ADELFE: Using SPEM Notation to Unify Agent
Engineering Processes and Methodology

IRIT/2003-10-R

GLEIZES Marie-Pierre
MILLAN Thierry
PICARD Gauthier

Abstract. Designers of multi-agent systems can use several agent-oriented methodologies. They need
help to choose the more well-adapted methodology for their applications. Thus, the next challenge of
methodologies designers is to provide this kind of tool. In order to do this, it is necessary to find a
formalism to describe the different existing methodology. Then, when differences and similarities can
be expressed and different tools can be developed such as a decision aided tool to choose the
methodology, a tool to design a methodology from parts of different methodologies, an automatic self-
design methodology. In this paper, the SPEM (Software Process Engineering Meta-model) is the
formalism proposed to describe different methodologies. It is applied on Adelfe methodology. The
expression of Adelfe with the SPEM leads to a better clarification of the process followed during the
software development. Therefore, an interactive tool supported the process could be developed.

2.1
2.2
23

3.1
3.2
3.3
34
3.5

4.1
4.2
43

INTRODUCTION 4
THE SOFTWARE PROCESS ENGINEERING META-MODEL (SPEM) 4
SPEM, UML AND MO ...ttt ettt e e e s et e e et e e eeaaeeesenaaeeesenaeeeaans 4
PROCESS DEFINITION ELEMENTS ... uuttieiititeteieeeeseeteeeeeeteeeseesssesseaseesseseeessasassessssesssaneeessaseeesennnes 5
GUIDANCE ..ottt ettt e et e e e et e e et e e sttt eeeeaaeeeseaaeessaaeteeeeaeeeesaaaeessanaeeesanaeeesesaseeesaneeeeas 7
ADELFE PROCESS MODELING WITH SPEM 8
BACKGROUND ...ttt et eeeee e et e e e et e e et e e st e e et et e e eaaeeeseaaaeessseeeseaaaeeesansaeessaseeeesanseeesannees 8
PRELIMINARY REQUIREMENTS WORK DEFINITION.......cuuuttiieuteeeieteeeeeoneeeeeeaeeessneeeeseneeesseseeesennnes 8
FINAL REQUIREMENTS WORK DEFINITIONcvviiiiiiiiiireeeeeeeeeniineeeeeeeeeniitnrereeeeeenssseeeeseseessinnneees 12
ANALYSIS WORK DEFINITIONcccuvvviiiieeiieiireeeeeeeeeeiireeeeeeeeeesisseeeeeeeessisssessseseessissseseseseessnrssees 12
DESIGN WORK DEFINITIONccoiiiuvriiieeeiieiiireeeeeeeeeiireeeeeeeeeesisneeeeeeseensissreseseseessssseseseseesssrreees 15
ADELFE GUIDANCE AND TOOL MENTOR 15
AMAS ADEQUACY TOOL....uviiiiiiieieeiiee ettt eeeete e e ee et e e e e e et ae e e e e eeeeataaaeeeeeeesnrreeens 15
ADELFE STEREOTYPEScveiiiiutieeeeeteeeeeee e e eeeeeeaaeeeseateeseeaeeeseeaaeessasatesssaeeesesaaeessareeessaaeeesanees 16
MODELING WITH OPENTOOLoveiiiutiteieeiee et eeeee e eeee et e e et e e st e e e seaaeeseeaaeesseneeeesenaneesannes 16
CONCLUSION AND FUTURE 17
ADELFE WORKPRODUCTS 19
ADELFE PARTICIPANTS 20

1. Introduction

Nowadays, a lot of agent or multi-agent oriented methodologies exist such as: ADELFE
[1], GAIA [13], MESSAGE/INGENIAS [4][7], PASSI [6], TROPOS [5]... This
amount of methodologies is due to the evolution of the applications which are more
complex, distributed and open. Designers have difficulties and sometimes impossibility
to design a centralized control or to list all situations systems have to face. Multi-agent
systems bring new paradigms and are well-adapted to solve these problems. Therefore,
the development of these systems requires adapted engineering methods. It is now well-
known that the agent concept is different than the object concept. The most important
discrepancies are the abstraction level offered by agent and the autonomy characteristic
of an agent.

