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3 CNRS-IRIT, Toulouse University, France
4 EUI-Florence, University of Bologna, Italy

Abstract. We model persuasion, viewed as a deliberate action through which an
agent (persuader) changes the beliefs of another agent’s (persuadee). This notion
of persuasion paves the way to express the idea of persuasive influence, namely
inducing a change in the choices of the persuadee by changing her beliefs. It
allows in turns to express different aspects of deception. To this end, we propose
a logical framework that enables expressing actions and capabilities of agents,
their mental states (desires, knowledge and beliefs), a variety of agency operators
as well as the connection between mental states and choices. Those notions, once
combined, enable us to capture, the notion of influence, persuasion and deception,
as well as their relation.
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1 Introduction

In many contexts, agents need the cooperation of others, to achieve their goals. To this
end, they may influence others, namely execute actions leading others to perform fur-
ther actions. Influence may result from impeding or enabling certain actions by others
(removing or adding choices), but also from changing the mental states of others (re-
moving or adding beliefs). In the first case we speak of regimentation, while in the
second we speak of persuasion. In this paper, we focus on persuasion, i.e. on the de-
liberate action through which agents (persuaders) changes the beliefs of other agents
(persuadees).

Persuasion in the human-machine interaction raises serious ethical and legal issues,
as more and more often automated systems engage in attempts at influencing human
choices through persuasive messages. Such persuasive activities may be determined by
interests that are not aligned with the interests of their addressees, but are rather deter-
mined by the economic or political goals of the senders (or their principals). Automated
persuaders may also be deceivers, e.g. agents which present fake information or any-
way induce the persuadees into actions the latter will regret (bad economic, personal
or political choices). To adequately respond to this challenge, it is important to have a
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clear conceptual framework, that enables us to capture the different ways in which influ-
ence, persuasion and deception can be deployed, so that adequate responses to each of
such ways can be developed, through human or also computational interventions. Let us
precise that, as we are mainly interested in artificial agents (automated persuaders), we
will consider in this article rational agents. The anthropomorphic expression (persuader,
persuadee, mental state) are just shortcuts that we use for convenience.

In the AI field, persuasion and related notions have been approached from differ-
ent perspectives. Following seminal work on argumentation [28], persuasion has been
modelled through structured argumentation [19], abstract argumentation [6,7], prob-
abilistic argumentation [13], possibilistic belief revision [9], abstract argumentation
combined with dynamic epistemic logic [20]. Some logical approaches have addressed
notions related to persuasion, such as social influence [16,24], manipulation (influence
on choices) [15], lying and deception [23,27], or changing other agents’ degrees of be-
liefs [8]. The original contribution of this work consists in providing a logical account
of the way in which a persuader by changing the beliefs of the persuadee, influences the
action of the latter. We aim indeed to provide a formal theory of the micro-foundations
of deception, persuasion and influence, i.e., an account of the cognitive attitudes and
agentive aspects that are involved in the persuasion and influence, and elucidate their
relationship. For this purpose we provide a rich framework that expresses actions and
capabilities of agents and their mental states (desires, knowledge and beliefs) as well
as the connection between mental states and choices. In order to keep the framework
simple while being expressive, we focus on a qualitative framework (such as Boolean
games [26]) where agents’ preferences are not presented by continuous utility func-
tions but rather by a qualitative three-valued scale desirable/undesirable/neutral. Then
We express two notions of rationality (an optimistic and a pessimistic one), several
agency operators (such as the so-called ’Chellas’ STIT [12], the deliberative and the
rational STIT operators [16]) and different ways to influence agents’ choices through
belief change.

Relative to this rich background addressing partial aspects of persuasion processes,
our model will be useful for better understanding and modelling the dynamics of social
influence, especially those between artificial and human agents. It will also be relevant
from a regulatory perspective, since it allows to pinpoint those instance in which on-
line interactions, in virtue of their logical structure, can be viewed as detrimental to
trustful and productive interaction, and thus call for normative limitations. It can also
be relevant in the special cases where persuasion and deception can be of interest in
social relationship to protect somebody [2]. Our contribution has the advantage of pro-
viding a comprehensive model which captures the whole persuasive process including
the mental states of the persuader, his persuading action, the modified mental states of
persuadee and her resulting action. The model also captures the connection between in-
fluence, regimentation and persuasion, and enables to link persuasion with game theory.
This article is organized as follow. Firstly, in Section 1 we introduce a running example.
Then we define in Section 2 our logical framework and, in Section 3, we show how this
framework can express notions of optimistic and pessimistic rationality, and a variety
of agency operators. We then combine those notions in Section 4 to express deception,
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persuasion, regimentation and influence, and their relationships. Finally, we apply our
framework to the running example.

Running example John is feeling back pain, and consequently he is consulting web-
sites that offer medical advice as well as the opportunity to purchase drugs. A message
from a bot promises, for a fair price, a drug which is said to be an excellent remedy
that would eliminate all pain, and can be used for any length of time without producing
any dependency. This message persuades John to buy the drug and he starts taking it.
However the bot has deceived John because the bot knows that the drug creates addic-
tion, with serious health consequences. John’s wife Ann, comes to know that such pills
are dangerous. She then removes all pills from the closet. As a consequence John does
not take the drug. This example shows two patterns of influence. The first is successful
and misleading persuasion (deception) by the website, i.e., successful influencing by
providing false information. The second stage consists in Ann successfully influencing
John through regimentation, i.e., by removing a choice option.

2 Logical Framework

In this section, we present a modal logic language which supports reasoning about (i)
actions and capabilities of agents and coalitions, (ii) agents’ epistemic states and desires
as well as their connection with agents’ choices. We first present its syntax and its
semantic interpretation (Sections 2.1 and 2.2). Then, in Section 2.3, we provide a sound
and complete axiomatization of its set of validities.

