Kripke’s World
An introduction to modal logics via tableau systems

O. Gasquet, A. Herzig, B. Saïd, F. Schwarzentruber

Institut de Recherche en Informatique de Toulouse - IRIT
Université de Toulouse
http://www.irit.fr/Lotrec

UNILOG 2010
Background: logic and reasoning

- Classical propositional logic (CPL)
 - satisfiability problem decidable: NP-complete
 - reasoning:
 - Hilbert-style axiomatics, natural deduction
 - Gentzen sequent systems, tableaux
 - resolution
 - heuristic search: many SAT solvers

- Classical predicate logic
 - satisfiability problem semi-decidable
 - reasoning:
 - ... resolution [OTTER, SPASS, etc.]

- Higher-order logic
 - undecidable
 - reasoning:
 - Proof assistants [Isabelle, Coq, etc.]
Background and motivation

Modal logics
- variant: description logics (semantic web)
- infinitely many logics
- ‘surprisingly often decidable’
 - $\text{NP} < \text{PSPACE} < \text{EXPTIME} < \text{NEXPTIME} < \text{EXPSPACE}$
- reasoning:
 - Hilbert-style axiomatics, natural deduction
 - Gentzen sequent systems
 - resolution [Fariñas 83]
 - translation to FOL and resolution [Fariñas and Herzig 88, Ohlbach 88; MSPASS]
 - methods based on SAT solvers for CPL [K-SAT, etc.]
 - Tableaux

Idea: step-by-step introduction to modal logics via tableaux
From Tarski’s World to Kripke’s World

- Tarski’s World: introduction to predicate logic
 - examples = scenarios from geometry
 - book + program
- Kripke’s World: introduction to modal logics
 - examples = modal logics
 - reasoning = try to construct models = tableaux
 - program: LoTREC, http://www.irit.fr/Lotrec
 - book to come
Early history: les tableaux de Monsieur Toulouse-LauTREC
Outline

Part 1: Theory
1. Modal logics
2. Reasoning problems

Part 2: Practice
3. LoTREC
4. Implementing logics
Part 1: Theory

1 Modal logics
 - Possible worlds models
 - Classes of models
 - Language
 - Semantics

2 Reasoning problems
 - Validity and satisfiability in a class of models
 - Outline of the tableaux method
Outline

1 Modal logics
 - Possible worlds models
 - Classes of models
 - Language
 - Semantics

2 Reasoning problems
 - Validity and satisfiability in a class of models
 - Outline of the tableaux method
What is a Kripke model?

- Possible worlds
 - node
 - states

- Valuation
 - labeling function
 - interpretation

- Accessibility relation
 - labeled edges
 - transitions

- Model
 - labeled graph
 - transition system
Kripke Model

Given: a set \mathcal{P} (propositional variables) and a set \mathcal{I} (indexes):

- $M = (W, R, V)$
 - W: nonempty set
 - $R: \mathcal{I} \rightarrow 2^{W \times W}$
 - $V: W \rightarrow 2^{\mathcal{P}}$

- Pointed model (M, w)
 where $w \in W$ is the actual world

set of possible worlds
accessibility relation
valuation function
Readings of R

- Alethic:
 wRu iff u is possible given the actual world w

- Temporal:
 wRu iff u is in the future of w

- Epistemic:
 $wR_I u$ iff u is possible for agent I at actual world w

- Deontic:
 wRu iff u is an ideal counterpart of the actual world w

- Dynamic:
 $wR_I u$ iff u is a possible result of the execution of the program / action I in w
Readings of R

- Alethic:
 \[wRu \iff u \text{ is possible given the actual world } w \]

- Temporal:
 \[wRu \iff u \text{ is in the future of } w \]

- Epistemic:
 \[wR_Iu \iff u \text{ is possible for agent } I \text{ at actual world } w \]

- Deontic:
 \[wRu \iff u \text{ is an ideal counterpart of the actual world } w \]

- Dynamic:
 \[wR_Iu \iff u \text{ is a possible result of the execution of the program / action } I \text{ in } w \]

Readings of $R \implies$ Properties of R
Defining a model in LoTREC

How to build a graph with two nodes:

- open a new logic (menu ‘Logic’)
- add a new rule (‘Rules’ tab):
 - no conditions
 - in the action part:
 - createNewNode w
 - createNewNode u
 - link w u R
 - add w P
- edit the default strategy (‘Strategies’ tab):
 - call the new rule (double click)
Outline

1 Modal logics
 ▪ Possible worlds models
 ▪ Classes of models
 ▪ Language
 ▪ Semantics

2 Reasoning problems
 ▪ Validity and satisfiability in a class of models
 ▪ Outline of the tableaux method
Classes of models

- A class of models can be defined by
 - constraints on the accessibility relation
 - constraints on the valuation
- Applications?
- Mathematical properties?
Constraints on a single relation R

- Singleton models: \(\{ M : \text{card}(W) = 1 \} \)
- Serial
 - "there is always a future"
 - for all \(w \) exists \(u \) s.th. \(wRu \)
- Reflexive
 - "knowledge implies truth"
- Transitive
 - "future of future is future"
 - "I know what I know"
- Symmetric
- Euclidian
 - "I know what I don’t know"
- Confluent (Church-Rosser)
- Equivalence
- Universal
- ...
Constraints involving several relations

- R_I included in R_J
- $R_I = R_J \cup R_K$
- $R_J = (R_I)^{-1}$
- $R_J = (R_I)^*$ \hspace{2cm} \textit{(reflexive and transitive closure)}
- $R_I \circ R_J = R_J \circ R_I$ \hspace{2cm} \textit{(permutation)}
- Confluent
- ...
Constraints on the valuation V

- names for worlds ('nominals '):

 If $N \in V(w)$ and $N \in V(u)$ then $w = u$

 \implies hybrid logic

- R is hereditary (atomic propositions persist)

 If $P \in V(w)$ and $wR u$ then $P \in V(u)$

 \implies intuitionistic logic
Closing under constraints in LoTREC

- Closing under reflexivity:
 - condition: `isNewNode w`
 - action: `link w w R`

- Observe:
 - capital first letter \rightarrow constant
 - small first letter \rightarrow variable

- Exercise: make R hereditary
Outline

1 Modal logics
 - Possible worlds models
 - Classes of models
 - Language
 - Semantics

2 Reasoning problems
 - Validity and satisfiability in a class of models
 - Outline of the tableaux method
Boolean formulas

- atomic formulas = elements of \mathcal{P} (propositional variables)
- complex formulas: built using the Boolean connectors
 - $\neg A$ = “not A”
 - $A \land B$ = “A and B”
 - $A \lor B$ = “A or B”
 - $A \rightarrow B$ = “if A then B”
 - $A \leftrightarrow B$ = “A if and only if B”
 - $A \oplus B$ = “either A or B”
 - $\oplus(A, B, C)$ = “either A, or B, or C”
 ...