Designers of complex and distributed systems can use a lot of agent-oriented
methodologies. Each of the available methodologies has specificities and is more or less
well-adapted to a given application. For example, TROPOS focuses on the requirements
phase, but in GAIA, this phase is not central. ADELFE gives some guide to embed
agent with a behavior, but in MESSAGE the agent’s behavior is tackled in terms of
attributes and methods in a class. MESSAGE/INGENIAS helps the designer to identify
agents, but in GAIA the agents are supposed as existing in the application.

Therefore, the next challenge seems to provide designers a decision-based tool to
choose the more well-adapted methodology for their application. Three steps must be
done. The first step consists in expressing all methodologies with the same formalism.
After, the second step identifies the parts or blocks, their differences and their
similarity; the last step is the design of a decision-making tool to help the designers to
choose or to construct the best methodology for his application. Therefore, the first need
is the unification of the language used by designers of agent oriented methodologies.

For this unification work, the SPEM language is proposed since it is a meta-model
dedicated to the description of methodology processes and components. Section 2
presents this language. An application of the SPEM formalism to the ADELFE
methodology is shown in section 3. Section 4 describes the main guidance and tools
associated with the methodology.

2. The Software Process Engineering Meta-Model (SPEM)

The SPEM is a notation for defining processes and their components [14]. It is based on
an object-oriented approach to model a family of related software processes. SPEM
provides the minimal set of process modeling elements necessary to describe any
software development process, without adding specific models or constraints for any
specific area or discipline, such as project management or analysis. SPEM uses the
UML as a notation.

2.1 SPEM, UML and MOF

As the UML notation, the SPEM processing elements are described in terms of UML
concepts. In order to have this description, only some concepts of UML have been

4

considered as relevant. The set of these concepts constitute the kernel of the definition
of the so-called Meta Object Facility (abbreviated MOF). MOF gives a meta-circular
definition of this modeling language. The MOF has been adopted and standardized by
OMG, and is intended to be the universal meta-model language i.e. the language
capable of describing languages such SPEM, UML, relational models and so on. Let us
recall that MOF is resting on a four-level standardized architecture; these four levels
conventionally denoted M0, M1, M2, and M3 are defined below:

M3 MOF

M2 SPEM UML

M1 RUP SI Method | ... User model 1

MO Processes as really enacted on | User User
a given project data 1 data 2

A performing process—that is, the real-world production process—as it is enacted, is at
level MO. The definition of the corresponding process is at level M1. For example, the
Rational Unified Process 2001 [9], DMR Macroscope, the IBM Global Services Method
and Fujitsu SDEM are defined at level M1. Both a generic process like RUP and a
specific customization of this process used by a given project are at level M1. We focus
here on the meta-model, which stands at level M2 and serves as a template for level M1.
In order to avoid an infinite number of levels, it was decided by OMG to make M3
reflexive. The consequence is that the MOF must be able to describe itself.

2.2 Process definition elements

Process definition elements help in defining how the process will run. They describe or
constrain the overall behavior of the performing process, and are used to assist with
planning, executing, and monitoring the process. A process can be seen as collaboration
between roles to achieve a certain goal or an objective. To guide its enactment, we can
constrain the order in which activities must be, or can be, executed. Also there is a need
to define the “shape” of the process over time, and its /ifecycle structure in terms of
phases and iterations. A Process is a ProcessComponent intended to stand alone as a
complete, end-to-end process. It is distinguished from normal process components by
the fact that it is not intended to be composed with other components. A
ProcessComponent is a chunk of process descriptions that is internally consistent and
may be reused with other ProcessComponents to assemble a complete process. A
ProcessComponent imports a non-arbitrary set of process definition elements, modeled
in SPEM by ModelElements. A process Lifecycle is defined as a sequence of phases that
achieve a specific goal. It defines the behavior of a complete process to be enacted in a
given project or program.

