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Abstract

Algebraic structures sometimes need to be typed. For example,
matrices over a ring form a ring, but the product is a only a partial
operation: dimensions have to agree. Therefore, an easy way to look
at matrices algebraically is to consider “typed rings”.

We prove some “untyping” theorems: in some algebras (semirings,
Kleene algebras, residuated monoids), types can be reconstructed from
valid untyped equalities. As a consequence, the corresponding untyped
decision procedures can be extended to the typed setting.

Introduction

For any natural number n, n× n-matrices over a semiring form a semiring.
As a consequence, any theorem of semirings is true for square matrices. In
this paper, we study the problem of generalising this strategy to rectangular
matrices: from a valid semiring equality, like x∗(y+y′)∗z = x∗y∗z+x∗y′∗z,
we want to be able to deduce that M ∗ (N + N ′) ∗ P = M ∗ N ∗ P + M ∗
N ′ ∗P holds whenever M is a n×m-matrix, N and N ′ are m× p-matrices,
and P is a p × n′-matrix. Similarly, we want to deduce from the former
equality that R(S ∪ S′)T = RST ∪ RS′T holds whenever R,S, S′, T are
heterogeneous binary relations whose domains and co-domains make the
equation meaningful. More generally, we want to reduce the problem of
proving equalities in heterogeneous (typed) structures to that of proving
equalities in the underlying homogeneous (standard) structures.

A motivation for this work comes from our Coq library ATBR [1], whose
aim is to provide algebraic tools for working with binary relations in the
Coq proof assistant [3]. Indeed, moving to an algebraic setting eases the
formalisation of some diagrammatic proofs (Newman’s lemma, abstract ter-
mination lemmas, up-to techniques for bisimulation), and it makes it pos-
sible to develop powerful tactics for automatically solving certain classes of
goals (among which, theorems of decidable equational theories – semirings,
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residuated lattices, Kleene algebras, . . . ). The results presented in this pa-
per were actually implemented in this library, so as to extend our decision
procedures to heterogeneous structures, for free.

Outline. We introduce our setting and make our notion of typed structure
precise in Section 1. We study several algebraic structures in Section 2, and
prove an “untyping” theorem for each of these. Section 3 is devoted to
applications and future work; in particular, we explain how these theorems
were used to extend decision procedures, and how the last one could be used
to improve proof search in residuated lattices.

1 Typed Structures

All of our arguments being proof-theoretic, we shall work with syntactic
models, by implicitly relying on initiality arguments to reach other models.

Let X be an arbitrary set of variables, ranged over using letters x, y.
Given a signature Σ, we let u, v, w range over the set T (Σ + X ) of terms
with variables. Given a set T of types, ranged over using letters n,m, p,
and a type environment Γ : X → T 2, we will define typed terms using type
judgements of the form Γ ` u : n→ m: “in environment Γ, term u has type
n→ m”. Type judgements will always include the following rule:

Γ(x) = (n,m)
Γ ` x : n→ m

Tv

Similarly, we will define typed equalities using judgements of the form Γ `
u = v : n→ m: “in environment Γ, terms u and v are equal at type n→ m”.
Equality judgements will always include the following rules, so as to obtain
equivalence relations:

Γ(x) = (n,m)
Γ ` x = x : n→ m

v

Γ ` u = v : n→ m
Γ ` v = w : n→ m

Γ ` u = w : n→ m
t

Γ ` u = v : n→ m

Γ ` v = u : n→ m
s

By taking the singleton set {∅} for T , we recover standard, untyped struc-
tures: types become uninformative, and we let ` u = v denote the corre-
sponding equality judgements, i.e., ∅̂ ` u = v : ∅ → ∅, where ∅̂ : x 7→ (∅, ∅).

The question we study in this paper is the following: given a signature, a
type judgement, and an equality judgement, does the following implication
hold?

“For all u, v, n,m such that ` u = v and Γ ` u, v : n→ m,
we have Γ ` u = v : n→ m”.

In other words, in order to prove a typed equality, is it safe to remove all type
annotations, so as to work in the untyped underlying algebraic structure?
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2 Untyping Theorems

In this section, we study the previous question for four structures: monoids,
semirings, Kleene algebras, and residuated monoids.