Modal formulas

- **Temporal logic**
 - $XA = \ "A \text{ will be true at the next time point}\"$
 - $FA = \ "A \text{ will be true at some time point in the future}\"$
 - $A = \ "A \text{ will eventually be true}\"$
 - $GA = \ "A \text{ will be true at every time point in the future}\"$
 - $AUB = \ "A \text{ until } B\”$
 - $ASB = \ "A \text{ since } B\”$

- **Dynamic logic**
 - $\text{After}_I A = \ "A \text{ will be true after every possible execution of program } I\”$
 - $\text{Feasible}_I A = \ "A \text{ will be true after some execution of program } I\”$

(programs may be nondeterministic)
Modal formulas (ctd.)

- **Epistemic and doxastic logic**
 \[\text{Bel}_I A = \text{“agent } I \text{ believes that } A\” \]
 \[\text{K}_I A = \text{“agent } I \text{ knows that } A\” \]
 \[\hat{\text{Bel}}_I A = \text{“it is (doxastically) possible for agent } I \text{ that } A\” \]
 \[\hat{\text{K}}_I A = \text{“it is (epistemically) possible for agent } I \text{ that } A\” \]

- **Deontic logic**
 \[\text{O}_I B = \text{“} A \text{ is obligatory for } I \text{”} \]
 \[\text{P}_I B = \text{“} A \text{ is permitted for } I \text{”} \]

- **Intuitionistic logic**
 \[A \Rightarrow B = \text{“} A \text{ implies } B\” \text{ (like } \rightarrow \text{, but no excluded middle)} \]

- **Conditional logic**
 \[A \Rightarrow B = \text{“} A \text{ implies } B\” \text{ (} \Rightarrow \text{ ‘stronger’ than } \rightarrow \text{)} \]

- ...
“Un pour tous, tous pour un” [A. Dumas]

- An abstraction: necessity and possibility
 \[\Diamond A = MA = \text{“}A\text{ is possible”} \]
 \[\Box A = LA = \text{“}A\text{ is necessary”} \]

- Multimodal version:
 \[\Diamond_I A = \langle I \rangle A = \text{“}A\text{ is possible w.r.t. } I\text{”} \]
 \[\Box_I A = [I]A = \ldots \]
 where \(I \in \mathcal{I} \) (set of parameters)

- Common feature: Not truth-functional
 - no \(f \) s.th. \(\text{truthvalue}(\Diamond A) = f(\text{truthvalue}(A)) \)
Duality

- Intuitively:
 \[\hat{K}_IA \leftrightarrow \neg K_I \neg A \]
 \[P_I A \leftrightarrow \neg O_I \neg A \]
 \[FA \leftrightarrow \neg G \neg A \]
 \[After_I A \leftrightarrow \neg \text{Feasible}_I \neg A \]
 \[\ldots \]

- Abstracting:
 \[\Diamond A \leftrightarrow \neg \Box \neg A \]
 \[\Box A \leftrightarrow \neg \Diamond \neg A \]

- Options:
 - take both \(\Diamond \) and \(\Box \) as primitive
 - take \(\Diamond \) as primitive, and set \(\Box A \overset{\text{def}}{=} \neg \Diamond \neg A \)
 - take \(\Box \) as primitive, and set \(\Diamond A \overset{\text{def}}{=} \neg \Box \neg A \)
How define a language?

- Examples
 - $\text{CardRed} \land K_{\text{Ann}} \text{CardRed} \land K_{\text{Ann}} \lnot K_{\text{Bob}} \text{CardRed}$
 - $\text{DoorClosed} \land [\text{Open}]\text{DoorOpen}$
 - $P \land \lnot Q \land \Box Q \land \Diamond (P \land \Box \lnot Q)$

- Language = set of formulas
- Language is defined by BNF:

 \[A ::= P \mid \lnot A \mid A \land A \mid A \lor A \mid \Diamond A \mid \Box A \mid \langle I \rangle A \mid [I] A \mid K_I A \mid \ldots \]

 where P ranges over \mathcal{P} and I ranges over \mathcal{I}
How define a language in LoTREC?

- Formulas in LoTREC: prenex form
 \implies General schema: $op(A_1, \ldots, A_n)$

 $\neg A = not(A)$
 $A \land B = and(A, B)$
 $A \lor B = or(A, B)$
 \ldots
 $\neg A = not(A)$
 $A \land B = and(A, B)$
 $A \lor B = or(A, B)$
 \ldots
 $\neg A = not(A)$
 $A \land B = and(A, B)$
 $A \lor B = or(A, B)$
 \ldots
 $\neg A = not(A)$
 $A \land B = and(A, B)$
 $A \lor B = or(A, B)$
 \ldots
 $\neg A = not(A)$
 $A \land B = and(A, B)$
 $A \lor B = or(A, B)$
 \ldots
 $\neg A = not(A)$
 $A \land B = and(A, B)$
 $A \lor B = or(A, B)$
 \ldots
 $\neg A = not(A)$
 $A \land B = and(A, B)$
 $A \lor B = or(A, B)$
 \ldots
 $\neg A = not(A)$
 $A \land B = and(A, B)$
 $A \lor B = or(A, B)$
 \ldots
 $\neg A = not(A)$
 $A \land B = and(A, B)$
 $A \lor B = or(A, B)$
 \ldots
 $\neg A = not(A)$
 $A \land B = and(A, B)$
 $A \lor B = or(A, B)$
 \ldots
 $\neg A = not(A)$
 $A \land B = and(A, B)$
 $A \lor B = or(A, B)$
 \ldots
 $\neg A = not(A)$
 $A \land B = and(A, B)$
 $A \lor B = or(A, B)$
 \ldots
 $\neg A = not(A)$
 $A \land B = and(A, B)$
 $A \lor B = or(A, B)$
 \ldots
 $\neg A = not(A)$
 $A \land B = and(A, B)$
 $A \lor B = or(A, B)$
 \ldots
 $\neg A = not(A)$
 $A \land B = and(A, B)$
 $A \lor B = or(A, B)$
 \ldots
 $\neg A = not(A)$
 $A \land B = and(A, B)$
 $A \lor B = or(A, B)$
 \ldots
 $\neg A = not(A)$
 $A \land B = and(A, B)$
 $A \lor B = or(A, B)$
 \ldots
 $\neg A = not(A)$
 $A \land B = and(A, B)$
 $A \lor B = or(A, B)$
 \ldots
 $\neg A = not(A)$
 $A \land B = and(A, B)$
 $A \lor B = or(A, B)$
 \ldots
 $\neg A = not(A)$
 $A \land B = and(A, B)$
 $A \lor B = or(A, B)$
 \ldots
 $\neg A = not(A)$
 $A \land B = and(A, B)$
 $A \lor B = or(A, B)$
 \ldots
 $\neg A = not(A)$
 $A \land B = and(A, B)$
 $A \lor B = or(A, B)$
 \ldots
 $\neg A = not(A)$
 $A \land B = and(A, B)$
 $A \lor B = or(A, B)$
 \ldots
 $\neg A = not(A)$
 $A \land B = and(A, B)$
 $A \lor B = or(A, b)
Outline