A WorkDefinition is a kind of Operation that describes the work performed in the
process. Its subclasses are Activity, Phase, Iteration, and Lifecycle. A WorkDefinition
can be composed of other WorkDefinitions. A WorkDefinition is related to the
WorkProducts it uses through the ActivityParameter class, which specifies whether they

5

are used as input or output. The work described in the WorkDefinition uses the input
workproducts, and creates or updates the output workproducts. Dependency between
WorkDefinition to another are acted using Precedes dependency from one
WorkDefinition to another, to indicate start-start, finish-start or finish-finish
dependencies between the works described. If activity B has a finish-start dependency
on activity A, then B can start only after A has. If activity B has a finish-finish
dependency on activity B, then B can finish only after A has finished. If activity B has a
start-start dependency on activity A, then B can start only after A has started.

A Phase is a specialization of WorkDefinition that is a kind of operation that describes
the work performed in the process. In a phase, a precondition defines the phase entry
criteria and a goal defines the phase exit criteria. Phases are defined with the additional
constraint of sequentially; i.e., their enactments are executed with a series of milestone
dates spread over time and often assume minimal (or no) overlap of their activities in
time. An [teration is a composite WorkDefinition with a minor milestone. Note that
these elements do not describe the enactment itself: they are elements of the process
description that are used to help plan and execute enactment of that description.

A WorkProduct or artifact is anything produced, consumed, or modified by a process. It
may be a piece of information, a document, a model, source code, and so on. It
describes one class of work product produced in a process and describes a category of
work product, such as Text Document, UML Model, Executable, Code Library, and so
on. The range of work product kinds is dependent on the process being modelled. A
WorkDefinition has an owning ProcessPerformer, representing the primary role that
performs that WorkDefinition in the process. A ProcessRole is responsible for a set of
WorkProducts. An Impacts dependency acts from one WorkProduct to another
WorkProduct to indicate that the modification of a WorkProduct could invalidate
another. ProcessPerformer represents abstractly the “whole process” or one of its
components, and is used to own WorkDefinitions that do not have a more specific
owner. ProcessPerformer has a subclass, ProcessRole. ProcessRole defines
responsibilities over specific WorkProducts, and defines the roles that perform and
assist in specific activities. A ProcessPerformer is the performer of higher level
aggregate WorkDefinitions that cannot be associated with individual ProcessRoles. With
each WorkDefinition can be associated a Precondition and a Goal. Preconditions and
Goals are Constraints, where the constraint is expressed in the form of a Boolean
expression (which is a string) following syntax similar to that of a guard condition in
UML. The condition is expressed in terms of the states of the WorkProducts that are the
parameters of the WorkDefinition or of an enclosing WorkDefinition.

An Activity is the main subclass of WorkDefinition. It describes a piece of work
performed by one ProcessRole: the tasks, operations, and actions that are performed by
a role or with which the role may assist. An activity may consist of atomic elements
called Steps. An Activity is owned by a ProcessRole that is the performer of the
described activity. It may refer to additional ProcessRoles that are the assistants in the
activity. Decomposition within activity is done using Steps. A step is described in the
context of the enclosing activity in terms of the ProcessRoles and WorkProducts it uses.
In the case of activities carried out by an individual or small group, this will be a
ProcessRole. As for the WorkDefinition, the dependency between an activity to another
is acted using Precedes dependency.

After the identification of the activities, it is possible to group them into Discipline. A
Discipline is a particular specialization of Package that partitions the activities within a
process according to a common “theme.” Partitioning the activities in this way implies
that the associated Guidance and output WorkProducts are similarly categorized under
the theme. The inclusion of an activity in a discipline is represented by the Categorizes
dependency, with the additional constraint that every Activity is categorized by exactly
one discipline. A Categorizes dependency acts from a Package to an individual process
element in another package, and provides a means to associate process elements with
multiple categories. Just as in UML, a package is a container that can both own and
import process definition elements. Activities and WorkDefinitions are owned,
respectively, by ProcessRoles and ProcessPerformers; StateMachines are owned by
WorkProducts and own their internal states and transitions; ActivityGraphs can be
owned by Packages, Classifiers, or BehavioralFeatures; other SPEM ModelElements
can be owned by packages.