2.1 Monoids

Definition 1 (Typed monoid). Typed monoids are defined by the signa-
ture {∗2, 10}, together with the following type and equality judgements (in
addition to the rules from Section 1).

Γ ` 1 : n→ n
To

Γ ` u : n→ m Γ ` v : m→ p

Γ ` u ∗ v : n→ p
Td

Γ ` 1 = 1 : n→ n
o

Γ ` u = u′ : n→ m Γ ` v = v′ : m→ p

Γ ` u ∗ v = u′ ∗ v′ : n→ p
d

Γ ` u : n→ m

Γ ` u ∗ 1 = u : n→ m
do

Γ ` u : n→ m

Γ ` 1 ∗ u = u : n→ m
od

Γ ` u : n→ m Γ ` v : m→ p Γ ` w : p→ q

Γ ` (u ∗ v) ∗ w = u ∗ (v ∗ w) : n→ q
da

(In other words, typed monoids are just categories.) The following intuitive
properties are satisfied: equality is reflexive at each type and relates only
correctly typed terms.

Lemma 2.

(i) For all u, n,m such that Γ ` u : n→ m, we have Γ ` u = u : n→ m.

(ii) For all u, v, n,m such that Γ ` u = v : n→ m, we have Γ ` u : n→ m
and Γ ` v : n→ m.

Moreover, in this setting, typability enjoys some form of injectivity (types
are not uniquely determined due to the unit elements, which admit several
types).

Lemma 3. Let u, n,m, n′,m′ such that Γ ` u : n→ m and Γ ` u : n′ → m′;
we have n = n′ iff m = m′.

We need another lemma to obtain the untyping theorem: all terms related
by the untyped equality admit the same types.

Lemma 4. Let u, v such that ` u = v; for all n,m, we have Γ ` u : n→ m
iff Γ ` v : n→ m.
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Proof. By induction on the derivation ` u = v, the interesting case is when
the rule for the compatibility of ∗ (d) is used last: if Γ ` u ∗ v : n → m,
then there must be some p such that Γ ` u : n→ p and Γ ` v : p→ m. By
induction hypothesis, we deduce Γ ` u′ : n→ p and Γ ` v′ : p→ m, so that
we can conclude with rule (Td). �

Theorem 5. Let u, v such that ` u = v; for all n,m such that Γ ` u, v :
n→ m, we have Γ ` u = v : n→ m.

Proof. We reason by induction over the derivation ` u = v; the interesting
cases are the following ones:

• the last rule used is the transitivity rule (t): we have ` u = v, ` v = w,
Γ ` u : n → m, and Γ ` w : n → m, and we need to show that
Γ ` u = w : n → m. By Lemma 4, we have Γ ` v : n → m, so
that, by the induction hypotheses, we get Γ ` u = v : n → m and
Γ ` v = w : n → m, which allow us to apply rule (t) in the typed
setting.

• the last rule used is the compatibility of ∗ (d): we have ` u = u′,
` v = v′, Γ ` u ∗ v : n → m, and Γ ` u′ ∗ v′ : n → m, and we need
to show that Γ ` u ∗ v = u′ ∗ v′ : n → m. By case analysis on the
typing judgements, we deduce that Γ ` u : n → p, Γ ` v : p → m,
Γ ` u′ : n→ q, Γ ` v′ : q → m, for some p, q. Thanks to Lemma 3, we
have p = q, so that we can conclude using the induction hypotheses
(Γ ` u = u′ : n→ p and Γ ` v = v′ : p→ m), and rule (d). �

Note that the converse of Theorem 5 (Γ ` u = v : n → m entails ` u = v)
is straightforward, so that we actually have an equivalence.

2.2 Non commutative semirings

Definition 6 (Typed semirings). (Non commutative) typed semirings are
defined by the signature {∗2,+2, 10, 00}, together with the following type
and equality judgements (in addition to the rules from Definition 1 and
Section 1).

