Issues in Real-World Matching Market Design

COST Action IC1205 Industry Day
June 2016
Elliott Peranson

President
National Matching Services Inc.
Toronto, Ontario, Canada
National Matching Services Inc.

- Dedicated to development and operation of Matching Programs in a variety of major professions

- Services: turnkey administration, software, consulting

- Established in 1985, but experience with matching pre-dates NMS
Topics To Be Covered

- A Matching Program
- Selling the concept
- Defining the rules
- Program administration
- Matching algorithm
- Complex requirements
- Legal Issues
A Matching Program

- Two-sided matching of applicants to positions
 - Each side of the market has preferences for the other side of the market
 - A participant needs to both choose and be chosen

- Each participant submits an ordered list of preferences (1st choice, 2nd choice, etc.)

- Applicants allocated to positions using a centralized matching mechanism based on the stated preferences
Examples of Current NMS Matches

- **Dental** residencies
- **Psychology** pre-doctoral internships and some post-doctoral residencies
- **Osteopathic** internships and residencies
- **Medical** residencies: NRMP CaRMS
- **Pharmacy** practice residencies
- **Optometry** residencies
- **Medical Physics** residencies
Matching Used In “Closed” Markets

- Applicant pool is clearly defined
- Recruiters are clearly defined
- Applicants start work/training at a common time
- Recruitment is very competitive
Decision Makers

- Decision to implement usually rests with the recruiters
- Requires widespread participation – “75% rule”
- Sponsoring organization
No Change Without Pain

- Recruiters need to recognize problems
 - Premature decisions on incomplete information
 - Offers moving earlier
 - Pressure tactics and unprofessional behavior

- Matching often perceived by recruiters as benefiting applicants more than recruiters

- Recruiters agree “for the benefit of the profession”
Objections (1)

- Too impersonal
- Will lose control over recruitment decisions
- Inflexible, limits freedom of choice
- Will negatively affect number or quality of applicants
Objections (2)

- Most-desirable recruiters don’t need it
- Least-desirable recruiters can’t compete
- Not everyone will play by the rules
- They are not like other professions
- Only works where too many / too few applicants
Education Program

- Many objections due to misunderstanding
- Need concerted education program
 - Initially
 - Ongoing
Defining the Rules (1)

- Schedule of dates
- Funding mechanism
- Eligibility of applicants and recruiters
 - Verification of eligibility
- Rules for non-participants
- Communication of ranking intentions
Defining the Rules (2)

- All positions in the match / no offers prior to the match
 - Exceptions?
- Match results are binding
 - Mechanism for release, enforcement
- Post-match process
- Availability of information
Program Administration

- Infrastructure
 - Staff, systems
 - Educational program
 - Year-round activities, seasonal peaks

- Tailored to the needs of each profession

- Need for accuracy, fairness
 - “Protect people from themselves”
Deferred Acceptance Algorithm (1)

- Simple procedure for clearing two-sided markets
- Recognized in 2012 Nobel prize in economics awarded to Lloyd Shapley and Alvin Roth
- Simulates what would happen if all participants act according to their stated preferences, and are not forced to make commitments before all offers are made
Deferred Acceptance Algorithm (2)

- Recruiters make offers to their most preferred applicants
- Each applicant tentatively accepts the best offer received so far, rejects all less preferred offers, and waits for a better offer
- Each recruiter that receives a rejection makes an offer to the next most preferred applicant
- Process continues until there are no more rejections or offers to be made
Important Features of Algorithm

- Produces stable result
 - No applicant/recruiter pair both prefer each other to their current match

- Strategy-proof
 - Best strategy for participants is to submit their true preferences
Algorithm Implementation

- All our matches use the same algorithm software
- Roth-Peranson algorithm
 - Based on deferred acceptance
 - Applicant-proposing
 - Incorporates match “variations”
Evolution of Algorithm

- Couples
- One applicant to multiple sequential positions
- Reversions
- Change to strictly applicant-proposing
- Limits from any one school
- Future – incorporate remuneration?
Instabilities

- Consequence of match variations
 - Preferences may not be responsive and substitutable