Packages and the Categorizes dependency can be used to implement general
categorization of process description elements. A package is created to represent each
category, and all of the elements linked via a Categorizes dependency into that package
to represent membership of the category. A package represents a category when it is the
source of at least one categorizes dependency. The name of the category is the name of
the package. Multiple overlapping categories can be created to serve various purposes in
process engineering.. For example, nine disciplines are described in the Rational
Unified Process: Business Modeling, Requirement Management, Analysis & Design,
Implementation, Test, Deployment, Project Management, Configuration and Change
Management, and Environment.

2.3 Guidance

Guidance elements may be associated with all the SPEM models elements in order to
provide more detailed information to practitioners about the associated element.
Possible types of Guidance depend on the process family and can be for example:
Guidelines, Techniques, Metrics, Examples, UML Profiles, Tool mentors, Checklist,
Templates. Each Guidance is associated with a GuidanceKind, and the name of the
GuidanceKind indicates what kind of Guidance it is. The following kinds of guidance
list provides a basic repertoire; processes based on SPEM may add new kinds if
required. A Technique is a detailed, precise “algorithm” used to create a work product.
Techniques help to define the skills required to perform specific types of activities.
UMLProfile is a kind of Guidance. A UML profile provides mechanisms that specialize
UML for a specific target such as C++, Java, and CORBA or for a specific purpose such
as analysis, design, and so on. Every development activity using UML can be ruled by a
profile that dictates those UML consistency rules that need to be applied or which UML
model element is relevant for the current context and focus of the activity. A Tool
Mentor shows how to use a specific tool to accomplish an activity. Each Tool Mentor is
associated with a single Tool and inherits the association with the Activity it supports
from Guidance. Guideline is a kind of Guidance. A Guideline is a set of rules and
recommendations on how a given work product must look or must be organized.
Template is a kind of Guidance. Estimate is a kind of Guidance. An Estimate describes

an effort associated with a particular element. The description associated with an
Estimate gives a context and interpretation for the effort.

3. ADELFE Process Modeling with SPEM

In this section, the SPEM notation is illustrated with an example, the ADELFE Process,
which is briefly expounded in the first subsection. The four main Work Definitions—or
sets of Activities—of the process, the Preliminary Requirements, the Final
Requirements, the Analysis and the Design are presented. Each of them has been
modeled with SPEM activity diagrams.

3.1 Background

ADELFE [3] is a toolkit for designing adaptive multi-agent systems. This methodology
is devoted to software engineering of adaptive multi-agent systems. Adaptive software
is used in situations where either the environment is unpredictable or the system is open.
ADELFE guarantees that the software is developed according to the AMAS theory [8].
It aims to help any software developer —not only those specialized in adaptive multi-
agent systems. So, it must guide designers without making explicit hypothesis on the
fact that he plainly knows what such systems are. ADELFE consists in a process, a
notation and some tools.

The process in ADELFE is based on the Rational Unified Process [9], a classical
process of object-oriented methodology. To take into account the specificity of agents,
some steps has been added to this classical process. Nowadays, ADELFE covers the
phases of a classical software design from the requirements to the design but it aims to
cover from the requirements to the deployment. ADELFE uses UML notation and
extension of UML already done in AUML in particular the AIP notations [11]. The
UML choice is justified because UML is a de facto standard for object-oriented
modeling and then designers can rapidly take-up it. Our aim is not to add one more
methodology to existing ones but to work on some aspects not already taken into
account by existing methodologies such as complex environment, dynamic, software
adaptation. The most important Guidances are: (1) the interactive interface which guides
designers throughout the process. (2) The adequacy AMAS software which helps
designers to decide if the AMAS is well adapted to their applications. And (3) The
OpenTool© which supports UML and AUML notations and some adds. These tools are
described in [1].

3.2 Preliminary Requirements Work Definition

The Preliminary Requirements Work Definition consists of five Activities (see fig. 1).

It is nearly the same as in the RUP. The participants of this Work Definition are the
Requirement Analyst, the End User, and the Client. The activities are:

e Activity 1: Define User Requirements. Its objective is to produce a
preliminary version of a document in which requirements are expressed,
named Requirements Set.

