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1 Introduction

This paper is inspired by [Lod08]. In this book, Loday uses a diagramatic repre-
sentation of operations and co-operations in bialgebras. We use this diagramatic
syntax and rewriting techniques, especially confluence, toprove identities in alge-
bras generated by a free semi-group or a free monoid.

2 Deconcatenation

Let A be an alphabet. The elements ofA are calledletters.

Definition 1 : A+ is thefree semi-group generated byA. Its elements are nonempty
lists of letters. They are called (nonempty)words.

For instance, if our alphabet isA = {a,b}, thenaabbais a nonempty word inA+.

Definition 2 Concatenation· is the operation which, to each pair(u,v) ∈ (A+)2,
associates the word formed by the letters of u followed by theletters of v.

For instance,abba·bba= abbabba.

Remark 1 Concatenation is associative.

For instance,(ab·b) ·a = abb·a = abba= ab·ba= ab· (b·a).

A �-moduleis an (additive) Abelian group.

Definition 3 The free�-module generated by a set X is the set�X whose elements
are formal sums of elements of X with coefficients in�.

For instance, ifX = {x,y}, we havex+y−x+y+y= y+y+y= 3y in �X.
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Remark 2 : If X is a finite set,�X is isomorphic to�|X|.

For instance,�X is isomorphic to�2 in the above example.

Definition 4 The nonunital algebra�S generated by a semi-group S is the free
�-module generated by S equipped with a multiplication· extending the multipli-
cation of S and distributive over the sum.

For instance, ifS= A+ with A = {a,b}, we have(2abb− 3ba) ·aa = 2abbaa−
3baaain �S.

Definition 5 If P and Q are�-modules, thetensor productP⊗Q is the free�-
module generated by elements of the form p⊗q with p∈ P and q∈ Q, quotiented
by the following equalities:

• (p+ p′)⊗q = (p⊗q)+ (p′⊗q);

• p⊗ (q+q′) = (p⊗q)+ (p⊗q′);

• 0⊗q = 0 = p⊗0.

We writeP⊗n for the�-moduleP⊗·· ·⊗P (n times).

Remark 3 (�X)⊗n = �Xn.

Hence, we getp1⊗·· ·⊗ pn ∈ �Xn for any p1, · · · , pn ∈ �X

We extend the multiplication of�S to�S2 as follows:

(u⊗v) ·w = u⊗ (v·w), u· (v⊗w) = (u·v)⊗w.

Definition 6 Let A be an alphabet and let S= A+. Deconcatenation is the co-
operationδ : �S→ �S2 defined as follows:

δ(w) = ∑
w=u·v

u⊗v for any w∈ S.

For instance,δ(abaa) = a⊗baa+ab⊗aa+aba⊗a.

Alternatively,δ is recursively defined as follows:

• δ(a) = 0 for anya∈ A;

• δ(u·v) = u·δ(v)+ δ(u) ·v+u⊗v for anyu,v∈ S.

Remark 4 δ(u) ·v consists of all terms ofδ(u·v) whose first component is a prefix
of u and similarly, u·δ(v) consists of all terms ofδ(u·v) whose second component
is a postfix of v.
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Theorem 1 Deconcatenation iscoassociative:

If δ(w) = ∑
w=ui ·vi

ui ⊗vi, then

∑
w=ui ·vi

δ(ui)⊗vi = ∑
w=ui ·vi

ui ⊗δ(vi).

3 Σ-diagrams

For anym,n∈�, a diagramφ : m→ n is pictured as follows:

· · ·m· · ·

· · ·n· · ·

φ

It is interpreted as a mapf : Xm → X n whereX is some fixed set.

There are two operations on diagrams:

parallel composition sequential composition

· · ·m· · · · · ·m′ · · ·

· · ·n· · · · · ·n′ · · ·

φ φ′

φ

ψ

· · · l · · ·

· · ·m· · ·

· · ·n· · ·

They are interpretated as follows:

• if f : Xm → X n is the interpretation ofφ : m→ n and if f ′ : Xm′
→ X n′ is the

interpretation ofφ′ : m′ → n′, then f × f ′ : Xm+m′
→ X n+n′ is the interpreta-

tion of the parallel composition ofφ with φ′;

• if f : X l → Xm is the interpretation ofφ : l → m and if g : Xm → X n is the
interpretation ofψ : m→ n, theng◦ f : X l → X n is the interpretation of
sequential composition ofφ with ψ.

For more details on diagrams, see [Laf03].