Γ ` 0 : n→ m
Tz

Γ ` u : n→ m Γ ` v : n→ m

Γ ` u+ v : n→ m
Tp
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Γ ` 0 = 0 : n→ m
z

Γ ` u = u′ : n→ m Γ ` v = v′ : n→ m

Γ ` u+ v = u′ + v′ : n→ m
p

Γ ` u : n→ m

Γ ` u+ 0 = u : n→ m
pz

Γ ` u, v : n→ m

Γ ` u+ v = v + u : n→ m
pc

Γ ` u, v, w : n→ m

Γ ` (u+ v) + w = u+ (v + w) : n→ m
pa

Γ ` u : n→ m Γ ` v, w : m→ p

Γ ` u ∗ (v + w) = u ∗ v + u ∗ w : n→ p
dp

Γ ` u : n→ m

Γ ` u ∗ 0 = 0 : n→ p
dz

Γ ` u : n→ m Γ ` v, w : p→ n

Γ ` (v + w) ∗ u = v ∗ u+ w ∗ u : p→ m
pd

Γ ` u : n→ m

Γ ` 0 ∗ u = 0 : p→ m
zd

(In other words, typed semiring are categories whose homsets are equipped
with a commutative monoid structure, and where composition distributes
over these monoid structures.)

Lemma 2 is also valid in this setting; however, due to the presence of an
annihilator element (0), Lemmas 3 and 4 no longer hold: we have Γ ` 0 :
2→ 3 and Γ ` 0 : 2→ 4, while 3 6= 4, and we have ` x ∗ 0 ∗ x = 0, where 0
can have any type while x ∗ 0 ∗ x only admits Γ(x) as a valid type.

We therefore have to adopt another strategy: we reduce the problem
to the annihilator-free structure, by showing that equality proofs can be
factorised to use rules (pz), (dz), and (zd) as oriented rewriting rules.

Definition 7. Let u be a term; we denote by u+ the normal form of u,
obtained with the following convergent rewriting system:

u+ 0→ u 0 + u→ u 0 ∗ u→ 0 u ∗ 0→ 0

We say that u is strict if u+ 6= 0. We let `+ = : → denote the strict
equality judgement obtained by removing rules (dz) and (zd), and replacing
rules (dp) and (pd) with the following variants, where the factor has to be
strict.

Γ ` u : n→ m u+ 6= 0 Γ ` v, w : m→ p

Γ `+ u ∗ (v + w) = u ∗ v + u ∗ w : n→ p
dp+

Γ ` u : n→ m u+ 6= 0 Γ ` v, w : p→ n

Γ `+ (v + w) ∗ u = v ∗ u+ w ∗ u : p→ m
pd+

Type derivations about strict terms enjoy the kind of injectivity we had for
monoids:
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Lemma 8. For all strict u such that Γ ` u : n → m and Γ ` u : n′ → m′,
we have n = n′ iff m = m′.

Then, using the same methodology as previously, one easily obtain the un-
typing theorem for our modified equality judgement:

Proposition 9. Let u, v such that `+ u = v; for all n,m such that Γ `
u, v : n→ m, we have Γ `+ u = v : n→ m.

Note that the patched rules for distributivity, (dp+) and (pd+) are required
in order to obtain the counterpart of Lemma 4: if u was not required to be
strict, then we would have `+ 0 ∗ (x+ y) = 0 ∗ x+ 0 ∗ y, and the right-hand
side can be typed in environment Γ = {x 7→ (3, 2), y 7→ (4, 2)} while the
left-hand side cannot.

We now have to show that than any equality proof can be normalised,
so as to obtain a strict equality proof relating the normal forms:

Proposition 10. For all u, v such that ` u = v, we have `+ u+ = v+.

Proof. We first show by induction that whenever ` u = v, u is strict iff v
is strict (†). Then we proceed by induction on the derivation ` u = v, we
detail only some cases:

(d) we have `+ u+ = u′+ and `+ v+ = v′+ by induction; we need to
show that `+ (u ∗ v)+ = (u′ ∗ v′)+. If one of u, u′, v, v′ is not strict,
then (u ∗ v)+ = (u′ ∗ v′)+ = 0, thanks to (†), so that we are done;
otherwise, (u ∗ v)+ = u+ ∗ v+, and (u′ ∗ v′)+ = u′+ ∗ v′+, so that we
can apply rule (d).

(dz) trivial, since (u ∗ 0)+ = 0.