2.1 Syntax

Assume a countable set of atomic propositions Atm = {p, q, . . .}, a finite set of agents
Agt = {1, . . . , n}, a finite set of atomic action names Act = {a, b, . . .}. The set Act
includes the (in)action skip, i.e., the action of doing nothing. We define Prop to be the
set of propositional formulas, that is, the set of all Boolean combinations of atomic
propositions. The set of non-empty sets of agents, also called coalitions, is defined by
2Agt∗ = 2Agt \ {∅}. Elements of 2Agt∗ are noted H,J, . . . A coalition H’s joint action
is defined to be a function δH : H −→ Act . Coalition H’s set of joint actions is noted
JActH . Its elements are noted δH , δ′H , . . . For notational convenience, we simply write
JAct instead of JActAgt to denote the grand coalition’s set of joint actions. Its elements
are noted δ, δ′, . . .Moreover, we write Act i instead of JAct{i} to denote agent i’s set of
individual actions. Its elements are noted ai, bi, . . . We define JAct∗ to be the set of all
finite sequences of joint actions from JAct . Elements of JAct∗ are noted ε, ε′, . . . The
empty sequence of joint actions is denoted by nil . Infinite sequences of joint actions are
called histories. The set of all histories is noted Hist and its elements are noted h, h′, . . .
Elements of JAct∗∪Hist are noted τ, τ ′, . . . For every τ1, τ2 ∈ JAct∗∪Hist , we write
τ1 v τ2 to mean that either τ1 = τ2 or τ1 is an initial subsequence of τ2, i.e., there is
τ3 ∈ JAct∗ ∪ Hist such that τ2 = τ1;τ3. The language L is defined by the following
grammar:
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ε ::= δ | ε;ε
ϕ ::= p | occ(ε) | plausi | goodi | badi | neutrali | ¬ϕ | ϕ1 ∧ ϕ2 | [[δ]]ϕ | �ϕ | Kiϕ

where p ranges over Atm , i ranges over Agt , δ ranges over JAct and ε ranges over
JAct∗. The other Boolean constructions >, ⊥, ∨,→ and↔ are defined from p, ¬ and
∧ in the standard way. We note L− the fragment of L without operators [[δ]] defined by
the following grammar:

ϕ ::= p | occ(ε) | plausi | goodi | neutrali | badi | ¬ϕ | ϕ1 ∧ ϕ2 | �ϕ | Kiϕ

L has special atomic formulas of four different kinds. The atomic formulas occ(ε)
represent information about occurrences of joint action sequences. The formula occ(ε)
has to be read “the joint action sequence ε is going to occur”.

The following abbreviations capture interesting action-related concepts. For every
H ∈ 2Agt∗, joint action sequence ε ∈ JAct∗ and joint action δH ∈ JActH we define:

choose(ε,δH)
def
=

∨
δ∈JAct:

∀i∈H , δH (i)=δ(i)

occ(ε;δ)

can(ε,δH)
def
= ♦choose(ε,δH)

choose(ε,δH) has to be read “the joint action sequence ε is going to occur and will be
followed by coalition H’s joint action δH”. For convenience, when ε = nil , we write
choose(δH) instead of choose(nil ,δH). Formula can(ε,δH) has to be read “coalition H
can choose the joint action δH at the end of the joint action sequence ε”.

The atomic formula plausi is used to identify the histories in agent i’s information
set that she considers plausible. It has to be read “the current history is considered
plausible by agent i”. The other atomic formulas goodi, badi and neutrali are used to
rank the histories that an agent envisages at a given world according to their value for the
agent (i.e., how much a given history promotes the satisfaction of the agent’s desires).
They are read, respectively, “the current history is good/bad/neutral for agent i”. Let
us notice it is an agent-centric point-of-view. Each goodi, badi and neutrali atoms are
defined only from agent i’s perspective.

L has three kinds of modal operators: [[δ]], � and Ki. � is the so-called historical
necessity operator. The formula �ϕ has to be read “ϕ is true in all histories passing
through the current moment”. We define ♦ to be the dual of �, i.e., ♦ϕ def

= ¬�¬ϕ
where ♦ϕ has to be read “ϕ is true in at least one history passing through the current
moment”. [[δ]] is a dynamic operator describing the fact that if the joint action δ is
performed then it will lead to a state in which a given state of affairs holds. In particular,
[[δ]]ϕ has to be read “if the joint action δ is performed, then ϕ will be true after its
execution”. Finally, Ki is a modal operator characterizing the concept of ex ante (or
choice-independent) knowledge [4,16,22]. The formula Kiϕ has to be read “agent i
knows that ϕ is true independently from her current choice” or “agent i thinks that ϕ
is true for any choice she could have made”. The dual of the operator Ki is denoted by
K̂i, i.e., K̂iϕ

def
= ¬Ki¬ϕ. Ex ante knowledge is distinguished from ex post knowledge.

Ex ante knowledge characterizes an agent’s knowledge assuming that no decision has
yet been made by him, whereas ex post knowledge characterizes an agent’s knowledge
assuming that the agent has made his decision about which action to take, but might
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still be uncertain about the decisions of others. The concept of ex post knowledge is
expressed by the following operator Kpost

i :

Kpost
i ϕ

def
=

∧
ai∈Acti

(
choose(ai)→ Ki(choose(ai)→ ϕ)

)
where Kpost

i ϕ has to be read “agent i knows that ϕ is true, given her actual choice”.
From the special atomic formula plausi and the epistemic operator Ki, we define a belief
operator:

Biϕ
def
= Ki(plausi → ϕ)

The formula Biϕ has to be read “agent i believes that ϕ”. According to this def-
inition, an agent believes that ϕ if and only if ϕ is true at all states in the agent’s in-
formation set at which ϕ is true. The dual of the operator Bi is denoted by B̂i, i.e.,
B̂iϕ

def
= ¬Bi¬ϕ.

