A Simple Framework for Cognitive Planning

Jorge Louis Fernandez Davila Dominique Longin Emiliano Lorini Frédéric Maris

IRIT-CNRS, Toulouse University, France

AAAI 2021

Cognitive planning

ANR project CoPains: https://www.irit.fr/CoPains/

Our contribution

- We encode the cognitive planning problem in an epistemic logic with a semantics exploiting belief bases (Lorini 2018, 2019, 2020)
- We study a NP-fragment of the logic whose satisfiability problem is reduced to SAT
- We provide complexity results for the cognitive planning problem
- We illustrate its potential for applications in HMI: persuasive artificial agent

Language

- A countably infinite set of atomic propositions $\operatorname{Atm}=\{p, q, \ldots\}$
- A finite set of agents $A g t=\{1, \ldots, n\}$

Language:

$$
\begin{array}{lll}
\mathcal{L}_{0}: & \alpha::=p|\neg \alpha| \alpha_{1} \wedge \alpha_{2}\left|\alpha_{1} \vee \alpha_{2}\right| \triangle_{i} \alpha, \\
\mathcal{L}: & \varphi::=\alpha|\neg \varphi| \varphi_{1} \wedge \varphi_{2}\left|\varphi_{1} \vee \varphi_{2}\right| \square_{i} \varphi \mid \diamond_{i} \varphi,
\end{array}
$$

with $p \in A t m$ and $i \in A g t$
$\triangle_{i} \alpha$: agent i explicitly believes that α
$\square_{i} \varphi$: agent i implicitly believes that φ

Semantics

Definition (State)

A state is a tuple $B=\left(B_{1}, \ldots, B_{n}, V\right)$ where:

- for every $i \in A g t, B_{i} \subseteq \mathcal{L}_{0}$ is agent i 's belief base,
- $V \subseteq A t m$ is the actual environment.

The set of all states is denoted by \mathbf{S}.

$$
\begin{aligned}
& \text { Definition (Satisfaction relation) } \\
& \text { Let } \begin{aligned}
& B=\left(B_{1}, \ldots, B_{n}, V\right) \in \mathbf{S} \text {. Then: } \\
& \qquad B \models p \Longleftrightarrow p \in V \\
& B \models \neg \alpha \Longleftrightarrow B \not \models \alpha \\
& B \models \alpha_{1} \wedge \alpha_{2} \Longleftrightarrow B \models \alpha_{1} \text { and } B \models \alpha_{2} \\
& B \models \triangle_{i} \alpha \Longleftrightarrow \alpha \in B_{i}
\end{aligned}
\end{aligned}
$$

Semantics (cont.)

Definition (Multi-agent belief model)

A multi-agent belief model (MAB) is a pair ($B, C x t$), where $B \in \mathbf{S}$ and $C_{x t} \subseteq \mathbf{S}$. The class of MABs is denoted by \mathbf{M}.

Definition (Epistemic alternatives)

Let $B=\left(B_{1}, \ldots, B_{n}, V\right), B^{\prime}=\left(B_{1}^{\prime}, \ldots, B_{n}^{\prime}, V^{\prime}\right) \in \mathbf{S}$. Then,
$B \mathcal{R}_{i} B^{\prime}$ if and only if $\forall \alpha \in B_{i}: B^{\prime} \models \alpha$.

Semantics (cont.)

Definition (Satisfaction relation (cont.))

Let $(B, C x t) \in \mathbf{M}$. Then:

$$
\begin{aligned}
(B, C x t) \models \alpha & \Longleftrightarrow B \models \alpha \\
(B, C x t) \models \square_{i} \varphi & \Longleftrightarrow \forall B^{\prime} \in C x t: \text { if } B \mathcal{R}_{i} B^{\prime} \text { then }\left(B^{\prime}, C x t\right) \models \varphi
\end{aligned}
$$

Theorem

Checking satisfiability of $\mathcal{L}($ Atm, Agt) formulas in the class \mathbf{M} is a PSPACE-hard problem.