(dp) we need to show `+ (u ∗ (v + w))+ = (u ∗ v + u ∗ w)+; if one of u, v, w
is not strict, both sides reduce to the same term, so that we can
apply Lemma 2(i) (which holds in this setting); otherwise we have
(u ∗ (v + w))+ = u+ ∗ (v+ +w+) and (u ∗ v + u ∗ w)+ = u+ ∗v+ +u+ ∗
w+, so that we can apply rule (dp+) (u+ is obviously strict). �

Since the normalisation procedure preserves types and equalities, we finally
obtain the desired untyping theorem.

Lemma 11. For all u, n,m such that Γ ` u : n → m, we have Γ ` u+ :
n→ m and Γ ` u = u+ : n→ m.

Theorem 12. Let u, v such that ` u = v; for all n,m such that Γ ` u, v :
n→ m, we have Γ ` u = v : n→ m.

Proof. By Lemma 11, using the transitivity and symmetry rules, it suffices
to show Γ ` u+ = v+ : n→ m. This is clearly the case whenever Γ `+ u+ =
v+ : n→ m, which follows from Props. 10 and 9. �

6



2.3 Kleene Algebras

Kleene algebras are idempotent semirings equipped with a Kleene star op-
eration [6]; they admit several important models, among which regular lan-
guages which is initial, and binary relations. Like previously, this structure
can be typed in a rather natural way:

Definition 13 (Typed Kleene algebras). Typed Kleene algebras are defined
by the signature {∗2,+2, ?1, 10, 00}, together with the following type and
equality judgements (in addition to the rules from Definitions 1 and 6, and
Section 1), where Γ ` u ≤ v : n→ m is an abbreviation for Γ ` u+ v = v :
n→ m.

Γ ` u : n→ n

Γ ` u? : n→ n
Ts

Γ ` u = v : n→ n

Γ ` u? = v? : n→ n
s

Γ ` u : n→ m

Γ ` u+ u = u : n→ m
pi

Γ ` u : n→ n

Γ ` 1 + u ∗ u? = u? : n→ n
sp

Γ ` u ∗ v ≤ v : n→ m

Γ ` u? ∗ v ≤ v : n→ m
sl

Γ ` v ∗ u ≤ v : n→ m

Γ ` v ∗ u? ≤ v : n→ m
sr

Lemma 14. The following rules is admissible.

Γ ` 0? = 1 : n→ n
sz

One can extend the proofs from the previous section, by adding the rule
0? → 1 to the rewriting system used for normalising terms, and by requiring
v to be strict in the strict versions of rules (sl) and (sr). We do not detail
the proofs here: they are available as Coq proof scripts [10].

2.4 Residuated Monoids

A residuated monoid is a tuple (X,≤, ∗, 1, /, \), such that (X,≤) is a partial
order, (X, ∗, 1) is a monoid whose product is monotonic (u ≤ u′ and v ≤ v′

entail u ∗ v ≤ u′ ∗ v′), and /, \ are two binary operations, respectively called
right and left division, characterised by the following equivalences:

u ∗ w ≤ v ⇔ w ≤ u\v
w ∗ u ≤ v ⇔ w ≤ v/u

Such a structure can be typed in a natural way, by using the following rules:

Γ ` u : n→ m Γ ` v : n→ p

Γ ` v\u : p→ m
Tl

Γ ` u : n→ m Γ ` v : p→ m

Γ ` u/v : n→ p
Tr
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x ` x
v

ε ` 1
Io

l, l′ ` u
l, 1, l′ ` u

Eo
l ` u l′ ` u′

l, l′ ` u ∗ u′
Id

l, v, w, l′ ` u
l, v ∗ w, l′ ` u

Ed

l, v ` u
l ` u/v

Ir
k ` v l, w, l′ ` u
l, w/v, k, l′ ` u

Er
v, l ` u
l ` v\u

Il
k ` v l, w, l′ ` u
l, k, v\w, l′ ` u

El

Figure 1: Gentzen Proof System for Residuated Monoids.

Although we can easily define inference rules to capture provability in typed
residuated monoids – as we did in the previous sections, we need to resort to
a characterisation due to Ono and Komori [9] to obtain the corresponding
untyping theorem. Let letters l, k range over lists of terms, let l, k denote
the concatenation of lists l and k, and let ε be the empty list; we will use the
Gentzen proof system presented on Fig. 1, relating lists of terms to terms.
Its presentation is quite standard: there is an axiom rule (v), and, for each
operator, and introduction and an elimination rule. The system is cut-free,
it admits cut-elimination, and it is correct and complete:

Proposition 15.