Definition 7 A Σ-diagramΦ : m→ n is a (finite) formal sumΣkiφi where the Ki ∈�
and theφi : m→ n are diagrams with the same number of inputs and the same
number of outputs.
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On Σ-diagrams, there is also a sum, which is pictured as follows:

+

· · ·m· · · · · ·m· · ·

· · ·n· · · · · ·n· · ·

Φ Ψ

Note that theΣ-diagramsΦ, Ψ have the same number of inputs and the same
number of outputs. Similarly, we define the opposite−Φ : m→ n and thenull
Σ-diagram 0 :m→ n.

A Σ-diagramΦ : m→ n is interpreted as a�-linear mapf : (�X )⊗m → (�X )⊗n.
The interpretation of the operations is similar to the case of diagrams, except for
parallel composition, which is interpreted by⊗ instead of×. The intrepretation of
+ is straightforward.

Diagrams are built from atomic ones, calledgates, using parallel and sequential
composition. In particular, the identity diagram is picture as parallel wires.Σ-
diagrams are built in the same way except that there are sums with coefficients.

Definition 8 A rewrite ruleis of the formφ → Ψ whereφ : m→ n is a diagram and
Ψ : m→ n is aΣ-diagram.

Now we asssume thatX is the semi-groupA+ whereA is an alphabet. The gates
are:

concatenation· deconcatenationδ

From the recursive definition of deconcatenation, we deducethe following inter-
action rule:

δ(u·v) = u·δ(v)+ δ(u) ·v+u⊗v

Similar kinds of rules are introduced in [Laf97] (interactions for diagrams) and [ER06]
(interactions forΣ-diagrams).
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4 Diagramatic proof of the theorem

We introduce thecoassociativityrule:

The theorem is proved by induction on length of words. The structure of the proof
is described by a confluence diagram:

Φ ψ

Ψ

φ
? whereφ

andψ

There are two kinds of arrow:

• broken arrow for coassociativity;

• solid arrow for interaction.

We want to prove that coassociativity holds for composed words. This means that
the ruleφ → ψ holds. First, we apply interaction toφ to move deconcatenation
gates above, and we get aΣ-diagramΦ. Then, by induction hypothesis, we apply
coassociativity toΦ to get anotherΣ-diagramΨ. Finally, we check thatψ reduces
to Ψ by interaction. Consequently the fourΣ-diagramsφ, Φ, Ψ, andψ have the
same interpretation and the ruleφ → ψ holds.

Coassociativity holds obviously for letters, sinceδ(a) = 0 for anya∈ A. Now, let
u andv be two words inA+ for which deconcatenation is coassociative. We want
to prove that deconcatenation is coassociative forw = u · v. In other words, the
following reduction holds:
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u v u v

We apply interaction to the left and right members:

The two results differ only on two terms:

u v u v u v u v

By induction hypothesis, we can apply coassociativity to the left Σ-diagram, and
we get the right one.
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5 Deconcatenation for monoids

Let A be an alphabet

Definition 9 A∗ is the free monoid generatedby A. Its elements are those of A+

and theempty wordε.

Remark 5 ε is the unit for concatenation.

Definition 10 The unital Z-algebra (or ring)�M, is the free�-module generated
by the module M equipped with a multiplication· extending the multiplication of
M and distributive over the sum.

We writeM = A∗, andS= A+.

Definition 11 Full deconcatenation∆ :�M → �M2, is defined as follows:

∆(w) = ∑
w=u·v

u⊗v

Definition 12 Primitive deconcatenationδ :�M →�M2 extandingδ :�S→�S2,
is defined as follows:

• δ(w) = ∑
w=u·v
u,v,ε

u⊗w

• δ(ε) = −ε⊗ ε

Remark 6 The relation between the two deconcatenations is

Delta(u) = δ(u)+u⊗ ε+ ε⊗u.

This remark explains whyδ(ε) = −(ε⊗ ε):

∆(ε) = δ(ε)+ ε⊗ ε+ ε⊗ ε = −ε⊗ ε+2ε⊗ ε = ε⊗ ε

Theorem 2 Full deconcatenation is coassociative.

We have two new gates, one for full deconcatenation, and one for constantε:

full deconcatenation∆ constantε
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We have two new rules:

∆(u) = δ(u)+u⊗ ε+ ε⊗u δ(ε) = −ε⊗ ε

Coassociativity of full deconcatenation is pictured as follows:

Reducing those diagrams by the new rules gives:

Hence, it remains to show the following equality foru∈ A∗:
uu

We have two cases:

• if u = ε, we getε⊗ ε⊗ ε in both cases;

• if u∈ A+, we apply theorem 1.
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