1 Modal logics
 - Possible worlds models
 - Classes of models
 - Language
 - Semantics

2 Reasoning problems
 - Validity and satisfiability in a class of models
 - Outline of the tableaux method
Truth conditions

- **Atoms**
 - $M, w \models P$ iff $P \in V(w)$

- **Classical connectors**
 - $M, w \models A \land B$ iff $M, w \models A$ and $M, w \models B$
 - $M, w \models A \lor B$ iff . . .
 - . . .

- **Modal operators**
 - $M, w \models \Diamond A$ iff there exists u s.th. wRu and $M, u \models A$
 - $M, w \models \Box A$ iff for all u, if wRu then $M, u \models A$
Truth conditions

- Multi-modal operators
 - $M, w \models \langle I \rangle A$ iff there exists u s.th. $w R_I u$ and $M, u \models A$
 - ...

- Relation algebra operators
 - $M, w \models \Diamond^{-1} A$ iff there exists u s.th. $w R^{-1} u$ and $M, u \models A$
 - $M, w \models \langle I \cup J \rangle A$ iff there exists u s.th. $w (R_I \cup R_J) u$ and $M, u \models A$
 - $M, w \models \langle I^* \rangle A$ iff there exists u s.th. $w (R_I)^* u$ and $M, u \models A$
Truth conditions

Temporal operators (linear time)

- \(M, w \models XA \) iff there exists \(u \) s.th. \(wRu \) and \(M, u \models A \)
- \(M, w \models FA \) iff there exists \(n, u \) s.th. \(wR^n u \) and \(M, u \models A \)

\[
\begin{align*}
A & \xrightarrow{w} A & & \cdots & & \xrightarrow{u} A & \xrightarrow{} B \\
A & \xrightarrow{} A & & \cdots & & \xrightarrow{} A & \xrightarrow{} B
\end{align*}
\]

- \(M, w \models A \cup B \) iff there exists \(u \) s.th. \(wR^* u \) and \(M, u \models B \) and \(M, v \models A \) for all \(v \) s.th. \((wR^* v \) and \(vR^+ u) \)

- \(\ldots \)
Model checking

Given M, w, and A, do we have $M, w \models A$?

- Model checking problem
 - can be solved in polynomial time for most modal logics
- Model checking in LoTREC
 - requires more LoTREC primitives \Rightarrow later
Part 1: Theory

1 Modal logics
 - Possible worlds models
 - Classes of models
 - Language
 - Semantics

2 Reasoning problems
 - Validity and satisfiability in a class of models
 - Outline of the tableaux method
Outline

1 Modal logics
 - Possible worlds models
 - Classes of models
 - Language
 - Semantics

2 Reasoning problems
 - Validity and satisfiability in a class of models
 - Outline of the tableaux method
Validity and satisfiability in the set of all models

$K = \text{the set of all possible worlds models (Kripke)}$

- A is valid in K iff for all M in K and all w in M: $M, w \models A$

Example

- $\square(P \lor \neg P)$
- $\square P \land \square Q \rightarrow \square(P \land Q)$

- A is satisfiable in K iff for some M in K and some w in M: $M, w \not\models A$

Example

- P
- $P \land \neg \square P$
- $P \land \square \neg P$
- $\square P \land \neg \square \square P$
Validity and satisfiability in the set of all models

K = the set of all possible worlds models (K_{Kripke})

- A is valid in K iff for all M in K and all w in M: $M, w \models A$

Example

- $\Box(P \lor \neg P)$
- $\Box P \land \Box Q \rightarrow \Box(P \land Q)$

- A is satisfiable in K iff for some M in K and some w in M: $M, w \not\models A$

Example

- P
- $P \land \neg \Box P$
- $P \land \Box \neg P$
- $\Box P \land \neg \Box \Box P$
Validity and satisfiability in some class of models

\[C = \text{some subset of } K \]

- **A is valid in } C \text{ iff for all } M \text{ in } C \text{ and all } w \text{ in } M: M, w \models A**

Example

- \(\Box P \rightarrow P \) invalid in \(K \)
- \(\Box P, \neg P \rightarrow P \)
- \(\Box P \rightarrow P \) valid in the class of reflexive models
- \(\Diamond \Diamond P \rightarrow \Diamond P \) valid in transitive models

- **A is satisfiable in } C \text{ iff for some } M \text{ in } C \text{ and some } w \text{ in } M: M, w \not\models A**

Example

- \(P \land \Box \neg P \) is satisfiable in \(K \)
- \(P \land \Box \neg P \) is unsatisfiable in the class of reflexive models

- **A is valid in } C \text{ iff } \neg A \text{ is unsatisfiable in } C**

Validity and satisfiability in some class of models

\(\mathcal{C} = \) some subset of \(\mathcal{K} \)

- \(A \) is valid in \(\mathcal{C} \) iff for all \(M \) in \(\mathcal{C} \) and all \(w \) in \(M \): \(M, w \models A \)

Example

- \(\Box P \to P \) invalid in \(\mathcal{K} \)
- \(\Box P, \neg P \leadsto P \)

- \(\Box P \to P \) valid in the class of reflexive models
- \(\Diamond \Diamond P \to \Diamond P \) valid in transitive models

- \(A \) is satisfiable in \(\mathcal{C} \) iff for some \(M \) in \(\mathcal{C} \) and some \(w \) in \(M \): \(M, w \not\models A \)