Similarly to Situation Calculus [21], we describe actions in terms of their positive
and negative effect preconditions. In particular, we introduce two functions γ+ and γ−

with domain Agt × Act × Atm and codomain L−. The formula γ+(i, a, p) describes
the positive effect preconditions of action a performed by agent i with respect to p,
whereas γ−(i, a, p) describes the negative effect preconditions of action a performed
by agent i with respect to p. Formula γ+(i, a, p) represents the conditions under which
agent i will make p true by performing action a, if no other agent interferes with i’s
action; while γ−(i, a, p) represents the conditions under which i will make p false by
performing a, if no other agent interferes with i’s action. We assume that “making p
true” means changing the truth value of p from false to true, whereas “making p false”
means changing the truth value of p from true to false. The reason why an action’s effect
preconditions range over L− and not over L is that they should be independent from
the effects of the action described by dynamic formulas of type [[δ]]ϕ.

Example 1. Let us consider the story given in Section 1, and use it to illustrate the γ+
and γ− functions. We shall use the following vocabulary:

Agt ={Ann, John,Bot},
Act ={take, suggest , hide, skip},
Atm ={hasJohn,drug, ingestedJohn,drug, addictedJohn , painJohn}

The actions’ effect preconditions can be defined as:

γ+(Bot , suggest , p) = p for all p ∈ Atm,

γ−(Bot , suggest , p) = ¬p for all p ∈ Atm,

γ+(John, take, ingestedJohn,drug) = hasJohn,drug,

γ+(i, a, ingestedJohn,drug) = ⊥

Moreover, if a 6= take or i 6= John , we have:

γ−(i, a, ingestedJohn,drug) = ¬choose(takeJohn)
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Finally, for all a ∈ Act and i ∈ Agt , we have:

γ+(i, a, hasJohn,drug) = hasJohn,drug ∧ ¬choose(hideAnn)

γ−(Ann, hide, hasJohn,drug) = >

The effect preconditions specify that the speech act of suggestion has no effect on
material facts. Ingesting the drug presupposes possession of it, while not ingesting it
presupposes not having taken it. Finally, John will still have the drug unless Ann hides
it, while John will not have the drug if Ann hides it.

2.2 Semantics

The semantics for the language L is a possible world semantics with accessibility re-
lations associated with each modal operator, with a function designating the history
starting in a given world, a plausibility function and a trichotomous utility function
relative to histories.

Definition 1. A model is a tuple M =
(
W,H,≡, (Ei)i∈Agt ,P,U ,V

)
where: (i) W is a

non-empty set of worlds, (ii)H :W −→ Hist is a history function, (iii) ≡ and every Ei
are equivalence relations on W , (iv) P :W ×Agt −→ {0, 1} is a plausibility function,
(v) U : W × Agt −→ {0, 1,−1} is a utility function, and (vi) V : W −→ 2Atm is a
valuation function.

For each binary relation R ∈ {≡, E1, . . . , En}, we set R(w) = {v ∈ W : wRv}.
As usual p ∈ V(w) means that proposition p is true at world w. ≡-equivalence classes
are called moments. If w and v belong to the same moment (i.e., w ≡ v), then the
history starting in w (i.e., H(w)) and the history starting in v (i.e., H(v)) are said to
be alternative histories (viz., histories starting at the same moment). The concept of
moment is the one used in STIT logic [5,12] and, more generally, in the Ockhamist
theory of time [25,29]. For every world w ∈ W , H(w) identifies the history starting in
w. For notational convenience, for all ε ∈ JAct∗, i ∈ Agt , a ∈ Act and w ∈ W , we
write ε;a vi H(w) to mean that there is δ ∈ JAct such that δ(i) = a and ε;δ v H(w).

We define the actual choice function Cact : W × Agt −→ Act : for every w ∈ W ,
i ∈ Agt and a ∈ Act , we have Cact(w, i) = a iff there exists δ ∈ JAct such that
δ(i) = a and δ v H(w). Furthermore, we define the available choice function Cavail :
W × Agt −→ 2Act : for every w ∈W , i ∈ Agt and a ∈ Act , we have a ∈ Cavail(w, i)
iff there exists δ ∈ JAct and v ∈≡(w) such that δ(i) = a and δ v H(v).

The equivalence relations Ei are used to interpret the epistemic operators Ki. The set
Ei(w) is the agent i’s information set at worldw: the set of worlds that agent i envisages
at w or, shortly, agent i’s set of epistemic alternatives at w. As Ei is an equivalence
relation, if wEiv then agent i has the same information set at w and v. The function
P specifies the possibility value of a history for an agent. In particular, P(w, i) = 1
(resp. P(w, i) = 0) means that the history starting in w is considered plausible (resp.
not plausible) by agent i. We define agent i’s belief set at world w, denoted by Bi(w),
as the set of worlds in i’s information set at w that i considers plausible: Bi(w) =
Ei(w) ∩ {v ∈W : P(v, i) = 1}.
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Consequently, the complementary set Ei(w) \ Bi(w) is the set of worlds that agent
i envisages at w but that she does not consider plausible. Since Ei is an equivalence
relation, the following properties for belief hold. Note that Bi ⊆ Ei and if wEiv then
Bi(w) = Bi(v), where Bi = {(w, v) ∈ W × W : v ∈ Bi(w)}. Moreover, Bi is
transitive and Euclidean. These properties correspond to the combination of belief and
knowledge studied in [14].

The function U assigns the utility value U(w, i) of the history starting in w for agent
i. In particular, U(w, i) = 1, U(w, i) = −1 and U(w, i) = 0, mean respectively that
the history starting in w is good/bad/neutral for agent i. A history is good for an agent
if the agent obtains what she likes and avoids what she dislikes along it. It is bad for the
agent if the agent does not avoid what she dislikes and does not obtain what she likes
along it. Finally, it is neutral for the agent if either the agent does not obtain what she
likes and avoids what she dislikes along it, or the agent obtains what she likes and does
not avoid what she dislikes along it. Our simplified account of utility presupposes that
every agent is identified with a single appetitive desire (i.e., what the agent likes) and a
single aversive desire (i.e., what the agent dislikes).