Activity 2: Validate User Requirements. This activity aims to validate, by the
End User, the last document.

Activity 3: Define Consensual Requirements. This activity aims to regroup in
the Requirements Set document the requirements expressed by both the End
User and the Analyst.

Activity 4: Establish the Keyword Set. From the Requirements Set document,
the Analyst can extract keywords and list them in the Keyword Set document.

Activity 5: Extract Limits and Constraints. The Analyst has to define limits
for the system to be, in terms of operating system, languages, technology and
so on. These constraints are added to the Requirements Set document.

-

Define Lkar Requirements S

*: End User

=
[Fequiremprts analya not k]

Reguirements Sgt fralidated]

3
#
[End uger nat QK] -
:Pequirerngrits E’éh._
[orelirrinary] A
-
)
\\
[Erel 3¢ OK]
N

-
-

* - Requirement Anahyst

..
-

het O]

. L.
.-
-"hb
~—~
-

:Feguirements Set
[conzenaual]

Define Consenaual Reguirements

-\D

Egablizh Kewword Set

ewnrd Set final]

I,

Edract Lin*its‘and Conztraints
.

v

Feguirements Set

finall

Figure 1. The Preliminary Requirements Work Definition SPEM Specification.
Three Participant Roles, the Client, the End User and the Requirement Analyst, execute the
activities of this Work Definition: Define User Requirements, Validate User Requirements,
Define Consensual Requirements, Establish Keyword Set and Extract Limits and Constraints.
Two documents are produced: the Requirements Set, which evolves from initial to final

state. and the Kevword Set.

10

* - Enwironment Analyst

:Preliminary Reguirements
Witk roduct

B

Characterize Bnironmert

:Ervronmmerit Definition

fiith cooperation failures i dentified |

v

Determine Lse E‘ak

[

:Ervaronmment Definition
[Camplete]

* - U Designer

Elaborate LI Frototypes «,

b

fralidatipn nat QK]

*: End User

™

)

)

)
[ualida:tinn |

v

Ll prototye
final]

Walidate U Prototypes

Figure 2. The Final Requirements Work Definition SPEM Specification. Three
Participant Roles, the Environment Analyst, the End User and the Ul Designer, execute the
activities of this Work Definition: Characterize Environment, Determine Use Cases,
Elaborate Ul Prototype, and Validate Ul Prototypes. The Preliminary Requirements
WorkProduct, representing the set of previously produced document, is considered as the

input of this Work Definition.

11

3.3 Final Requirements Work Definition

The Final Requirements Work Definition consists of four Activities (see fig. 2):

* Activity 6: Characterize the Environment. It consists in reasoning about the
nature of the environment. The analyst has to characterize the environment by
using a specific vocabulary [12] and to check the input or output interfaces of
the system-to-be in which cooperation failure may appear, according to the
AMAS theory. This activity produces an initial Environment Definition

document.

e Activity 7: Determine Use Cases. This activity, by using the use case UML
notation, aims to clarify the functionalities the system-to-be has to provide. It
results on the production of the Functional Description model that is added to

the Environment Description document.

e Activity 8: Elaborate Ul Prototypes. This classical software engineering

activity produces Ul prototypes for each previously defined use cases.

* Activity 9: Validate UI Prototypes. This activity aims to validate the last work

product by the End User.

3.4 Analysis Work Definition

The Analysis Work Definition consists of four Activities (see fig. 3):

e Activity 10: Analyze the Domain. In order to model a static view of the
system, by using actors and classes, the Domain Analyst has to index

identified entities in the Software Architecture document.

e Activity 11: Verify the AMAS Adequacy. During this activity, the Agent
Analyst has to use the AMAS Adequacy Tool [1] to decide if the AMAS
technology is necessary to design the system-to-be. This tool may also guide
the Agent Analyst to detect a possible recursive decomposition of the system.
The results of this analysis appeared in the AMAS Adequacy Synthesis

document.

e Activity 12: Identify Agents. The Agent Analyst has to examine previously
identified entities—during Activity 6—in their context, use case or sequence
diagrams, to decide if some of them may be represented as cooperative agents
in the system—in the sense of the AMAS theory—in terms of their
interactions or the possibility to be in interaction with cooperation failures.