(i) For all u, we have u ` u.

(ii) For all l, l′, l′′, u, v such that l ` u and l′, u, l′′ ` v, we have l′, l, l′′ ` v.

(iii) For all u, v, we have u ` v iff u ≤ v holds in all residuated monoids.

Proof. The first point is easy; see [9] for cut admissibility and completeness.
�

Notably, since the proof system has the sub-formula property, this leads to
decidability of the equational theory of residuated monoids.

We extend this Gentzen system to the typed setting in Fig. 2, where the
typing judgement has been extended to lists of terms using the following
rules:

Γ ` ε : n→ n
Te

Γ ` u : n→ m Γ ` l : m→ p

Γ ` u, l : n→ p
Tc

Like previously, the untyped proof system can be recovered by considering
trivial types and environments. Note that there are several ways to add
type decorations to the proof system; we chose to add a minimal set of
decorations, in such a way that the following sanity requirement is satisfied:

Lemma 16. For all l, u, n,m, if Γ; l ` u : n → m holds, then we have
Γ ` l : n→ m and Γ ` u : n→ m.
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Γ(x) = (n,m)
Γ;x ` x : n→ m

v
Γ; ε ` 1 : n→ n

Io
Γ; l, l′ ` u : n→ m

Γ; l, 1, l′ ` u : n→ m
Eo

Γ; l ` u : n→ m Γ; l′ ` u′ : m→ p

Γ; l, l′ ` u ∗ u′ : n→ p
Id

Γ; l, v, w, l′ ` u : n→ m

Γ; l, v ∗ w, l′ ` u : n→ m
Ed

Γ ` v : m→ p Γ; l, v ` u : n→ p

Γ; l ` u/v : n→ m
Ir

Γ ` l′ : m→ q Γ; k ` v : n→ m Γ; l, w, l′ ` u : p→ q

Γ; l, w/v, k, l′ ` u : p→ q
Er

Γ ` v : p→ m Γ; v, l ` u : p→ n

Γ; l ` v\u : m→ n
Il

Γ ` l : p→ m Γ; k ` v : m→ n Γ; l, w, l′ ` u : p→ q

Γ; l, k, v\w, l′ ` u : p→ q
El

Figure 2: Typed Gentzen Proof System for Residuated Monoids.

Proof. We first prove that typing judgements enjoy the previous injectivity
property: (†) If Γ ` u : n→ m and Γ ` u : n′ → m′, then n = n′ iff m = m′.
We then proceed by induction on the derivation of Γ; l ` u : n → m. The
interesting cases are the following ones:

(Ir) we assume by induction that Γ ` l, v : n → p and Γ ` u : n → p;
we have to show Γ ` l : n → m and Γ ` u/v : n → m. Necessarily,
Γ ` l : n → q and Γ ` v : q → p for some q. Thanks to (†) and the
first premise of rule (Ir) (Γ ` v : m→ p), we have m = q; we conclude
with the typing rule (Tr).

(Er) we assume by induction that Γ ` k : n → m, Γ ` v : n → m,
Γ ` l, w, l′ : p→ q and Γ ` u : p→ q; we have to prove Γ ` l, w/v, k, l′ :
p → q and Γ ` u : p → q. The latter derivation comes straight
from the induction hypotheses, for the former, we necessarily have
Γ ` l : p → n′, Γ ` w : n′ → m′, and Γ ` l′ : m′ → q for some n′,m′.
Thanks to (†) and the first premise of rule (Er) (Γ ` l′ : m → q), we
have m = m′. We deduce Γ ` w/v : n′ → n by rule (Tr), so that we
can conclude. �

As we shall explain below, we did not manage to obtain the untyping theo-
rem in all of its generality: we do not know how to handle the unit element.
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Therefore, in the sequel, we focus on the unit-free structures, obtained by
forgetting rules (To), (Io), and (Eo). Moreover, since left and right divi-
sion play a symmetrical role with respect to the product operation, we shall
also remove the rules about left division, to focus on right division – our
results easily extend to the case where both divisions are assumed, see the
Coq proof scripts for complete proofs [10].