Example

- \(P \land \Box \neg P \) is satisfiable in \(\mathcal{K} \)
- \(P \land \Box \neg P \) is unsatisfiable in the class of reflexive models

\[A \text{ is valid in } \mathcal{C} \text{ iff } \neg A \text{ is unsatisfiable in } \mathcal{C} \]
Validity and satisfiability in some class of models

\[\mathcal{C} = \text{some subset of } K \]

- \(A \) is valid in \(\mathcal{C} \) iff for all \(M \) in \(\mathcal{C} \) and all \(w \) in \(M \): \(M, w \models A \)

Example

- \(\Box P \rightarrow P \) invalid in \(K \)
- \(\Box P, \neg P \rightarrow P \)
- \(\Box P \rightarrow P \) valid in the class of reflexive models
- \(\Diamond \Diamond P \rightarrow \Diamond P \) valid in transitive models

- \(A \) is satisfiable in \(\mathcal{C} \) iff for some \(M \) in \(\mathcal{C} \) and some \(w \) in \(M \): \(M, w \not\models A \)

Example

- \(P \land \Box \neg P \) is satisfiable in \(K \)
- \(P \land \Box \neg P \) is unsatisfiable in the class of reflexive models

\[A \text{ is valid in } \mathcal{C} \text{ iff } \neg A \text{ is unsatisfiable in } \mathcal{C} \]
Examples

- Singleton models: \(\{ M : \text{card}(W) = 1 \} \)
 valid: \(\Diamond A \rightarrow \Box A \)

- Reflexive models: KT
 valid: \(\Box A \rightarrow A \)

- Transitive models: K4
 valid: \(\Diamond \Diamond A \rightarrow \Diamond A \)

- Reflexive and transitive models: S4
 valid: \(\ldots \)

- Equivalence relation: S5
 valid: \(A \rightarrow \Box \Diamond A, \ldots \)

- \(\ldots \)
Validity and satisfiability in a class of models

Reasoning problems

- Model checking
 Given M, w, and A do we have $M, w \models A$?

- Validity
 Given A and C is A valid in C?

- Satisfiability
 Given A and C does there exist M in C and w in M: $M, w \models A$?

- Model construction
 Given A and C compute M in C and w in M: $M, w \models A$

How can we solve them automatically?
Outline

1 Modal logics
 - Possible worlds models
 - Classes of models
 - Language
 - Semantics

2 Reasoning problems
 - Validity and satisfiability in a class of models
 - Outline of the tableaux method
Classical logic [Beth]

Checking the satisfiability of a given formula A:

1. Try to find M and w by applying truth conditions
 - $M, w \vDash A_1 \land A_2 \implies$ add $M, w \vDash A_1$, and add $M, w \vDash A_2$
 - $M, w \vDash A_1 \lor A_2 \implies$ either add $M, w \vDash A_1$, or add $M, w \vDash A_2$
 (nondeterministic)
 - $M, w \vDash \neg A_1 \implies$ don’t add $M, w \vDash A_1$!!!
 - $M, w \vDash \neg \neg A_1 \implies$ add $M, w \vDash A_1$
 - $M, w \vDash \neg (A_1 \lor A_2) \implies$ add $M, w \vDash \neg A_1$ and add $M, w \vDash \neg A_2$
 - $M, w \vDash \neg (A_1 \land A_2) \implies$ add $M, w \vDash \neg A_1$ or add $M, w \vDash \neg A_2$

\implies tableau rules

2. apply while possible (saturation)

3. is M a model?
 - NO if both $M, w \vDash B$ and $M, w \vDash \neg B$ (closed tableau)
 - ELSE M is a model for A (open tableau)
 $W = \{w\}, R = \emptyset, V(w) = \{P : M, w \vDash P\}$
Classical logic [Beth]

Checking the satisfiability of a given formula A:

1. Try to find M and w by applying truth conditions
 - $M, w \models A_1 \land A_2 \implies$ add $M, w \models A_1$, and add $M, w \models A_2$
 - $M, w \models A_1 \lor A_2 \implies$ either add $M, w \models A_1$, or add $M, w \models A_2$
 (nondeterministic)
 - $M, w \models \neg A_1 \implies$ don’t add $M, w \models A_1$!!
 - $M, w \models \neg \neg A_1 \implies$ add $M, w \models A_1$
 - $M, w \models \neg (A_1 \lor A_2) \implies$ add $M, w \models \neg A_1$ and add $M, w \models \neg A_2$
 - $M, w \models \neg (A_1 \land A_2) \implies$ add $M, w \models \neg A_1$ or add $M, w \models \neg A_2$

2. apply while possible (saturation)

3. is M a model?
 - NO if both $M, w \models B$ and $M, w \models \neg B$ (closed tableau)
 - ELSE M is a model for A (open tableau)
 - $W = \{w\}$, $R = \emptyset$, $V(w) = \{P : M, w \models P\}$
Modal logic [Fitting]

Basic cases

- **$M, w \models \Diamond A$**
 - \implies add some new node u, add wRu, add $M, u \models A$

- **$M, w \models \Box A$**
 - \implies for all node u s.th. wRu, add $M, u \models A$

Apply truth conditions \equiv build a labeled graph

- create nodes
- add links
- add formulas to nodes
Example

A node with the input formula

\[\square P \land \leftrightarrow Q \land \leftrightarrow (R \lor \neg P) \]
Example

\[M, w \models A \land B \text{ iff } M, w \models A \text{ and } M, w \models B \]

- \(A \) is \(\Box P \)
- \(B \) is \(\Diamond Q \land \Diamond (R \lor \neg P) \)

\[\square P \land \leftrightarrow Q \land \leftrightarrow (R \lor \neg P) \]
Example

\[M, w \vDash A \land B \iff M, w \vDash A \text{ and } M, w \vDash B \]

- \(A \) is \(\Box P \)
- \(B \) is \(\Diamond Q \land \Diamond (R \lor \neg P) \)

\[
\begin{align*}
[] P & \land <> Q & <> (R \lor \neg P) \\
[] P & \\
<> Q & <> (R \lor \neg P)
\end{align*}
\]
Example