This activity enhances the Software Architecture document.

e Activity 13: Study Interaction between Entities. The Domain Analyst has to
reason on relations between active and passive entities, between active
entities, and between agents. This activity produces models: sequence
diagrams and AIP protocol diagrams. It aims to finalize the Software

Architecture and the Environment Description documents.

12

* - Domain Analyst

.
.
qqqqq
-

* - Agent Analyst

[decomposition achie\-ed}\;,

.....
-
-
-
-
-
e

AMAS Adequacy Swthe ds
final]

Ervironment Defintion
[t lete] .

Study Interactions betwee n Enfities

Ly

“Softmare Archite chure
[cormplete]

‘Bnironrent Definition
final]

Mabzethe Dormin T TTmep
U A L S i
-
[require neuwddecar agtion]
‘Softnare Aechite chure
[prelirminard
- ' ¥
- » T
J" .l'
L . ‘ J‘
fag N
e
T

Iy
L.

Herify Agerts

<.-----

“Software frchitechre
o= [nchuding agents]

-
-
-
L=

Figure 3. The Analysis Work Definition SPEM Specification. Two Participant
Roles, the Domain Analyst and the Agent Analyst, execute the activities of this Work
Definition: Analyze the Domain, Verify The AMAS Adequacy, Identify Agents, and Study
Interactions between Entities. This Work Definition outputs three documents: the final
AMAS Adequacy Synthesis, The final Environment Definition and the complete Software

Architecture.

13

* - Object Designer
<Softmere Archite cture
[canp lete]

Gudythe Detailed pfhi

andthe WA hode|

*: Agent Deaigner

Detailed Arghite cture

[initig1]

Dietailed Architecture
[inchuding age nt model]

Complete Design Dm

\D

Sudy Interaction Language s

¢

-hiteraction Languages
[iritial]

D Ve

[e sign Agents

/L\
Detailed Archite chure

N
>

Fast Prototyping

J’ Jradeguate behavior]

[adequate behavior] < >

-hteraction Language s

‘kteradtion Languages
Hraft]

final]

ifed Architecture

final]

Figure 4. The Design Work Definition SPEM Specification. Two Participant
Roles, the Object Designer and the Agent Designer, execute the activities of this Work
Definition: Study the Detailed Architecture and MA Model, Study Interaction Languages,
Identify Agents, Design Agents, Fast Prototyping and Complete Design Diagrams. This
Work Definition mainly outputs the final Detailed Architecture and achieves the
specification works.

14

3.5 Design Work Definition

The Design Work Definition consists of five Activities (see fig. 3):

e Activity 14: Study the detailed Architecture and the Multi-Agent Model. The
aim of this activity is to define the different components (packages, classes,
etc.) that appear in the system, and to possibly re-use pre-existing components
(i.e. design-patterns) in order to design the architecture of the system and to
produce the Detailed Architecture document.

e Activity 15: Study Interaction Languages. Agents generally interact by using
specific protocols. This activity aims to define the different interaction
protocols agents may use by using AIP model. This notation has been
integrated to the OpenTool software. This activity produces an initial
Interaction Languages document, and its models.

e Activity 16: Design Agents. For each previously identified agent, the Agent
Designer has to specify its architecture, i.e. specify its skills, its aptitudes, its
interaction language(s), its world representations and its non-cooperative
situations. So, the Detailed Architecture and Interaction Languages documents
are enhanced and then completed.

* Activity 17: Fast Prototyping. This activity enables the Agent Designer to test
the agents’ behaviours by simulating instances of agents in the OpenTool plat-
form. During this activity, the Agent Designer may modify agents’
components by backtracking to the previous activity while agents’ behaviours
are not correct.

e Activity 18: Enhance Design Models. This last design activity aims to
complete previous specifications models to close the design work definition
and to design dynamical behaviours of the different entities appearing in the
system by using state-chart diagrams.