We now embark in the proof of the untyping theorem. First of all, since
we removed unit elements, typing derivations are uniquely determined:

Lemma 17. For all u, n,m, n′,m′, if Γ ` u : n → m and Γ ` u : n′ → m′,
then n = n′ and m = m′.

Then, the key lemma is the following one:

Lemma 18. For all l, u, n,m such that l ` u and Γ ` u : n → m, if all
elements of l can be assigned a type, then Γ; l ` u : n→ m.

Proof. By induction on the derivation l ` u, and case analysis on the last
used rule:

(v) this case is immediate.

(Id) if Γ ` u ∗ u′ : n → p then we have some m such that Γ ` u : n → m
and Γ ` u′ : m → p. The elements of l, l′ being typable, so are those
of l and l′, so that we deduce by induction that Γ; l ` u : n → m and
Γ; l′ ` u′ : m→ p, which allow us to conclude.

(Ed) if the elements of l, v ∗ w, l′ are typable, so are v ∗ w, and then, v and
w. This allows one to conclude by using the induction hypothesis and
the typed version of rule (Ed).

(Ir) if Γ ` u/v : n → m then Γ ` u : n → p and Γ ` v : m → p for some
p. By induction hypothesis, Γ; l, v ` u : n→ p, from which we deduce
Γ; l ` u/v : n→ p by the typed version of rule (Ir).

(Er) (interesting case) assume Γ ` u : p → q; the elements of l, w/v, k, l′

being typable, we have Γ ` w/v : m′ → n for some m′, n, whence
Γ ` w : m′ → m and Γ ` v : n→ m for some m. Then, by induction,
we have Γ; k ` v : n → m and Γ; l, w, l′ ` u : p → q. Finally, in order
to obtain Γ; l, w/v, k, l′ ` u : p→ q by the typed version of rule (Er),
we need to check that Γ ` l′ : m → q. This comes from Lemmas 16
and 17: since Γ; l, w, l′ ` u : p → q, we obtain Γ ` l, w, l′ : p → q, and
since Γ ` w : m′ → m, we necessarily have Γ ` l′ : m → p. (This
step is not valid with units: if w = 1, then Γ ` l, 1, l′ : p → q could
be obtained from Γ ` l′ : m′′ → q, with m′′ possibly different from
m.) �
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Theorem 19. For all l, u such that l ` u, for all n,m such that Γ ` l : n→
m and Γ ` u : n→ m, we have Γ; l ` u : n→ m.

Proof. Immediate consequence of Lemma 18: all elements of l are typable,
since we assumed Γ ` l : n→ m. �

Note that Lemma 18 does not hold in presence of units: the untyped deriva-
tion below is valid, however, in environment Γ , {x 7→ (2, 2); y 7→ (3, 3)},
we have Γ ` y ∗ y : 3→ 3 and all elements of the list y, 1/x, x, y are typable,
but the list cannot be typed as a whole, so that Γ; y, 1/x, x, y ` y ∗ y : 3→ 3
cannot hold, by Lemma 16.

x ` x
v

y ` y
v

y ` y
v

y, y ` y ∗ y
Id

y, 1, y ` y ∗ y
Eo

y, 1/x, x, y ` y ∗ y
Er

We do not know whether this counter-example can be further extended to
refute Theorem 19 when units are allowed.

3 Conclusions and Future Work

We defined various typed structures, corresponding to standard, untyped
structures, and we proved several theorems, allowing to recover a typed
equality from an untyped one. All proofs have been formalised in the Coq
proof assistant [10]. We conclude by discussing applications and directions
for future work.

3.1 Applications

Decision of typed Kleene algebras in Coq. The fact that the untyping
theorem holds for typed Kleene algebras is quite important in our ATBR Coq
library [2]: it allows us to extend a decision procedure for (untyped) Kleene
algebras to the typed setting. The decision procedure being quite involved
– it goes through finite automata constructions, we can hardly imagine to
prove its soundness in the typed setting; even writing a type-preserving
version of the algorithm seems challenging.

At another level, we used the untyping theorem for semirings in order to
formalise Kozen’s completeness proof [6] for Kleene algebras (the fact that
regular languages are the initial model of Kleene algebras, which we had
to formalise in order our tactic to work in any model). Indeed, this proof
heavily relies on matrix constructions, so that having adequate lemmas and
tactics for working with possibly rectangular matrices was a big plus: this
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allowed us to avoid the ad-hoc constructions Kozen used to inject rectangular
matrices into square ones.