NP-fragment

Single-reasoner fragment:

$$
\mathcal{L}_{\text {Frag }}: \quad \varphi::=\alpha|\neg \varphi| \varphi_{1} \wedge \varphi_{2}\left|\varphi_{1} \vee \varphi_{2}\right| \square_{\mathfrak{m}} \alpha \mid \diamond_{\mathfrak{m}} \alpha
$$

where α ranges over \mathcal{L}_{0} and \mathfrak{m} a special agent in Agt called 'machine'

Recall:

$$
\mathcal{L}_{0}: \quad \alpha \quad::=p|\neg \alpha| \alpha_{1} \wedge \alpha_{2}\left|\alpha_{1} \vee \alpha_{2}\right| \triangle_{i} \alpha
$$

Polynomial reduction to SAT

$$
\mathcal{L}_{\text {Frag }} \stackrel{\text { nnf }}{\rightarrow \rightarrow} \mathcal{L}_{\text {Frag }}^{\text {NNF }} \stackrel{t r_{1}}{\rightarrow} \mathcal{L}_{\text {Mod }} \stackrel{t r_{2}}{\rightarrow} \mathcal{L}_{\text {Prop }}
$$

Figure: Summary of reduction process

- $\mathcal{L}_{\text {Frag }}^{\text {NNF }}:$ NNF variant of $\mathcal{L}_{\text {Frag }}$

■ $\mathcal{L}_{\text {Mod }}:$ mono-modal language with no nested modalities, $\triangle_{i} \alpha$ are treated as atoms (fresh atoms $p_{\triangle_{i} \alpha}$)

- $\mathcal{L}_{\text {Prop }}$: propositional language, atoms have 'world'-indexes+atoms for 'simulating' accessibility relations

Theorem

Checking satisfiability of formulas in $\mathcal{L}_{\text {Frag }}$ in the class \mathbf{M} is an NP-complete problem.

Dynamic extension

Dynamic language:

$$
\mathcal{L}_{\text {Frag }}^{+}: \quad \varphi::=\alpha|\neg \varphi| \varphi_{1} \wedge \varphi_{2}\left|\varphi_{1} \vee \varphi_{2}\right| \square_{\mathfrak{m}} \alpha\left|\diamond_{\mathfrak{m}} \alpha\right|[+; \alpha] \varphi
$$

$\left[+{ }_{i} \alpha\right] \varphi: \varphi$ holds after agent i has privately expanded her belief base with α

Definition (Satisfaction relation, cont.)
Let $B=\left(B_{1}, \ldots, B_{n}, V\right) \in \mathbf{S}$ and let $(B, C x t) \in \mathbf{M}$. Then:

$$
\left(B, C_{x} t\right) \models\left[+{ }_{i} \alpha\right] \varphi \quad \Longleftrightarrow \quad\left(B^{+; \alpha}, C_{x} t\right) \models \varphi
$$

with $V^{+i \alpha}=V, B_{i}^{+i \alpha}=B_{i} \cup\{\alpha\}$ and $B_{j}^{+i \alpha}=B_{j}$ for all $j \neq i$.

Dynamic extension (cont.)

The following equivalences are valid in the class $\in \mathbf{M}$:

$$
\begin{aligned}
& {\left[+_{i} \alpha\right] \alpha^{\prime} \leftrightarrow \begin{cases}T, & \text { if } \alpha^{\prime}=\triangle_{i} \alpha, \\
\alpha^{\prime}, & \text { otherwise; }\end{cases} } \\
& {[+; \alpha] \neg \varphi \leftrightarrow \neg[+; \alpha] \varphi ;} \\
& {\left[+{ }_{i} \alpha\right]\left(\varphi_{1} \wedge \varphi_{2}\right) \leftrightarrow\left[+{ }_{i} \alpha\right] \varphi_{1} \wedge\left[{ }_{i} \alpha\right] \varphi_{2} ;} \\
& {[+; \alpha]\left(\varphi_{1} \vee \varphi_{2}\right) \leftrightarrow\left[+{ }_{i} \alpha\right] \varphi_{1} \vee[+; \alpha] \varphi_{2} ;} \\
& {[+; \alpha] \square_{\mathfrak{m}} \alpha^{\prime} \leftrightarrow \begin{cases}\square_{\mathfrak{m}}\left(\alpha \rightarrow \alpha^{\prime}\right), & \text { if } i=\mathfrak{m}, \\
\square_{\mathfrak{m}} \alpha^{\prime}, & \text { otherwise; }\end{cases} } \\
& {[+i \alpha] \diamond_{\mathfrak{m}} \alpha^{\prime} \leftrightarrow \begin{cases}\diamond_{\mathfrak{m}}\left(\alpha \wedge \alpha^{\prime}\right), & \text { if } i=\mathfrak{m}, \\
\diamond_{\mathfrak{m}} \alpha^{\prime}, & \text { otherwise. }\end{cases} }
\end{aligned}
$$

Polynomial reduction of satisfiability for $\mathcal{L}_{\text {Frag }}^{+}$to satisfiability for $\mathcal{L}_{\text {Frag }}$ via the previous reduction axioms

Theorem

Checking satisfiability of formulas in $\mathcal{L}_{\text {Frag }}^{+}$in the class \mathbf{M} is an $N P$-complete problem.