4. ADELFE Guidance and Tool Mentor
4.1 AMAS Adequacy Tool

ADELFE guides developers in deciding if and where the adaptive multi-agent system
technology is required in the system-to-be. In certain cases, this kind of programming is
completely useless; for example, if the algorithm required to resolve the task is already
known, if the task is not complex or if the system is closed and nothing unexpected can
occur. For an industrial, it is very important to know very early, if the system to develop
justifies some investment in a new methodology or technique. A piece of software,
called adequacy tool, helps designers to take this decision.

This adequacy is studied both at the global level (the system level) and at the local one
(the level of the different parts composing the system). To study the adequacy of the
AMAS theory several criteria have been defined and the answers given by designers are
then analyzed by the support decision tool to inform him if using an AMAS to
implement the system is useful. The adequacy tool is linked with the activity 11 in the
process.

15

4.2 ADELFE Stereotypes

AMAS theory introduces specific notions such as cooperation, aptitudes, or skills.
These notions have particular semantics and to ensure their adequate use, ADELFE
guides developers by defining new stereotypes. This set of stereotypes is modeled as a
Guidance in the ADELFE process that may help in designing agents.

Here are the ADELFE-specific stereotypes:

- <<cooperative agent>> characterizes a class as an agent one in the sense of the
AMAS theory. An example of rule on this stereotype is: a <<cooperative
agent>> stereotyped class must own cooperation rules (i.e. <<cooperation>>
stereotyped features or associations); in order to represent cooperative agent.

The following stereotypes can only be attributed to features appearing in a
<<cooperative agent>> stereotyped class:

- <<cooperation>> characterizes features that manages the cooperative behavior
of an agent (e.g. non-cooperative situation detection rules).

- <<perception>> characterizes features which represent agents’ perceptions (e.g.
Sensors).

- <<action>> characterizes features which represent agents’ actions (e.g. wheel
control).

- <<skill>> characterizes features which represent agents’ skills (e.g. a knowledge
base about brokerage).

- <<aptitude>> characterizes features which represent agents’ aptitudes (e.g. an
inference engine).

- <<interaction>> characterizes features which represent agents’ interactions,
notably those appearing in AUML protocol diagrams.

- <<world representation>> characterizes features which represent agents’
representations and beliefs on the other agents for example.

- <<characteristic>> represents intrinsic characteristics of an agent (e.g. an
identification number, a color, a weight,...).

4.3 Modeling with OpenTool

During the ADELFE process, designer has to construct UML or AUML model. These
specification tasks are eased by using dedicated editors. OpenTool, developed by TNI-
Valiosys, is a UML 1.4 editor and checker. This software is considered as a Guidance in
the sense it eases designers in developing adaptive multi-agent systems because:

- all the ADELFE-specific stereotypes and their rules are integrated to OpenTool;
- OpenTool already manipulates AUML protocol diagrams;

- OpenTool owns a simulation functionality which is a useful tool for the Fast
Prototyping activity. This tool simulates objects by executing their state-
machines to observe the dynamical behaviors.

Of course, designers may use different tools to model their systems if they integrate all
the required notations and functionalities.

16

5. Conclusion and Future

The SPEM meta-model leads a better clarification of the process followed during the
software development. The expression of activities, steps and associated work products
facilitates the manipulation of the process. Therefore, an interactive tool supported the
process could be developed. Moreover, the prototype ADELFE V1.0 is operational .

The SPEM can be useful to describe several methodologies in a unified way, in order to
compare them. This comparison can be used first, by designers to choose the more well-
adapted methodology for their applications and second, to design a computer aided
methodology engineering. The possibility of defining an automatic tool to choose and
use methodologies is the next challenge for software engineering designers. A
methodology can self-design in using parts of several methodologies. This tool could be
based on adaptive multi-agent systems [8]; each component of a methodology should be
“agentified” and all these components will cooperate to build at runtime the adequate
methodology for the dedicated application.

Acknowledgments

We would like to thank the support of the French Ministry of Economy, Finances and
Industry as well as our partners: TNI-Valiosys Ltd., for their customization of
OpenTool©, ARTAL technologies Ltd and L3I La Rochelle.