- Three kinds of instabilities:
 1. Intrinsic
 2. Quasi-instability
 3. Systemic
Intrinsic Instability

- No stable matching exists for the given set of preferences
- Unavoidable, “intrinsic” to the data
 - Not a function of algorithm implementation/programming
- Will cause algorithm to loop
 - Implementation must handle loops
Quasi-Instability

- Result is “stable” according to the strict definition of stability, but ….
- Match result still appears to be “wrong” to some match participants
Systemic Instability

- Stable matching exists but cannot be found
- May be caused by decisions made in implementation of algorithm
 - Sequencing
 - Attempt to avoid loops
 - Action taken when loop occurs
Practical Considerations

- It may be easier to identify and correct systemic instabilities than to design and implement the programming to avoid the instability in the first place
 - Complexity of programming
 - Relative infrequency of instability
 - Availability of mechanisms to identify and correct instabilities
Identifying Instabilities

- Instabilities are infrequent but inevitable
- Our system checks every match of every participant to identify instabilities (and errors)
- Need to be analyzed and addressed
 - Intrinsic instabilities may require selecting the “least offensive” result
Correcting Instabilities

- Our system offers several approaches
 - Change input data
 - Modify results directly
 - Run algorithm in re-entrant mode
 - Automatically fixes some problems
 - Combination of techniques
Complex Requirements

- Control mix of applicants with different characteristics
- Simple list of responsive rankings is inadequate
 - Non-substitutability of applicants
- Requirements differ among recruiters
- Applicants are indifferent to requirements
Resolution

- Restate requirements as responsive lists that do not jeopardize stability

- Mechanisms / tools:
 - Submit multiple lists for one program
 - Assign priorities to lists
 - Revert positions between lists

- Addresses many (not all) requirements
Example 1: A Specific Qualification

<table>
<thead>
<tr>
<th>Preferences</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bilingual</td>
<td>- 3 positions</td>
</tr>
<tr>
<td></td>
<td>- At least 1 bilingual</td>
</tr>
<tr>
<td></td>
<td>- More is acceptable</td>
</tr>
<tr>
<td></td>
<td>- Want Bob only if necessary as bilingual</td>
</tr>
<tr>
<td></td>
<td>- Prefer to have unfilled position if no bilingual match</td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>George</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>Mary</td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>Greg</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>Sally</td>
<td>Yes</td>
</tr>
<tr>
<td>5</td>
<td>Ruth</td>
<td>No</td>
</tr>
<tr>
<td>6</td>
<td>Frank</td>
<td>No</td>
</tr>
<tr>
<td>7</td>
<td>Jane</td>
<td>No</td>
</tr>
<tr>
<td>8</td>
<td>Bob</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Example 1: A Specific Qualification

List A (Bilingual)
1 position
1 – Mary
2 – Sally
3 – Bob

List B
2 positions
1 – George
2 – Greg
3 – Sally
4 – Ruth
5 – Frank
6 – Jane
Example 2: Variable Number of Positions

- Recruiter has 15 acceptable applicants
- Wants to match with 3 applicants
- Will take as many of the top 5 applicants as it can get
Example 2: Variable Positions (cont.)

- First 2 unfilled from A revert to C
- Remainder of unfilled from A revert to B
Example 3: Mix of Capabilities

- Prefer 1 applicant best suited for each age group of clients
 - Submit separate list for each age group
 - Create another “alternate” list that starts with 0 positions

- If one or more positions from separate lists do not fill, revert unfilled positions to the list of alternates
Example 4: Reversion Pool

- Some low demand programs that may not fill and some high demand programs that could take more
 - Want to distribute unfilled positions from low demand to high demand programs with a specific priority, regardless of which positions don’t fill

- Create a “reversion pool” to receive unfilled positions, and then redistribute them in appropriate manner
Application of Techniques

- Accommodates most requirements
- Does have limitations
- Complex, difficult for users to understand
- Requires significant effort to make sure it is right
- Has been very successful
Legal Issues

- Is a Matching Program legal?
 - Anti-trust law suit in U.S.

- Can participation be made mandatory?

- Is the use of multiple lists to achieve diversity legal?

- Can rules be enforced?
Questions?