Cognitive planning problem

\Rightarrow Agent \mathfrak{m} 's set of informative actions:

$$
A c t_{\mathfrak{m}}=\left\{+_{\mathfrak{m}} \alpha: \alpha \in \mathcal{L}_{0}\right\}
$$

Elements of $A c t_{\mathrm{m}}$ are noted $\epsilon, \epsilon^{\prime}, \ldots$
\Rightarrow Executability precondition function:

$$
\mathcal{P}: A c t_{\mathfrak{m}} \longrightarrow \mathcal{L}_{\text {Frag }}
$$

\Rightarrow Successful occurrence of an informative action:

$$
\langle\langle\epsilon\rangle\rangle \varphi \stackrel{\text { def }}{=} \mathcal{P}(\epsilon) \wedge[\epsilon] \varphi
$$

$\langle\langle\epsilon\rangle \varphi$: agent \mathfrak{m} 's informative action ϵ can take place and φ holds after its occurence

Cognitive planning problem (cont.)

Definition ($\mathcal{L}_{\text {Frag }}^{+}$-planning problem)

A $\mathcal{L}_{\text {Frag }}^{+}$-planning problem is a tuple $\left\langle\Sigma, O p, \alpha_{G}\right\rangle$ where:
$■ \Sigma \subset \mathcal{L}_{0}$ is a finite set of agent \mathfrak{m} 's available information,

- $O p \subset A c t_{\mathfrak{m}}$ is a finite set of agent \mathfrak{m} 's operators,
- $\alpha_{G} \in \mathcal{L}_{0}$ is agent \mathfrak{m} 's goal.

A solution plan to a $\mathcal{L}_{\text {Frag }}^{+}$-planning problem $\left\langle\Sigma, O p, \alpha_{G}\right\rangle$ is a sequence of operators $\epsilon_{1}, \ldots, \epsilon_{k}$ from Op such that $\left.\Sigma \models_{\mathbf{M}}\left\langle\left\langle\epsilon_{1}\right\rangle\right\rangle \ldots\left\langle\epsilon_{k}\right\rangle\right\rangle \square_{\mathfrak{m}} \alpha_{G}$

Theorem

Checking plan existence for a $\mathcal{L}_{\text {Frag }}^{+}$-planning problem is in $N P^{N P}=\Sigma_{2}^{P}$.

Example

- Agent \mathfrak{h} : human user who has to choose a sport to practice
- Agent \mathfrak{m} : artificial assistant
- Agent \mathfrak{m} 's goal: agent \mathfrak{h} forms the intention to practice a sport
- Solution plan: sequence of speech acts by \mathfrak{m}

	env	loc	soc	cost	danger	intens
sw	water	mixed	single	med	low	high
ru	land	outdoor	single	low	med	high
hr	land	outdoor	single	high	high	low
te	land	mixed	mixed	high	med	med
so	land	mixed	team	med	med	med
yo	land	mixed	single	med	low	low
di	water	mixed	single	high	high	low
sq	land	indoor	mixed	high	med	med

Table: Properties of sports

Example (cont.)

Model of the human's mind:

$$
\begin{aligned}
& \alpha_{1} \stackrel{\text { def }}{=} \bigwedge_{\substack{o \in O p t \\
x \in \operatorname{Var} \\
v, v^{\prime} \in \operatorname{Val_{x}}: v \neq v^{\prime}}}\left(\triangle_{\mathfrak{h}} \operatorname{val}(o, x \mapsto v) \rightarrow \triangle_{\mathfrak{h}} \neg \operatorname{val}\left(o, x \mapsto v^{\prime}\right)\right) \\
& \alpha_{2} \stackrel{\text { def }}{=} \bigwedge_{\Gamma \Gamma^{\prime} \in 2 \text { Des } * \cdot \Gamma \neq \Gamma^{\prime}}\left(\operatorname{des}(\mathfrak{h}, \Gamma) \rightarrow \neg \operatorname{des}\left(\mathfrak{h}, \Gamma^{\prime}\right)\right) \\
& \alpha_{3} \stackrel{\text { def }}{=} \bigvee_{\Gamma \in 2^{\text {Des* }}} \operatorname{des}(\mathfrak{h}, \Gamma), \\
& \alpha_{4} \stackrel{\text { def }}{=} \bigwedge_{o \in O p t}\left(\operatorname{ideal}(\mathfrak{h}, o) \leftrightarrow \bigvee_{\Gamma \in 2^{\text {Des* }}}\left(\operatorname{des}(\mathfrak{h}, \Gamma) \wedge \bigwedge_{\gamma \in \Gamma} f_{\text {comp }}(o, \gamma)\right)\right) \\
& \alpha_{5} \stackrel{\text { def }}{=} \bigwedge_{o \in O p t}\left(\operatorname{justif}(\mathfrak{h}, o) \leftrightarrow \bigvee_{\Gamma \in 2^{\text {Des* }}}\left(\operatorname{des}(\mathfrak{h}, \Gamma) \wedge \bigwedge_{\gamma \in \Gamma} f_{\text {comp }}^{\mathfrak{h}}(o, \gamma)\right)\right) \\
& \alpha_{6} \stackrel{\text { def }}{=} \operatorname{des}\left(\mathfrak{h}, \Gamma_{\mathfrak{h}}\right)
\end{aligned}
$$

