LoTREC: Theory and Practice

B. Saïd
O. Gasquet, F. Schwarzentruber, A. Herzig

Institut de Recherche en Informatique de Toulouse - IRIT
Université Paul Sabatier - UPS

Tableaux 2009
Outline

Part 1: Theory
1. Modal logics
2. Reasoning

Part 2: Practice
3. LoTREC
4. Implementation
Part 1: Theory

1. Modal logics
 - Possible worlds models
 - Constraints on models
 - Syntax
 - Semantics

2. Reasoning
 - Classes of modal logics
 - Reasoning in a class of modal logic
 - Automated reasoning
What is a model?

- Possible worlds
 - node
 - states

- Valuation
 - labeling function
 - interpretation

- Accessibility relation
 - labeled edges
 - transitions

- Model
 - labeled graph
 - transition system
Kripke Model

Given two disjoint sets of symbols \mathcal{P} and \mathcal{I}

- $M = (W, R, V)$
 - W non-empty set of possible worlds
 - $R: \mathcal{I} \rightarrow 2^{W \times W}$ an accessibility relation
 - $V: W \rightarrow 2^\mathcal{P}$ a valuation function

- Pointed model M, w
 where $w \in W$ is the actual world
Readings of “R”

- **Alethic**
 \[wRu \text{ iff } u \text{ is possible given the actual world } w \]

- **Temporal**
 \[wRu \text{ iff } u \text{ is in the future of } w \]

- **Epistemic**
 \[wR_iu \text{ iff } u \text{ is possible for agent } i, \text{ given the actual world } w \]

- **Dynamic**
 \[wR_Pu \text{ iff } u \text{ is a possible result of the execution of the program / action } P \text{ in } w \]

Readings of $R \Rightarrow$ Properties of R
Readings of “R”

- **Alethic**
 \[wRu \iff u \text{ is possible given the actual world } w \]

- **Temporal**
 \[wRu \iff u \text{ is in the future of } w \]

- **Epistemic**
 \[wR_i u \iff u \text{ is possible for agent } I, \text{ given the actual world } w \]

- **Dynamic**
 \[wR_P u \iff u \text{ is a possible result of the execution of the program / action } P \text{ in } w \]

Readings of $R \Rightarrow$ Properties of R
Constraints on “R”

One relation:

- Serial

 there is always a future

 for all w exists u s.t. wRu

- Transitive

 future of future is future

 I know what I know

- Reflexive

 I know “smthg” i.e. it is true

- Symmetric

- Equivalence (universal)

- Confluent (Church-Rosser)

- . . .

Two or more:

- R_I included in R_J

- $R_I = R_J \cup R_K$

- $R_J = (R_I)^{-1}$

- $R_J = (R_I)^*$

 (transitive closure)

- $R_I \circ R_J = R_J \circ R_I$

- Confluent

- . . .
Constraints on “V”

- Nominal: is unique
 if $N \in V(w)$ and $N \in V(u)$ then $w = u$

- Intuitionistic: atomic propositions are persistent
 for every atom P and world w:
 if $P \in V(w)$ and wRu then $P \in V(u)$

- ...
Modal operators

- Express **non-truth functional** concepts: belief, time, action, obligation, knowledge, conditional...

- Schema $op(a_1, \ldots, a_n)$
 - $Bel_I A$: agent I believes that A
 - FA: A will be true at some point in the future
 - $After_P A$: A will be true after the execution of P

- ...

- Generic form
 - $\Box A$: A is **necessary** (true in all possible worlds)
 - $\Diamond A$: A is **possible**

- In general:
 - $\Diamond A \iff \neg \Box \neg A$
 - $\Box A \iff \neg \Diamond \neg A$
What is a formula?

BNF:

\[A ::= P | \text{op}(A_1, \ldots, A_n) \]

i.e.

\[A ::= P | \neg A | A \land A | A \lor A | \diamond A | \Box A | \langle A \rangle A | [A]A | K_A A \ldots \]

Example

- \[P \land \neg Q \land \Box Q \land \diamond (P \land \Box \neg Q) \]
- \[Door_\text{Closed} \land [\text{Open}] Door_\text{Open} \]
- \[Card_\text{Is_Red} \land K_{Ann} Card_\text{Is_Red} \land K_{Ann} \neg K_{Bob} Card_\text{Is_Red} \]
Truth conditions

- **Atoms**
 - $M, w \models P$ iff $P \in V(w)$

- **Classical connectives**
 - $M, w \models A \land B$ iff $M, w \models A$ and $M, w \models B$
 - ...

- **Non-classical operators**
 - Via the accessibility relation R
 - $M, w \models \Diamond A$ iff exists u: wRu and $M, u \models A$
 - $M, w \models \square A$ iff for all u: if wRu then $M, w \models A$
Truth conditions

- Multi-modal operators
 - $M, w \models \langle I \rangle A$ iff exists u: $wR_i u$ and $M, u \not\models A$
 - ...