\(M, w \models A \land B \iff M, w \models A \text{ and } M, w \models B \)

\[
\begin{array}{c}
[] \ P & \leftrightarrow Q & \leftrightarrow (R \lor \neg P) \\
[] \ P \\
\leftrightarrow \ Q & \leftrightarrow (R \lor \neg P) \\
\leftrightarrow \ Q \\
\leftrightarrow \ (R \lor \neg P)
\end{array}
\]
Example

\[M, w \models \Diamond A \text{ iff there is } u \text{ s.th. } wRu \text{ and } M, u \models A \]

\[
\begin{array}{c}
\Box P & \land & \lnot Q & \land & \lnot (R v \lnot P) \\
\Box P \\
\lnot Q & \land & \lnot (R v \lnot P) \\
\lnot Q \\
\lnot (R v \lnot P) \\
\end{array}
\]

R

R

R

R v \lnot P

Q
$M, w \models \square A$ iff for all u: if wRu then $M, u \models A$

```
[] P & <> Q & <> (R v ~ P)
    [] P
    <> Q & <> (R v ~ P)
        <> Q
        <> (R v ~ P)
```

```
R         R
```

```
R v ~ P
P
```

```
Q
P
```
Validity and satisfiability in a class of models

Outline of the tableaux method

Example

\[M, w \models A \vee B \iff M, w \models A \text{ or } M, w \models B \]

premodel 1

\[
\begin{aligned}
\Box P & \land \leftrightarrow Q & & \leftrightarrow (R \vee \neg P) \\
\Box P \\
\leftrightarrow Q & & \leftrightarrow (R \vee \neg P) \\
\leftrightarrow Q \\
\leftrightarrow (R \vee \neg P)
\end{aligned}
\]

premodel 2

\[
\begin{aligned}
\Box P & \land \leftrightarrow Q & & \leftrightarrow (R \vee \neg P) \\
\Box P \\
\leftrightarrow Q & & \leftrightarrow (R \vee \neg P) \\
\leftrightarrow Q \\
\leftrightarrow (R \vee \neg P)
\end{aligned}
\]

41 / 97
Validity and satisfiability in a class of models

Outline of the tableaux method

Example

Premodel 1

Premodel 2
Validity and satisfiability in a class of models

Example

Outline of the tableaux method

\[\begin{align*}
\Box P & \land \langle\rangle Q & \land \langle\rangle (R \lor \neg P) \\
\Box P \\
\langle\rangle Q & \land \langle\rangle (R \lor \neg P) \\
\langle\rangle Q \\
\langle\rangle (R \lor \neg P)
\end{align*} \]

premodel 1

\[\begin{align*}
R & \lor R \\
R \lor \neg P \\
P & \lor R
\end{align*} \]

\[M, w \models P \text{ then } P \in V(w) \]

\[\begin{align*}
\neg P & \lor P
\\
\neg Q & \lor Q
\\
\neg R & \lor R
\end{align*} \]

Model

\[\text{extraction} \]
A short history of tableaux

Handwritten proofs since 1950’s

■ ... Sequent calculi [Beth, Gentzen]
■ Tableaux calculi
 (tableau proof = sequent proof backwards)
■ Kripke: explicit accessibility relation
■ Smullyan, Fitting: uniform notation
■ Single-step tableaux [Massacci]
 \[\sigma : \Diamond A \implies \sigma, n : A \]
■ Tableaux by graph rewriting [Castilho et al.]

Nowadays: automated provers

■ fast: FaCT [Horrocks], LWB [Heuerding, Jäger et col.], K-SAT [Giunchiglia&Sebastiani]
■ generic: TWB [Abate&Goré], LoTREC
Part 2: Practice

3 LoTREC
- Language
- Rules
- Strategies
- Tableau notation
- Do the algorithms do the right thing?

4 Implementing logics
- Classical logic
- Modal logic K
- Multi-modal logic K_n
- KT
- KD
- S4
- Intuitionistic logic LJ
- Model checking in LoTREC
- PDL
- Suggestions
A short history of LoTREC

- before 2000: theoretical bases (Luis Fariñas del Cerro, Olivier Gasquet, Andreas Herzig)
- David Fauthoux [2000]
 - rewriting kernel
 - event-based implementation
 - K, KT, KB
- Mohamad Sahade [2002-2005]
 - loopchecking
 - more logics: S4, K4, …
 - general completeness and termination proofs
- Bilal Saïd [2006-2010]
 - LTL, PDL…
 - Confluence & commutative patterns
 - Model checking
 - graph rewriting basis & their theoretical properties
 - GUI, full web accessibility, step-by-step run,…
 - …
The black box

Logic Definition

Input Formula
- Partial Premodel

LoTREC

Graphs
- Extensible to models
- Not Extensible to models
Outline

3 LoTREC
 - Language
 - Rules
 - Strategies
 - Tableau notation
 - Do the algorithms do the right thing?

4 Implementing logics
 - Classical logic
 - Modal logic K
 - Multi-modal logic K_n
 - KT
 - KD
 - S4
 - Intuitionistic logic LJ
 - Model checking in LoTREC
 - PDL
 - Suggestions
User-defined language

Atomic propositions

- Any constant symbol = Capital_1st_letter_words

Formulas

- Prefix notation (but can be displayed in infix form)
- Priority and associativity to avoid printing parentheses

Example (definition)

<table>
<thead>
<tr>
<th>name</th>
<th>arity</th>
<th>display</th>
</tr>
</thead>
<tbody>
<tr>
<td>not</td>
<td>1</td>
<td>~ _</td>
</tr>
<tr>
<td>and</td>
<td>2</td>
<td>_ & _</td>
</tr>
<tr>
<td>nec</td>
<td>1</td>
<td>[] _</td>
</tr>
<tr>
<td>pos</td>
<td>1</td>
<td><> _</td>
</tr>
</tbody>
</table>

Example (usage)

- pos P
 - displayed: <> P
- and not Q not P
 - displayed: ~ Q & ~ P
Outline

3 LoTREC
 - Language
 - Rules
 - Strategies
 - Tableau notation
 - Do the algorithms do the right thing?

4 Implementing logics
 - Classical logic
 - Modal logic K
 - Multi-modal logic K_n
 - KT
 - KD
 - S4
 - Intuitionistic logic LJ
 - Model checking in LoTREC
 - PDL
 - Suggestions
Truth conditions
+ Structural constraints

\[M, w \models A \land B \text{ iff } \]
\[M, w \models A \text{ and } M, w \models B \]

as Graph rewriting rules

\[A \land B \]
\[A \]
\[B \]
On paper

Truth conditions

+ Structural constraints

as Graph rewriting rules

\[M, w \vdash \Diamond A \iff \exists u \text{ s.th. } wRu \text{ and } M, u \vdash A \]
Truth conditions