References

[1] Bernon C., Camps V., Gleizes M.-P., Picard G. - Tools for Self-Organizing Applications
Engineering - The First International Workshop on Engineering Self-Organising
Applications (ESOA'03) Melbourne, Australia, July 2003.

[2] Bernon C., Gleizes M-P., Peyruqueou S., Picard G. — ADELFE, a Methodology for
Adaptive Multi-Agent Systems Engineering — In Third International Workshop on
Engineering Societies in the Agents World (ESAW-2002), Madrid, 16-17 September 2002.

[3] Bernon C., Gleizes M-P., Picard G., Glize P. — The Adelfe Methodology For an Intranet
System Design — In Fourth International Bi-Conference Workshop on Agent-Oriented
Information Systems (AOIS-2002), Toronto (Ontario, Canada) at CAiSE'02, 27-28 May,
2002.

[4] G. Caire, F. Leal, P. Chainho, R. Evans, F. Garijo, J. Gomez, G. Pavon, P. Kearney, J.
Stark & P. Massonet - Agent Oriented Analysis using MESSAGE/UML - AOSE 2001.

[5] J. Castro, M. Kolp & J. Mylopoulos — A Requirements-driven Development Methodology
— In Proceedings of the 13" International Conference on Advanced Information Systems
Engineering (CAiSE’01), Stafford, UK — June, 2001.

[6] Cossentino M., Different Perspectives in Designing Multi-Agent System, AgeS’02 (Agent
Technology and Software Engineering) Workshop at NodE 02, Erfurt, Germany, October
2002.

[7] Eurescom - Project P907-GI - MESSAGE: Methodology for Engineering Systems of
Software Agents, Deliverable 1 - Initial Methodology - Attp://www.eurescom.de/~pub-
deliverables/P900-series/P907/D1/P907D1.zip

! The prototype is now accessible on the website http:/perso.unvi-Ir.frivcamps/Adelfe/Adelfe.html
17

[8] M-P. Gleizes, V. Camps, P. Glize - A Theory of Emergent Computation Based on
Cooperative Self-Organization for Adaptive Artificial Systems - 4" European Congress of
Systems Science, Valencia, 1999

[9] L Jacobson, G. Booch & J. Rumbaugh — The Unified Software Development Process —
Addison-Wesley, 1999.

[10] N.R. Jennings, M. Wooldridge - Agent-oriented software engineering - In J Bradshaw
(Ed.), Handbook of Agent technology, AAAI/MIT Press 2000

[11] J. Odell, H.V. Parunak, & B. Bauer - Extending UML for Agents - In Proceedings of the
Agent Oriented Information Systems (AOIS) Workshop at the 17" National Conference on
Artificial Intelligence (AAAI), 2000.

[12] Russel S. and Norvig P. — Artificial Intelligence: a Modern Approach — Prentice-Hall,
1995.

[13] M. Wooldridge, N. R. Jennings & D. Kinny - A Methodology for Agent-Oriented Analysis
and Design - In Proceedings of the 3 International Conference on Autonomous Agents
(Agents 99), pp 69-76, Seattle, WA, May 1999.

[14] Object Management Group - Software Process Engineering Metamodel Specification
Version 1.0, formal/02-11-14, November 2002. http://www.omg.org/docs/formal/02-11-

14.pdf

18

A. ADELFE Workproducts

- Requirement
Preliminary Set

Requirements
WorkProduct

Keyword

Set
Functional
Description

— 1

‘\

\

1 Scenario
Final 1 s
Requirement -
Workproduct g.
Ul
Interface
Prototype Models

e

Internal Interactions

n Classes
-
/ |
1
Software i
\ Domain
! Architecture Model
Analysis
Workproduc
t
AMAS Adequacy
Synthesis
-
./ |
| Interaction Protocol
. 1 Languages Diagrams
Design 1
Workproduc D
t =
Detailed ;
! Design
Architecture Models

19

between

Domain

B. ADELFE Participants

Client Designer End User Analyst Tester Developer

A
!

X
|
X

Environment Requirement

Agent Designer Object Designer Ul Designer Agent Analyst Domain Analyst Analyst Analyst

20