We impose the following three constraints on models. For all w, v ∈W , δ ∈ JAct ,
ε ∈ JAct∗, i ∈ Agt and a ∈ Act :

(C1) if for all i ∈ Agt there is ui ∈≡ (w) such that ε;δ(i) vi H(w), then there is
u ∈≡(w) such that ε;δ v H(u);

(C2) if there is v ∈≡(w) such that ε;a vi H(v) then, for every u ∈ Ei(w), there is
z ∈≡(u) such that ε;a vi H(z);

(C3) if there is v ∈≡(w) such that ε;a vi H(v), then there is u ∈ Ei(w) such that
ε;a vi H(u);

(C4) if w ≡ v then Ei(w) = Ei(v);
(C5) Bi(w) 6= ∅.

According to the Constraint C1, if every individual action in a joint action δ can
be chosen at the end of the joint action sequence ε, then the individual actions in δ
can be chosen simultaneously at the end of ε. The Constraint C1 is a variant of the
assumption of independence of agents of STIT logic. More intuitively, this means that
agents can never be deprived of choices due to the choices made by other agents. The
Constraint C2 is a basic assumption about agents’ knowledge over their abilities: if an
agent i can choose action a at the end of the joint action sequence ε, then he knows
this. In other words, an agent has perfect knowledge about the actions he can choose at
the end of a joint sequence. The Constraint C3 characterizes the basic property of ex
ante knowledge: if an agent i can choose action a at the end of joint action sequence
ε, then there is a history that the agent considers possible in which he chooses action a
at the end of the joint action sequence ε. In other words, for every action that an agent
can choose, there is a history that the agent considers possible in which he chooses
this action. According to Constraint C4, an agent’s knowledge is moment-determinate,
i.e., it does not depend on the specific history at which it is evaluated. This assumption
is justified by the fact that the only thing which can vary at a given moment are the
agents’ choices, but not the agents’ ex ante epistemic states. Finally, Constraint C5
is a normality requirement for beliefs: there should be at least a world in an agent’s
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information set that the agent considers possible. L-formulas are interpreted relative to
a model M =

(
W,H,≡, (Ei)i∈Agt ,P,U ,V

)
and a world w in W as follows. (We omit

boolean cases as they are standard.)

M,w |= occ(ε) ⇐⇒ ε v H(w)
M,w |= plausi ⇐⇒ P(w, i) = 1

M,w |= goodi ⇐⇒ U(w, i) = 1

M,w |= badi ⇐⇒ U(w, i) = −1
M,w |= neutrali ⇐⇒ U(w, i) = 0

M,w |= [[δ]]ϕ ⇐⇒ if M,w |= occ(δ) then Mδ, w |= ϕ

M,w |= �ϕ ⇐⇒ ∀v ∈W : if w ≡ v then M, v |= ϕ

M,w |= Kiϕ ⇐⇒ ∀v ∈W : if wEiv then M, v |= ϕ

where modelMδ is defined according to Definition 2 below. Note that the belief op-
erator Bi we defined in Section 2.1 as an abbreviation has the following interpretation:
M,w |= Biϕ if and only if ∀v ∈W : if wBiv then M,v |= ϕ.

Definition 2 (Update via joint action). Let M =
(
W,H,≡, (Ei)i∈Agt ,P,U ,V

)
be a

model. The update of M by joint action δ is the tuple:

Mδ =
(
W δ,Hδ,≡δ, (Eδi )i∈Agt ,Pδ,Uδ,Vδ

)
where:

W δ = {w ∈W :M,w |= occ(δ)}
Hδ(w) = h ifH(w) = δ′;h for some δ′ ∈ JAct

≡δ = ≡ ∩(W δ ×W δ)

Eδi = Ei ∩ (W δ ×W δ)

Pδ(w, i) = P(w, i) if Bi(w) ∩W δ 6= ∅
Pδ(w, i) = 1 otherwise
Uδ(w, i) = U(w, i)

Vδ(w) =
(
V(w) \

{
p :
(
∃a ∈ Act , i ∈ Agt :

δ(i) = a and M,w |= γ−(i, a, p)
)

and(
6 ∃b ∈ Act , j ∈ Agt : δ(j) = b and

M,w |= γ+(j, b, p)
)})
∪{

p :
(
∃a ∈ Act , i ∈ Agt : δ(i) = a and

M,w |= γ+(i, a, p)
)

and(
6 ∃b ∈ Act , j ∈ Agt : δ(j) = b and

M,w |= γ−(j, b, p)
)}

The performance of a joint action δ modifies the physical facts via the positive effect
preconditions and the negative effect preconditions, defined above (see the definition
of Vδ). In particular, if there is an action in the joint action δ whose positive effect
preconditions with respect to p hold and there is no other action in the joint action δ
whose negative effect preconditions with respect to p hold, then p will be true after
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the occurrence of δ; if there is an action in the joint action δ whose negative effect
preconditions with respect to p hold and there is no other action in the joint action δ
whose positive effect preconditions with respect to p hold, then p will be false after the
occurrence of δ. Besides, the occurrence of the joint action δ makes the current history
advance one step forward (see the definition of Hδ). As to the equivalence relations
≡ and Ei for historical necessity and ex ante knowledge, they are restricted to the set
of worlds in which the joint action δ occurs (see the definitions of ≡δ and Eδi ). The
joint action δ does not modify the agents’ utilities over histories (see the definitions of
Uδ). Finally, as for the update of the epistemic plausibility function P , two cases are
possible. If the update removes all plausible worlds from the agent’s information set,
then the plausibility function is reinitialized and all worlds in the agent’s information
set become plausible. This is a form of drastic revision which guarantees preservation
of Constraint C5. Otherwise, nothing changes and the agent keeps the same beliefs as
before the update. As stated by the following proposition, the update via a joint action
preserves the constraints on models.