Kozen also studied the idea of typed Kleene algebras, in order to avoid
these constructions [7]. He provided a different answer, however: using
model-theoretic arguments, he proved an untyping theorem for the Horn
theory of “1-free Kleene algebras” – Kleene algebras without neutral ele-
ments. The restriction to 1-free expressions is required, as shown by the
following counter-example: ` 0 = 1 ⇒ u = v is a theorem of Kleene alge-
bras (actually, of semirings), although there are non trivial typed semirings,
e.g., matrices, where 0 = 1 holds for empty matrices, while u = v is not
universally true at other types.

Improving proof search for residuated monoids. The Gentzen proof
system for residuated monoids has the sub-formula property, so that it can
be used to decide the equational theory of residuated monoids, using a simple
proof search algorithm [8, 4]. Our untyping theorem could be used to cut
off useless branches during this search. Indeed, recall the typed rules (Id)
and (Er):

Γ; l ` u : n→ m Γ; l′ ` u′ : m→ p

Γ; l, l′ ` u ∗ u′ : n→ p
Id

Γ ` l′ : m→ q Γ; k ` v : n→ m Γ; l, w, l′ ` u : p→ q

Γ; l, w/v, k, l′ ` u : p→ q
Er

When using these rules during proof search, one has to choose where to split
the left-hand side of the sequent (where to put the coma between l, l′ and
k, l′, respectively). While all possibilities have to be tried in the untyped
setting, this is not the case in the typed setting: the cutting point has to
respect types.

Now, starting from an untyped list of terms l and an untyped term u,
one can easily compute an abstract ‘most general type and environment’
(n,m,Γ), such that Γ ` l : n → m and Γ ` v : n → m hold (taking N as
the set of types, for example). Thanks to the untyping theorem, if l ` u
holds, then we also have Γ; l ` u : n → m, so that we have at least one
proof that respects the most general type, and we can restrict proof search
to the corresponding well-behaved branches. Moreover, this trick could be
refined during proof search, by generalising the most general type whenever
possible: moving to a premise may release some typing constraints (e.g., in
rule (Id), since half of the terms are thrown in both premises).

We plan to implement these ideas in the ATBR library.
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3.2 Future work

Handling other structures. The Gentzen proof system we presented [9]
for residuated monoids was actually designed for residuated (semi-)lattices,
obtained by further requiring the partial order to be a (semi-)lattice. Our
results can be extended to such residuated structures, as long as we do not
introduce annihilator elements (bottom (0) and top (>) elements): with
division, it is no longer clear how to normalise terms, and how to factorise
proofs so as to reduce to the annihilator-free case. (We have x/0 = > and
>/x = >, but expressions like 0/x and x/> cannot be simplified.)

Action algebras [11, 5] (also called residuated Kleene algebras – they
combine the ingredients from residuated semi-lattices and Kleene algebras)
are closely related structures, in which divisions make it possible to obtain
a variety rather than a quasi-variety: inference rules (sl) and (sr), about
the star operation, can be replaced by the following axioms:

` (u\u)? = u\u
sl’

` (u/u)? = u/u
sr’

We do not know whether an untyping theorem can be obtained for this
structure; we can think of two strategies to attack this problem: 1) find a
cut-free extension of the Gentzen proof system for residuated semi-lattice
(this is leaved as an open question in [5] – it would entail decidability of
the equational theory of action algebras), and adapt the current proof for
residuated monoids. 2) find a ‘direct’ proof of the untyping theorem for
residuated monoids, without going through the Gentzen proof system, so
that the methodology we used to obtain the untyping theorem for Kleene
algebras can be extended.

A generic theory? The typed structures we focused on can be described
in terms of categories equipped with additional structure on their homsets:
objects of the category play the role of our types. Moreover, the untyping
theorems can be rephrased as asserting the existence of a faithful functor to
a one-object category.

It would therefore be interesting to find out whether our typed structures
can be given a generic definition in category theory, and whether one can
give a reasonable characterisation of the class of structures for which the
untyping theorem holds.
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