+ Structural constraints

as Graph rewriting rules

Model is reflexive
Graph rewriting rule as “if Conditions ... then Actions”

Rule And
 hasElement node and variable A variable B
 add node variable A
 add node variable B
End
Graph rewriting rule as “if Conditions ... then Actions”

Rule Pos

- `hasElement node1 pos variable A`
- `createNewNode node2`
- `link node1 node2 R`
- `add node2 variable A`

End
In LoTREC

Graph rewriting rule as “if Conditions ... then Actions”

Rule ReflexiveEdges
 isNewNode node
 link node node R
End
Semantics of rules: the basic idea

Apply rule to a graph $G = \text{apply to every formula in every node}$

\implies strategies get more declarative

\implies proofs get easier

Tableau rules expand directed graphs by

- adding links
- adding nodes
- adding formulas
- duplicating the graph

$$\text{rule}(G) = \{G_1, \ldots, G_n\}$$

$$\text{rule}(\{G_1, \ldots, G_n\}) = \text{rule}(G_1) \cup \ldots \cup \text{rule}(G_n)$$
Managing graph copies: depth-first

Premodel$_1$ Premodel$_2$

... ...

Premodel$_n$
Outline

3 LoTREC
 - Language
 - Rules
 - Strategies
 - Tableau notation
 - Do the algorithms do the right thing?

4 Implementing logics
 - Classical logic
 - Modal logic K
 - Multi-modal logic K_n
 - KT
 - KD
 - S4
 - Intuitionistic logic LJ
 - Model checking in LoTREC
 - PDL
 - Suggestions
Why a strategy?

- **Apply rules in order:**

  ```
  Strategy performOnce
  Stop
  And
  Or
  ...
  ```

- **Saturation:**

  ```
  Strategy CPL_strat
  repeat
  Stop
  NotNot
  And
  Or
  end
  ```

  ```
  Strategy K_strat
  repeat
  CPL
  Pos
  Nec
  end
  ```
Semantics of strategies

- block: rule1 ... rule_n ... anotherStrategy ...
 apply all applicable rules in order then stop

Example

Strategy CPL
 Stop
 And
 Or
 Not_Not
 ...

Language Rules Strategies Tableau notation Do the algorithms do the right thing?
Semantics of strategies

- block: `rule1 ... rulen ... anotherStrategy ...`
 apply all applicable rules in **order** then **stop**

- **repeat** block **end**
 repeat until no rule applicable (**saturation**)

Example

Strategy **K**

repeat
 CPL
 Pos
 Nec
end

For simple logics: **repeat** and blocks are sufficient!
Semantics of strategies

- block: rule1 ... rulen ... anotherStrategy ...
 apply all applicable rules in order then stop

- repeat block end
 repeat until no rule applicable (saturation)

- firstRule block end
 apply first applicable rule, then stop (unfair!) cf. higher-order proof assistants

Example

repeat
 firstRule
 rule1
 rule2 X
 end
end

rule1 is always applicable
rule2 is applicable
BUT never applied!
Semantics of strategies

- block: `rule1 ... rulen ... anotherStrategy ...`
 apply all applicable rules in `order` then `stop`

- `repeat` block `end`
 repeat until no rule applicable (saturation)

- `firstRule` block `end`
 apply first applicable rule, then stop (unfair!) cf. higher-order proof assistants

- `allRules` block `end`
 exactly as a “block”, but needed inside `firstRule`

Example
```
  firstRule
    rule1
    allRules
      rule2
      rule3
    end
  rule4
end
```
Semantics of strategies

- **block**: `rule1 ... rulen ... anotherStrategy ...`
 apply all applicable rules in **order** then **stop**

- **repeat** block **end**
 repeat until no rule applicable (**saturation**)

- **firstRule** block **end**
 apply first applicable rule, then stop (**unfair!**) cf. higher-order proof assistants

- **allRules** block **end**
 exactly as a “**block**”, but needed inside **firstRule**

- **applyOnce** rule
 apply the rule on **only one occurrence**
Outline

3 LoTREC
- Language
- Rules
- Strategies
- Tableau notation
- Do the algorithms do the right thing?

4 Implementing logics
- Classical logic
- Modal logic K
- Multi-modal logic K_n
- KT
- KD
- S4
- Intuitionistic logic LJ
- Model checking in LoTREC
- PDL
- Suggestions
Tableau definition

The set of tableaux for formula A with strategy S is the set of graphs obtained by applying the strategy S to an initial single-node graph whose root contains only A.

- Notation: $S(A)$

Remark
our tableau = “tableau branch” in the literature
(sounds odd to call a graph a branch)
Open or Closed?

- A **node** is closed iff it contains "**False**" (unless...)
- A **tableau** is closed iff it has a **closed node**
- A **set of tableaux** is closed iff all its elements are closed

An open tableau is a premodel
\[\implies\text{ build a model}\]
Outline

3 LoTREC
- Language
- Rules
- Strategies
- Tableau notation
- Do the algorithms do the right thing?

4 Implementing logics
- Classical logic
- Modal logic K
- Multi-modal logic K_n
- KT
- KD
- $S4$
- Intuitionistic logic LJ
- Model checking in LoTREC
- PDL
- Suggestions
Formal properties

To be proved for each strategy S:

- **Termination**
 For every A, $S(A)$ terminates.

- **Soundness**
 If $S(A)$ is closed then A is unsatisfiable.

- **Completeness**
 If $S(A)$ is open then A is satisfiable.
Soundness proofs: easy (we just apply truth conditions)
Termination proofs: not so easy (case-by-case)
Completeness proofs...
 ... for fair strategies: standard techniques work “in most cases”
 but fair strategies do not terminate in general
 ... for terminating strategies: difficult
 rigorous proofs rare even for the basic modal logics!
 reason: strategy = imperative programming
In general. . .