Proposition 1. If M is a model then Mδ is a model too.

Notions of validity and satisfiability for formulas in L relative to models is defined
in the usual way. The fact that a formula ϕ is valid is noted |= ϕ.

2.3 Axiomatization

We call EVAL (Epistemic Volitional Action Logic) the extension of propositional logic
by the principles in Figures 1, 2 and 3 and the following rule of replacement of equiva-
lents:

ϕ1 ↔ ϕ2

ψ ↔ ψ[ϕ1/ϕ2]
(RE)

They consist in (i) a theory for the special atomic formulas, (ii) S5-principles for
the epistemic and historical necessity operators, and (iii) reduction axioms which allow
to eliminate all the dynamic operators [[δ]] from formulas.

As the next theorem indicates, they provide an axiomatics.

Theorem 1. The logic EVAL is sound and complete for the class of models of Defini-
tion 1.

Regarding complexity, we believe that checking satisfiability of formulas in the
fragment L− can be polynomially reduced to satisfiability checking for star-free PDL
with converse of atomic programs that, by adapting the technique in [10], can be proved
to be in PSPACE. Given the polysize satisfiability preserving reduction fromL-formulas
to L−-formulas based on the reduction axioms of Proposition 3, this guarantees that
checking satisfiability of formulas in L is also in PSPACE. As for PSPACE-hardness,
it follows from the fact that EVAL is a conservative extension of multi-agent epistemic
logic S5n, whose satisfiability problem is known to be PSPACE-hard [11]. Future work
will be devoted to prove this conjecture. Nevertheless, it is of interest to have a decidable
logic to deal with artificial agents.
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occ(ε)→
∨

δ∈JAct

occ(ε;δ) (OneJAct)

occ(nil) (EmptySeq)

occ(ε;δ)→ ¬occ(ε;δ′) if δ 6= δ′ (UniqueJAct)
occ(ε)→ occ(ε′) if ε′ v ε (SubSeqJAct)
goodi ∨ neutrali ∨ badi (ComplUtil)
xi → ¬yi if x, y ∈ {good, neutral, bad} and x 6= y (UniqueUtil)

(
∧
i∈Agt

♦choose(ε,ai))→ ♦choose(ε,δAgt) (IndepAgt)

can(ε,ai)→ Kican(ε,ai) (KnowCan)

can(ε,ai)→ K̂ichoose(ε,ai) (ExAnteKnow)

Kiϕ→ �Kiϕ (MomDetKnow)

K̂iplausi (NormBel)

Fig. 1: Theory for the atomic formulas

(
�ϕ ∧�(ϕ→ ψ)

)
→ �ψ (K�) �ϕ→ ϕ (T�)

�ϕ→ ��ϕ (4�) ¬�ϕ→ �¬�ϕ (5�)
ϕ
�ϕ (Nec�)

Fig. 2: S5-system for knowledge and historical necessity with � ∈ {�} ∪ {K1} ∪ . . . ∪ {Kn}

3 Agency and Rationality Types

We now represent agency operators and two opposite rationality types, namely, the opti-
mistic (or risk seeking) agent Ratopti and the pessimistic (or risk averse) agent Ratpessi :

Ratopti
def
=

∨
ai∈Acti

(
choose(ai) ∧

∧
bi∈Acti:
bi 6=ai

(
can(bi)→

(
(B̂i(neutrali ∧ choose(bi))→

B̂i((neutrali ∨ goodi) ∧ choose(ai)))∧

(B̂i(goodi ∧ choose(bi))→ B̂i(goodi ∧ choose(ai)))
)))

Ratpessi
def
=

∨
ai∈Acti

(
choose(ai) ∧

∧
bi∈Acti:
bi 6=ai

(
can(bi)→

(
(B̂i(neutrali ∧ choose(ai))→

B̂i((neutrali ∨ badi) ∧ choose(bi)))∧

(B̂i(badi ∧ choose(ai))→ B̂i(badi ∧ choose(bi)))
)))
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[[δ]]¬ϕ ↔ (occ(δ)→ ¬[[δ]]ϕ)
[[δ]](ϕ ∧ ψ) ↔ ([[δ]]ϕ ∧ [[δ]]ψ)
[[δ]]p ↔ (occ(δ)→ ((

∨
i∈Agt γ

+(i, δ(i), p)∧∧
j∈Agt:j 6=i ¬γ

−(j, δ(j), p))∨
(p ∧

∧
i∈Agt ¬γ

−(i, δ(i), p))∨
(p ∧

∨
i∈Agt γ

+(i, δ(i), p))))

[[δ]]occ(ε) ↔ (occ(δ)→ occ(δ;ε))

[[δ]]plausi ↔
(

occ(δ)→
(
Bi¬occ(δ)∨

(B̂iocc(δ) ∧ plausi)
))

[[δ]]goodi ↔ (occ(δ)→ goodi)
[[δ]]neutrali ↔ (occ(δ)→ neutrali)
[[δ]]badi ↔ (occ(δ)→ badi)
[[δ]]�ϕ ↔ (occ(δ)→ �(occ(δ)→ [[δ]]ϕ))
[[δ]]Kiϕ ↔ (occ(δ)→ Ki(occ(δ)→ [[δ]]ϕ))

Fig. 3: Reduction axioms for the dynamic operators

As Proposition 2 highlights, a rationally optimistic agent makes a certain choice
from her set of available choices, if she believes that its best possible outcome is at
least as good as the best possible outcome of the other available choices. A rationally
pessimistic agent makes a certain choice, if she believes that its worse possible outcome
is at least as good as the worse possible outcome of the other available choices.

