ \widehat{=} \ \lfloor n * r
ceil$

Can we do this with **R** and **Z**?

- Yes

$\mathsf{APPROX} \in \mathbf{R} \to (\mathbf{Z} \to \mathbf{Z}) \quad \mathsf{APPROX}(f)(\mathbf{f}_n) \ \widehat{=} \ \lfloor f \star \mathbf{f}_n \rceil$

We have defined maxR using the plugin and we prove that

-1 \leq APPROX $(f)(\mathbf{f}_m + \mathbf{f}_n)$ - APPROX $(f)(\mathbf{f}_m)$ - APPROX $(f)(\mathbf{f}_n) \leq$ 1

constants: b, Z, leq, maxRAxioms:

 $egin{aligned} b \in Z &
ightarrow \mathbb{Z} \ \{x \mapsto y | x \in Z \land y \in Z \land b(x) \leq b(y)\} \subseteq leq \ (Z \lhd leq \rhd Z) \cap (Z \lhd leq \rhd Z)^{-1} \subseteq id \ Definition \ maxR &= (\lambda s \cdot s \in \mathbb{P} \, 1(Z) \land \ (\exists M \cdot M \in Z \land (orall x \cdot x \in s \Rightarrow x \mapsto M \in leq) \ \mid b^{-1}(max(b[s]))) \end{aligned}$

Theorems

 $maxR \in \operatorname{dom}(maxR) \to Z$

 $\forall s \cdot s \in \operatorname{dom}(maxR) \Rightarrow maxR(s) \in s$

 $\forall s \cdot s \in \operatorname{dom}(maxR) \Rightarrow (\forall f \cdot f \in s \Rightarrow f \mapsto maxR(s) \in leq)$

- Reminder: a bijection

$$b \in \operatorname{Z}
arrow \mathbb{Z} \quad b(\operatorname{f}_i) \; \stackrel{_\frown}{=} \; \operatorname{f}_i(1) \; \; (=i)$$

then we define the function **approx** as follows:

 $\mathsf{approx} \in \mathrm{R} o (\mathbb{Z} o \mathbb{Z}) \;\; \mathsf{approx}(f)(n) \; \cong \; b(\mathsf{APPROX}(f)(\mathrm{f}_n))$

$$-1 \leq \operatorname{approx}(f)(m+n) - \operatorname{approx}(f)(m) - \operatorname{approx}(f)(n) \leq 1$$

Equivalence of $\operatorname{approx}(f)$ and f

- $Real = \operatorname{approx}[R] / =$
- All 17 axioms on reals are proved
- Nothing is complicated in this construction (simple concepts)
- However, some of the proofs are a bit hairy (done with Rodin)
- If interested by the proofs, have a look at the paper:

"Constructing the Reals (an Exercise in Mathematical Methodology)"

- The implementation of Reals in Rodin will NOT be done in this way
- We'll use an axiomatic approach using the 17 (without type $\mathbb{Z} \leftrightarrow \mathbb{Z}$)