BUT soundness + termination is practically sufficient (e.g. when experimenting with a logic):

- given: class of models C, strategy S, formula A
- apply strategy S to A
- take an open tableau and build pointed model (M, w)
- check if M in desired class of models
- check if $M, w \models A$
A general termination theorem

[O. Gasquet et al., AIML 2006]

- IF for every rule ρ:
 - the RHS of ρ contains strict subformulas of its LHS
 - AND
 - some restriction on node creation

- THEN
 - for every formula A:
 - the tableaux construction terminates
Another general termination theorem

[O. Gasquet et al., AIML 2006]

- IF for every rule ρ:
 - the RHS of ρ contains subformulas of its LHS
 - AND
 - some restriction on node creation
 - AND
 - some loop testing in the strategy
- THEN
 - for every formula A:
 - the tableaux construction terminates
Part 2: Practice

3 LoTREC
- Language
- Rules
- Strategies
- Tableau notation
- Do the algorithms do the right thing?

4 Implementing logics
- Classical logic
- Modal logic K
- Multi-modal logic K_n
- KT
- KD
- S4
- Intuitionistic logic LJ
- Model checking in LoTREC
- PDL
- Suggestions
How to get LoTREC

http://www.irit.fr/Lotrec (Capital “L”)

- Download ⇒ Executable to get LoTREC_2.0.zip
 - unzip
 - run file run.bat
Outline

3 LoTREC
- Language
- Rules
- Strategies
- Tableau notation
- Do the algorithms do the right thing?

4 Implementing logics
- Classical logic
- Modal logic K
- Multi-modal logic K_n
- K_T
- K_D
- S4
- Intuitionistic logic LJ
- Model checking in LoTREC
- PDL
- Suggestions
How to proceed

CPL: Classical Propositional Logic

1. From the task pane, open:
 - *Open Predefined logic* \(\Rightarrow\) *Others* \(\Rightarrow\) *CPL*

2. Run with
 - *Build Models*

3. Why these results?
 - Predefined formula
 - Predefined Main strategy

4. Review the logic definition: *Connectors, Rules*…

5. Change the formula

6. Re-run…
Adding “↔”

What about formulas with “↔” connector?

1. Save as CPL locally as “CPL_complete.xml”
2. Add to Connectors:
<table>
<thead>
<tr>
<th>name</th>
<th>arity</th>
<th>display</th>
<th>priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>equiv</td>
<td>2</td>
<td><-></td>
<td>0 (lowest)</td>
</tr>
</tbody>
</table>
3. Add to Rules:
 Equiv, and NotEquiv
4. Call them in the strategy
5. Try some formulas...
Outline

3 LoTREC
- Language
- Rules
- Strategies
- Tableau notation
- Do the algorithms do the right thing?

4 Implementing logics
- Classical logic
- Modal logic K
- Multi-modal logic K_n
- KT
- KD
- S4
- Intuitionistic logic LJ
- Model checking in LoTREC
- PDL
- Suggestions
From CPL to K

- Here: minimal set of connectors \neg, \land, \Box only
- Rules of CPL
 - Rule for $\neg\Box A$:
 - for every $\neg\Box A$ at every node w:
 - create a successor u and add $\neg A$ to it
 - Rule for $\Box A$:
 - for every $\Box A$ at every w, and for every R-successor u of w:
 - add A to u
- Strategy: saturate with all the rules...
Rules

- **Rule NotNec**
 - `hasElement w pos variable a`
 - `createNewNode u`
 - `link w u R`
 - `add u variable a`

- **Rule Nec**
 - `hasElement w nec variable a`
 - `isLinked w u R`
 - `add u variable a`
Strategies

1. Continue with your “CPL_complete.xml”,
 or
 Open Predefined logic → Others → CPL_complete
2. Add the nec connector
3. Add the rules Nec and NotNec
4. Add a new strategy KStrategy which calls repeatedly CPLStrategy and then the rules Pos and Nec
5. Test with [] P & <> Q & <> (R ∨ ~ P)
 i.e. and nec P and pos Q pos or R not P
6. Test with other formulas...
Outline

3 LoTREC
- Language
- Rules
- Strategies
- Tableau notation
- Do the algorithms do the right thing?

4 Implementing logics
- Classical logic
- Modal logic K
- Multi-modal logic K_n
- KT
- KD
- S4
- Intuitionistic logic LJ
- Model checking in LoTREC
- PDL
- Suggestions
From K To K_n

- Replace the connector □ by [_-]
- Change all the predefined formulae 😞
- Change the modal rules: Nec and NotNec

Rule Nec_K

```
hasElement w nec variable a
isLinked w u R
add u variable a
```

Rule Nec_Multimodal_K

```
hasElement w nec variable r
variable a
isLinked w u variable r
add u variable a
```
How to proceed

1. From the task pane, open:

 Open Predefined logic \implies *Others* \implies *Multimodal-K*

2. Check $\neg[1]P \land \neg[2]\neg P$, …
Outline

3 LoTREC
- Language
- Rules
- Strategies
- Tableau notation
- Do the algorithms do the right thing?

4 Implementing logics
- Classical logic
- Modal logic K
- Multi-modal logic Kₙ
- KT
- KD
- S4
- Intuitionistic logic LJ
- Model checking in LoTREC
- PDL
- Suggestions
Accessibility relation R is reflexive

- **Aim:** close all tableaux for $\neg(\Box P \rightarrow P)$ (negation of axiom T)
- **Idea$_1$:** integrate reflexivity into the truth condition
 - $M, w \models \Box A$ iff $M, w \models A$, and $M, u \models A$ for every u that is accessible from w via R
- **Idea$_2$:** explicitly add reflexive edges to the graphs
From K to KT, ctd.

1. **Save** *Monomodal-K* as *Monomodal-KT*

2. **Idea**₁: add new rule

 Rule *NecT*

 hasElement `w` *nec* *variable* `a`

 add `w` *variable* `a`

3. **Idea**₂: add new rule

 Rule *Reflexive_edges_for_R*

 isNewNode `w`

 link `w` `w` *R*

4. Call new rule in the strategy

5. Check *P* ∧ □¬*P*, *P* ∧ □□¬*P*, ...
Outline

3 LoTREC
- Language
- Rules
- Strategies
- Tableau notation
- Do the algorithms do the right thing?

4 Implementing logics
- Classical logic
- Modal logic K
- Multi-modal logic K_n
- KT
- KD
- S4
- Intuitionistic logic LJ
- Model checking in LoTREC
- PDL
- Suggestions
Accessibility relation R is serial

- **Aim:** close all tableaux for $\Box P \land \Box \neg P$ (negation of axiom D)
- **Naive idea:** just add edges

 Rule `makeSerial`

  ```
  isNewNode w
  ```
 (match a node)

  ```
  createNewNode u
  link w u R
  ```

 \implies will loop
From K to KD, ctd.