Proposition 2. Let M =
(
W,H,≡, (Ei)i∈Agt ,P,U ,V

)
be a model and let w ∈ W .

Then, M,w |= Rat?i iff:

Cact(w, i) ∈ argmax
b∈Cavail (w,i)

max
v∈Bi(w):
Cact (v,i)=b

U(v, i) if ? = opt

Cact(w, i) ∈ argmax
b∈Cavail (w,i)

min
v∈Bi(w):
Cact (v,i)=b

U(v, i), if ? = pess

In the language L, we can express a variety of agency operators from STIT theory
[5,12]. Indeed, EVAL can be seen as a variant of STIT with explicit actions: while in
STIT an action is identified with the result brought about by a coalition (i.e., in STIT
one can only express that a given coalition H sees to it that ϕ), in EVAL an action is
identified both with the result brought about by the coalition and with the means used
by the coalition to bring about the result. For instance, the so-called ‘Chellas’ operator
[H:cstit] of STIT is definable in our language as follows:

[H:cstit]ϕ
def
=

∨
δH∈JActH

(
choose(δH) ∧

∧
δ′∈JAct:

∀i∈H,δH (i)=δ′(i)

�
(
choose(δ′)→ ϕ

))

This means that the coalition H sees to it that ϕ if and only if, the agents in H choose
some joint action δH such that, no matter what the agents outside H choose, if the
agents in H choose δH then ϕ will be true. The ‘deliberative’ STIT operator is also
definable:

[H:dstit]ϕ
def
= [H:cstit]ϕ ∧ ¬�ϕ.
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Deliberative STIT adds the negative condition ¬�ϕ to Chellas STIT. It captures the
fact that for a coalitionH to see to it that ϕ, ϕ should not be inevitable (according to de-
liberative STIT, action is not compatible with necessity). Having formalized rationality
types, we can define two rational STIT operators, [H:rstit]opt and [H:rstit]pess :

[H:rstit]?ϕ
def
=

∧
i∈H

Rat?i → [H:cstit]ϕ

with ? ∈ {opt , pess}. Formula [H:rstit]optϕ (resp. [H:rstit]pessϕ) has to be read
“coalition H sees to it that that ϕ in an optimistic (resp. pessimistic) rational way”.
The latter means that if all agents inH are optimistically (resp. pessimistically) rational,
then then they see to it that ϕ. Note that we could also define deliberative STIT counter-
parts of the previous (Chellas STIT-based) rational STIT operators, in which operator
[H:cstit] is replaced by operator [H:dstit]. Our language also integrates a temporal di-
mension allowing us to express the LTL operator ‘next’: Xϕ

def
=
∨
δ∈JAct 〈〈δ〉〉ϕ.

4 Influence, Persuasion and Deception

In this section, we define influence, persuasion, and deception. We also highlight the
relationship between influence and persuasion, namely when an agent is persuaded to
do an action a, it means that she may have acted differently but found rational to do
a. Firstly, let us define influence. Influencing consists in an agent i (the influencer)
intentionally seeing to it that another agent j (the influencee) rationally sees to it that
a proposition ϕ. As we have two kinds of rationality types, we can define two kinds of
influence with ? ∈ {opt , pess}.

Influences?(i, j, ϕ)
def
= Kpost

i [{i}:dstit]X[{j}:rstit]?ϕ

Let us now define persuasion as the intentional action of changing another agent’s
mental state [17,18]. Persuasion consists in an agent i (the persuader) knowingly seeing
to it that another agent j (the persuadee) believes that a certain fact ϕ is true.

Persuades(i, j, ϕ)
def
= Kpost

i [{i}:dstit]XBjϕ

As the persuader knowingly sees to it that the persuadee will have a given belief,
this definition expresses two different kinds of persuasion. One agent i may persuade
another agent j either acquire a new belief that she does not have or to maintain a belief
that she already has. Interestingly, a relationship between persuasion and influence can
be deduced. An agent i influences an agent j to make a given choice a if i persuades j
that choosing a is good for j and that all other choices are not good while knowing that
j will be optimistically rational and can possibly choose a.

Proposition 3. Let i, j ∈ Agt and aj , bj ∈ Actj . Then,

|= (Persuades(i, j, B̂j(choose(aj) ∧ goodj) ∧
∧
b 6=a

(choose(bj)→ ¬goodj))

∧ KiX(Ratoptj ∧ ♦choose(aj)))→ Influencesopt(i, j, choose(aj))
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Firstly, by using (Kiϕ→ Ki�ϕ), (♦ϕ∧�ϕ→ ♦(ϕ∧ψ)), (Bjϕ→ B̂jϕ), (Xϕ∧Xψ →
X(ϕ ∧ ψ)) and previous definition of persuasion, we easily prove that (Persuades
(i, j, choose(aj) → goodj ∧

∧
b 6=a (choose(bj) → ¬goodj)) ∧ Ki X (Ratoptj ∧ ♦

choose(aj)))→ Ki [{i}:dstit] X (Ratoptj ∧ ♦ choose(aj) ∧ B̂j (choose(aj)→ goodj
∧
∧
b6=a (choose(bj) → ¬goodj))))). Secondly, since (Ki [{i}:dstit] X (Ratoptj ∧ ♦

choose(aj) ∧ B̂j (choose(aj) → goodj ∧
∧
b 6=a (choose(bj) → ¬ goodj))) → Ki

[{i}:dstit] X (Ratoptj → [{j}:cstit] choose(aj))), – intuitively this tautology means
that since the only one good action for agent j is aj and since all other actions are either
badj or neutralj (because of ¬goodj), necessarily the only optimistic rational choice
for j is to choose aj –, and since we have the following equivalence : (Ki [{i}:dstit] X
(Ratoptj → [{j}:cstit] choose(aj)) ≡ Influencesopt (i, j, choose(aj))) we then imme-
diately prove by modus ponens the theorem.