with

$$
\begin{aligned}
\Gamma_{\mathfrak{h}}= & \{\text { env } \mapsto \text { land }, \text { intens } \mapsto \text { med }, \sim \mathbf{l o c} \mapsto \text { indoor }, \\
& {[\text { cost } \mapsto \text { high }] \rightsquigarrow \text { soc } \mapsto \text { mixed }\} }
\end{aligned}
$$

Example (cont.)

Information about properties of sports:

$$
\begin{aligned}
& \alpha_{7} \stackrel{\text { def }}{=} \bigwedge_{\substack{o \in O p t \\
x \in V a r \\
v, v^{\prime} \in V a l_{x}: v \neq v^{\prime}}}\left(\operatorname{val}(o, x \mapsto v) \rightarrow \neg \operatorname{val}\left(o, x \mapsto v^{\prime}\right)\right) \\
& \alpha_{8} \stackrel{\text { def }}{=} \bigwedge_{o \in O p t, x \in \operatorname{Var}} \operatorname{val}\left(o, x \mapsto v_{o, x}\right)
\end{aligned}
$$

Potential intention: potIntend $(\mathfrak{h}, o) \stackrel{\text { def }}{=} \triangle_{\mathfrak{h}}$ ideal $(\mathfrak{h}, o) \wedge$ justif (\mathfrak{h}, o)

Example (cont.)

Operators:

$$
\begin{aligned}
O p= & \{\operatorname{inform}(\mathfrak{m}, \mathfrak{h}, \text { val }(o, a)): o \in O p t \text { and } a \in \operatorname{Assign}\} \cup \\
& \{\text { inform }(\mathfrak{m}, \mathfrak{h}, \text { ideal }(\mathfrak{h}, o)): o \in O p t\}
\end{aligned}
$$

Executability preconditions: $\mathcal{P}(\operatorname{inform}(\mathfrak{m}, \mathfrak{h}, p))=\square_{\mathfrak{m}} p$
Planning goal: $\alpha_{G} \stackrel{\text { def }}{=} V_{o \in O p t}$ potIntend (\mathfrak{h}, o)
$\epsilon_{1}, \epsilon_{2}, \epsilon_{3}, \epsilon_{4}, \epsilon_{5}$ is a solution to the planning problem $\left\langle\Sigma, O p, \alpha_{G}\right\rangle$ with
$\Sigma=\left\{\alpha_{1}, \ldots, \alpha_{8}\right\}$ and
$\epsilon_{1} \stackrel{\text { def }}{=} \operatorname{inform}(\mathfrak{m}, \mathfrak{h}$, ideal $(\mathfrak{h}$, te $))$
$\epsilon_{3} \stackrel{\text { def }}{=} \operatorname{inform}(\mathfrak{m}, \mathfrak{h}, \operatorname{val}($ te, intens \mapsto med $))$
$\epsilon_{4} \stackrel{\text { def }}{=} \operatorname{inform}(\mathfrak{m}, \mathfrak{h}$, val $($ te, loc \mapsto mixed $))$
$\epsilon_{5} \stackrel{\text { def }}{=} \operatorname{inform}(\mathfrak{m}, \mathfrak{h}$, val $($ te, $\mathbf{s o c} \mapsto$ mixed $))$

Perspectives

- Implementation of a cognitive planning algorithm using a SAT-solver
- Extension by belief revision: feedback from human to machine

■ Extension by 'yes-no' questions: extension of language $\mathcal{L}_{\text {Frag }}^{+}$by program constructions of propositional dynamic logic (PDL)