Accessibility relation R is serial

- Idea: add edges only when needed and not created elsewhere
 - **Rule** `makeSerial`
 - `hasElement` w nec variable a
 - `hasNotElement` w not nec variable b
 - `createNewNode` u
 - `link` w u R

- Call **rule** `makeSerial` in the strategy

- **Check** $\Box P \land \Box \neg P$... \Rightarrow sound but suboptimal

- avoid too many successor nodes: apply `makeSerial` only once
 - `applyOnce makeSerial`
From K to KD, ctd.

Accessibility relation R is serial

- Idea: add edges only when needed and not created elsewhere

 Rule `makeSerial`

 `hasElement` w nec variable a

 `hasNotElement` w not nec variable b

 `createNewNode` u

 `link` w u R

- Call rule `makeSerial` in the strategy

- Check $\Box P \land \Box \neg P \ldots \Rightarrow$ sound but suboptimal

- Avoid too many successor nodes: apply `makeSerial` only once

 `applyOnce` `makeSerial`
Outline

3 LoTREC
- Language
- Rules
- Strategies
- Tableau notation
- Do the algorithms do the right thing?

4 Implementing logics
- Classical logic
- Modal logic K
- Multi-modal logic K_n
- KT
- KD
- $S4$
- Intuitionistic logic LJ
- Model checking in LoTREC
- PDL
- Suggestions
From KT to S4

- Accessibility relation R is reflexive and transitive ($S4 = KT4$)
- Aim: close all tableaux for $\neg(\Box P \rightarrow \Box \Box P)$
 (negation of axiom 4)
- Idea$_1$: integrate reflexivity and transitivity into the truth condition
 - $M, w \vDash \Box A$ iff $M, w \vDash A$, and $M, u \vDash \Box A$ for every u that is accessible from w via R
- Idea$_2$: ...
From KT to S4, ctd.

1. Save Monomodal-KT as Monomodal-S4
2. Copy/Paste rule Nec, and rename it as Nec4
3. Idea$_1$:
 Rule Nec4
 hasElement node nec R variable a
 isLinked node node’ R

 add node’ nec R variable a
4. Check $\neg(\Box P \rightarrow \Box \Box P)$, i.e. $\Box P \land \neg\Box \Box P$
5. Test $\Box \neg \Box P$...
Taming S4

- Input formula $\square \neg \square P$ loops!
- Execute step-by-step (‘Step By Step’ instead of ‘Build Premodels’ button)
- Observe: if no clash wasn’t found after 2 nodes, there is no chance to find it later
 \implies no need to create successors for nodes that are included in an ancestor!
 - hypothesis: nodes have been locally saturated before checking for loops
Add the rule loopTest (cf. predefined S4_Optimal)

Rule loopTest

isNewNode node’ (required only here)

isAncestor node node’

contains node node’ (or: haveSameFormulaSet)

mark node’ CONTAINED

link node’ node Loop (optional, marks the inclusion)

add condition to rule NotNec: IsNotMarked w CONTAINED

Call it in the strategy

guarantee that nodes are saturated before loopchecking:
call loopTest after the CPL rules and rule NecT

Run again...
Outline

3 LoTREC
- Language
- Rules
- Strategies
- Tableau notation
- Do the algorithms do the right thing?

4 Implementing logics
- Classical logic
- Modal logic K
- Multi-modal logic K_n
- KT
- KD
- S4
- Intuitionistic logic LJ
- Model checking in LoTREC
- PDL
- Suggestions
From S4 to LJ

Accessibility relation R is reflexive, transitive, and hereditary

- $M, w \models A \rightarrow A$ iff for all u such that wRu, $M, u \nvdash A$ or $M, u \models A$

- Tableau method requires signed formulas
 - In LoTREC: define connectors mTrue and mFalse

- Rules:

 Rule mFalseImp

 hasElement w mFalse imp variable a variable b

 isNotMarked w CONTAINED

 createNewNode u

 link w u R

 add u mTrue variable a

 add u mFalse variable b

 ...
From S4 to LJ, ctd.

- Rule to propagate true atoms:

 Rule mTrueAtom

 hasElement w mTrue variable a
 isAtomic variable a
 isLinked w u R

 add u mTrue variable a

- Test:

 \(((P \to Q) \to P) \to P\) \hfill (Pierce's formula)

- Add the other connectives...

- Test:

 $$\neg\neg P \to P$$
 $$P \to \neg\neg P$$
 $$P \lor \neg P$$
 ...

 Add the other connectives...
Outline

3 LoTREC
- Language
- Rules
- Strategies
- Tableau notation
- Do the algorithms do the right thing?

4 Implementing logics
- Classical logic
- Modal logic K
- Multi-modal logic K_n
- KT
- KD
- $S4$
- Intuitionistic logic LJ
- Model checking in LoTREC
- PDL
- Suggestions
Model checking

Given M, w, and A do we have $M, w \models A$?

language: not, and, or, nec, pos

1. build model M in LoTREC

   ```
   createNewNode w,  
   createNewNode u,  
   link w u R,  
   add u P,  
   ...
   ```

2. add formula A to be checked to root note

   ```
   add w isItTrue nec P  
   ```
 (to be added as dummy connector)

3. top-down: decomposition of A

   ```
   hasElement w isItTrue not variable A  
   add w isItTrue variable A  
   ...
   ```

4. bottom-up: build truth value of A ...
Model checking, ctd.

4. bottom-up: build truth value of A

hasElement w isItTrue variable A

isAtomic variable A

hasElement w variable A

markExpression w isItTrue variable A Yes

hasElement w isItTrue nec variable A

isLinked w u R

isMarkedExpression u isItTrue variable A No

markExpression w isItTrue nec variable A No

hasElement w isItTrue nec variable A

isLinked w u R

isMarkedExpressionInAllChildren w isItTrue variable A R Yes

markExpression w isItTrue nec variable A Yes
Outline

3 LoTREC
- Language
- Rules
- Strategies
- Tableau notation
- Do the algorithms do the right thing?

4 Implementing logics
- Classical logic
- Modal logic K
- Multi-modal logic K_n
- KT
- KD
- S4
- Intuitionistic logic LJ
- Model checking in LoTREC
- PDL
- Suggestions
PDL

program constructions: Kleene star, . . .
Outline

3 LoTREC
- Language
- Rules
- Strategies
- Tableau notation
- Do the algorithms do the right thing?

4 Implementing logics
- Classical logic
- Modal logic K
- Multi-modal logic K_n
- KT
- KD
- S4
- Intuitionistic logic LJ
- Model checking in LoTREC
- PDL
- Suggestions
It is up to you...

- S5; K +Universal operator
- Confluence
- LTL
- ...
Thank you!