The previous validity shows how an optimistically rational agent can be influenced
through persuasion. Similar theorems can be proved for pessimistically rational agents
but are omitted due to space constraints. The idea in this case is simply to persuade
agent j that action a has no bad consequence while all other actions have it. Thank to
persuasion we can now define deception. Deception consists in persuasion of a propo-
sition ϕ under the assumption that the persuader believes that ϕ is false. For instance,
consider the student that tells the professor that he could not study for family commit-
ments (when he had no such commitments).

Deceives(i, j, ϕ)
def
= Persuades(i, j, ϕ) ∧ BiX¬ϕ

Let us notice that we only capture successful deception, and we do not explicitly model
deception by truthfully telling. Indeed, truthfully telling is simply captured by persua-
sion, as we do not make assumption on the persuader’s intention (an agent can simply
persuade another one in a malevolent intention, which capture truthfully telling decep-
tion). Smooth-talking is weaker than deceiving, since it only requires that the persuader
is uncertain whether ϕ is true or false. Consider the journalist spreading the news that
Obama was a muslim, without having any clue on the matter. Formally, it is equivalent
to what Sakama et al. called ”bullshitting” [23].

PersuadesBySmoothTalking(i, j, ϕ)
def
= Persuades(i, j, ϕ) ∧ ¬Kpost

i X¬ϕ ∧ ¬Kpost
i ¬X¬ϕ

Let us notice we use ex post knowledge in this definition as we want to represent to
complete uncertainty about ϕ. We do not want the persuader being able to belief ϕ being
either true or false. We can also distinguish three types of belief deception, a benevolent,
a malevolent and a reckless form. In the malevolent form, the persuader i deceives the
persuadee j into believing a proposition ϕ, given that i believes that believing ϕ will
have bad consequences for j. An agent z will accomplish an action if z believes that
the action has good consequences (and no bad ones). Consider for instance the case of
the charlatan offering a miraculous cure for boldness. Or consider the website ensuring
gamblers that they are going with certainty to gain a lot of money.

MalevolentDeception(i, j, ϕ)
def
= Deceives(i, j, ϕ) ∧ BiX(Bjϕ→ badj)

A benevolent deception consists for the deceiver to transmit a false proposition, believ-
ing that believing that proposition is good for the deceived. Consider for instance the
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atheist philosopher, who persuades the credulous citizens that if they act morally, they
are going to heaven, in order to induce them to behave well.

BenevolentDeception(i, j, ϕ)
def
= Deceives(i, j, ϕ) ∧ BiX(Bjϕ→ goodj)

The last form is reckless deception. It consists for the deceiver to transmit a false
proposition, while not knowing whether that proposition is good or bad for the deceived.
Consider for instance the case of Boris Johnson, who did not know (or did not care)
whether Brexit would be good or bad for Britain, but induced people to believe that
Brexit would provide money for the NHS, a belief that would lead them to vote for
Brexit. He did not know whether this belief (which led to Brexit) would be good or bad
for them.

RecklessDeception(i, j, ϕ)
def
= Deceives(i, j, ϕ)∧
¬Kpost

i X(Bjϕ→ goodj) ∧ ¬Kpost
i X(Bjϕ→ badj)

Application to the running example. Let us consider the actions’ effect preconditions
in Example 1, given the following hypotheses on agents’ knowledge: (1, 2) the bot
knows that its suggestion will persuade john that taking the pill will remove his pain
and he will not get addicted, (3) the bot and Ann know that John will also believe that
this is good for him, (4) the bot knowingly makes the suggestion and it knows if it makes
the suggestion, John will be aware of it, (5) the Bot knows that John has the drug, that
Ann does not hide the drug and that John can choose to not take the drug, (6) Ann will
knowingly hide the drug, (7) Ann knows that John will possibly have the drug and can
choose to take it, (8) the Bot knows that John will be optimistically rational. Finally, (9)
the bot knows that ingesting the drug will create addiction, and being addicted is bad.

ϕ1
def
= KBot�BJohn(choose(suggestBot)→ X(¬painJohn ↔ choose(takeJohn)))

ϕ2
def
= KBot�BJohn(choose(suggestBot)→ X(choose(takeJohn)→ ¬addictedJohn))

ϕ3
def
= KBot�BJohnX(goodJohn ↔ (¬addictedJohn ∧ ¬painJohn))∧

KAnn�BJohnX(goodJohn ↔ (¬addictedJohn ∧ ¬painJohn))

ϕ4
def
= KBot(choose(suggestBot) ∧ (choose(suggestBot)→ KJohn(choose(suggestBot)))

ϕ5
def
= KBot(�(hasJohn,drug) ∧ ¬choose(hideAnn) ∧ ♦¬choose(takeJohn))

ϕ6
def
= XKAnnchoose(hideAnn)

ϕ7
def
= KAnnX♦(choose(takeJohn) ∧ hasJohn,drug)

ϕ8
def
= KBot�XRatoptJohn

ϕ9
def
= KBot�X((ingestedJohn,drug → addictedJohn) ∧ (addictedJohn ↔ badJohn))

From premises ϕ1, . . . ϕ8, we can then deduce Proposition 4 which means that, in a
first step, the Bot influences John to ingest the drug by persuasion, i.e. suggesting him
that his unique good option is to take the drug. In the next step, Ann influences John
to not ingest the drug by removing the choice to take the drug. With ϕ9, we can also
deduce Proposition 5 which means that the bot malevolently deceives John about the
fact that ingesting the drug will not make him addict.
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Proposition 4.

|=(ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ϕ4 ∧ ϕ5 ∧ ϕ6 ∧ ϕ7 ∧ ϕ8)→
(
Influencesopt(Bot , John,

XingestedJohn,drug) ∧ X Influencesopt(Ann, John,X¬ingestedJohn,drug)
)

Firstly, we can prove that the bot knows that John knows it suggests him to take drug
by applying axiom K on KBot i.e.: ϕ4 → KBotKJohnchoose(suggestBot) We also
consider the following theorem, that can be easily proved, ∀a ∈ Act ,∀i, j ∈ Agt :
(Bj(choose(ai) → Xϕ) ∧ Kjchoose(ai)) → [{i}:cstit]XBjϕ. The proof relies on the
fact that knowledge implies beliefs and BjXϕ

′ → XBjϕ
′. By generalization with �

and since Kjchoose(ai)→ choose(ai), we immediately prove the STIT and so the the-
orem. This theorem means that if one agent j believes that an action made by another
agent i will imply a consequence and j knows i does this action, then the agent i sees to
it that it will imply the agent j believes this consequence to be true. The theorem allows
us to prove that if the bot suggests John to take the drug then, the bot knows John will
believe taking the drug implies something good for him i.e. the bot persuades John
of it. Starting from the assumptions, we prove this by substitution, augmentation, gen-
eralization (with KBot) and normal properties of modalities K, B and X, the following
theorem. Note that the robot has an ex-post knowledge of the consequences of its action
of suggesting. We have:

(ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ϕ4)→

Kpost
Bot

((
(BJohn(choose(suggestBot)→ X((¬painJohn ↔ choose(takeJohn))

∧ (choose(takeJohn)→ ¬addictedJohn))) ∧ KJohnchoose(chooseBot))

→ [Bot:cstit]XBJohn(choose(takeJohn)→ goodJohn)
))

By contraposition on ϕ3, we prove that it is not good for John to be addicted or having
pain and allows us to prove that John believes that the only good option for him is to
take the drug:

(ϕ1 ∧ ϕ2 ∧ ϕ3)→ KBot�BJohn((addictedJohn → ¬choose(takeJohn))

∧ (painJohn → ¬choose(takeJohn)) ∧ (¬choose(takeJohn) ≡ choose(skipJohn)))

→ KBot�BJohn(¬choose(takeJohn) ≡ ¬goodJohn)

Since John is assumed to be rationally optimistic with the hypothesis ϕ8 and as the
unique good option for John is to take the drug, then John takes the drug i.e. we have
the following validity:

(choose(takeJohn)→ goodJohn) ∧ RatoptJohn∧∧
b 6=take

(choose(bJohn)→ ¬goodJohn)→ choose(takeJohn)

As John is rationally optimistic, he rationally sees to it that he ingests drugs. Finally,
let us notice that since John takes the drug, then John is also able to take the drug due to
the theorem choose(takeJohn) → ♦choose(takeJohn). Furthermore, John can either
do the action skip or takedrug. By generalization, all agents know:

(♦choose(takeJohn) ∧
∨

b 6=take

♦choose(bJohn))→ ♦¬choose(takeJohn)
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Furthermore since the preconditions for taking drugs is to have drugs in regard to the
frame, i.e. γ+(John, take, ingestedJohn,drug) = hasJohn,drug, and having drugs im-
plies that Ann does not hide drugs i.e. ∀a ∈ Act and i ∈ Agt γ+(i, a, hasJohn,drug) =
hasJohn,drug ∧ ¬choose(hideAnn) and we have these preconditions by ϕ5, we deduce
that John is able to take drugs or skipping. Then, as γ−(i, a, ingestedJohn,drug) =
¬choose(takeJohn), i.e. not taking the drugs would imply ¬XingestedJohn,drug, we
have that it is not necessary for John to take drugs, with the previous validity. Thus, by
applying axioms in Fig 3, we deduce the negative part of deliberative STIT operator,
i.e. the bot deliberately sees to it that John is going to ingest drugs:

(ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ϕ4 ∧ ϕ5 ∧ ϕ8)→ Kpost
Bot

(
[Bot:dstit]X(RatoptJohn → XingestedJohn,drug)

)
Consequently:

(ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ϕ4 ∧ ϕ5 ∧ ϕ8)→ Influencesopt(Bot , John,XingestedJohn,drug)

For the second part of the implication, let us notice that since Ann hides drugs, John
has only one possible action which is to skip. It is necessarily a rationally pessimistic
choice but also an optimistic one, because of the following theorem:

♦choose(skipJohn) ∧ ¬♦¬choose(skipJohn)→ RatoptJohn ∧ RatpessJohn

With the same method and with hypothesis ϕ6 and ϕ7 we can prove the second part:

(ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ϕ4 ∧ ϕ5 ∧ ϕ6 ∧ ϕ7 ∧ ϕ8)→(
XInfluencesopt(Ann, John,X¬ingestedJohn,drug)

)
Proposition 5.

|=(ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ϕ4 ∧ ϕ5 ∧ ϕ8 ∧ ϕ9)→(
MalevolentDeception(Bot , John, ingestedJohn,drug ∧ ¬addictedJohn,drug))

We can prove it as previously. By adding hypothesis ϕ9, we also prove a malevolent
deception from the bot since it persuades John that he will not be addicted if he takes
drugs while the bot knows the contrary, and being addicted is bad for John.

5 Conclusion

We have modelled influence on choices through belief change. To the end, we have in-
troduced a logical framework covering capabilities, choices and mental states, and have
expressed, through the combination of these notion, rationality and agency operators.
We have also expressed formally the way in which persuasion leads to influence, i.e. the
way in which by modifying the beliefs of agents, the latter can be induced to act accord-
ingly. This has enabled us to distinguish two ways in which agents can be influenced:
(a), through persuasion, i.e. by changing their beliefs, or (b) though regimentation, i.e.
by changing the options that are available to them. Moreover, it allows us to express
different kind of deception, such as malevolent and benevolent deception. In the future,
we would like to extend the framework towards a quantitative model in order to rep-
resent graded beliefs [8]. Other perspectives are to reformulate our framework into a
concurrent game structure [3] to deal with a richer notion of time, and to incorporate
emotions as in the OCC model [1] to express richer notions of rationality.
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