- Algebraic operators
 - $M, w \models \Box^{-1} A$ iff exists u: $wR^{-1} u$ and $M, u \not\models A$
 - $M, w \models \langle I \cup J \rangle A$ iff exists u: $w(R_i \cup R_J) u$ and $M, u \not\models A$
 - $M, w \models \langle I^* \rangle A$ iff exists u: $wR^*_i u$ and $M, u \not\models A$
Temporal operators

- \(M, w \models XA \) iff exists \(u: wRu \) and \(M, u \models A \)
- \(M, w \models \diamond A \) iff exists \(n,u: wR^nu \) and \(M, u \models A \)

\[
\begin{array}{c}
A \rightarrow A \rightarrow \ldots \rightarrow A \rightarrow B \\
w \rightarrow u
\end{array}
\]

- \(M, w \models AUB \) iff exists \(u: wR^*u \) and \(M, u \models B \)
and for all \(v: (wR^*v \text{ and } vR^+u), M, v \models A \)

\[
\begin{array}{c}
A \rightarrow \ldots \\
w \rightarrow u
\end{array}
\]
Part 1: Theory

1 Modal logics
 - Possible worlds models
 - Constraints on models
 - Syntax
 - Semantics

2 Reasoning
 - Classes of modal logics
 - Reasoning in a class of modal logic
 - Automated reasoning
Basic modal logic

$K = \text{the set of all models (Kripke)}$

- A is valid in K iff for all M in K and all w in M: $M, w \vDash A$

Example

- $\Box (P \lor \neg P)$
- $\Box (P \land Q) \rightarrow \Box P \land \Box Q$
- $\Box P \land \Box Q \rightarrow \Box (P \land Q)$

- A is satisfiable in K iff for some M in K and some w in M: $M, w \vDash A$

Example

- P
- $P \land \neg \Box P$
- $P \land \Box \neg P$
- $\Box P \land \neg \Box \Box P$
Other Classes

$C = \text{some subset of } K$

- A is valid in C iff for all M in C and all w in M: $M, w \vDash A$

Example

- $\Box P \rightarrow P$ invalid in K

 $\Box P, \neg P \rightarrow P$

- $\Box P \rightarrow P$ valid in the class of reflexive models

- $\Diamond P \rightarrow \Diamond \Diamond P$ valid in transitive models

- A is satisfiable in C iff for some M in C and some w in M: $M, w \vDash A$

Example

- $P \land \Box \neg P$ is satisfiable in K

- $P \land \Box \neg P$ is unsatisfiable in reflexive models

A is valid in C iff $\neg A$ is unsatisfiable in C
Exemple of classes

- Singleton models \(\{ M : \text{card}(W) = 1 \} \)
 \[\Diamond A \rightarrow \square A \]

- Reflexive models (KT)
 \[\square A \rightarrow A \]

- Transitive models (S4)
 \[\Diamond \Diamond A \rightarrow \Diamond A \]

- Equivalence relation (S5)
 \[A \rightarrow \square \Diamond A \]

- ...
Reasoning problems

- Model checking
 Given A, M and w do we have $M, w \models A$?

- Validity
 Given A and C is A valid in C?

- Satisfiability
 Given A and C does there exist M in C and w in M: $M, w \models A$?

- Model construction
 Given A and C compute M in C and w in M: $M, w \models A$

How can we solve them automatically?
Classical logic [Beth]

Checking the satisfiability of A_0

1. Try to find M and w by applying truth conditions (tableaux rules)
 - $M, w \vDash A \land B \implies$ add $M, w \vDash A$ and add $M, w \vDash B$
 - $M, w \vDash A \lor B \implies$ add either $M, w \vDash A$ or add $M, w \vDash B$ (non det.)
 - $M, w \vDash \neg A \implies$ don’t add $M, w \vDash A$!!
 - $M, w \vDash \neg \neg A \implies$ add $M, w \vDash A$
 - $M, w \vDash \neg (A \lor B) \implies$ add $M, w \vDash \neg A$ and add $M, w \vDash \neg B$
 - $M, w \vDash \neg (A \land B) \implies$ add $M, w \vDash \neg A$ or add $M, w \vDash \neg B$

2. apply while possible (saturation)

3. is M a model?
 - NO if both $M, w \vDash B$ and $M, w \vDash \neg B$ (closed tableau)
 - ELSE M is a model for A_0 (open tableau)

$W = \{ w \}$, $R = \emptyset$, $V(w) = \{ P : M, w \vDash P \}$
Classical logic [Beth]

Checking the satisfiability of A_0

1. Try to find M and w by applying truth conditions (tableaux rules)
 - $M, w \models A \land B \implies$ add $M, w \not\models A$ and add $M, w \not\models B$
 - $M, w \models A \lor B \implies$ add either $M, w \models A$ or add $M, w \not\models B$ (non det.)
 - $M, w \models \neg A \implies$ don’t add $M, w \models A$!
 - $M, w \not\models \neg \neg A \implies$ add $M, w \not\models A$
 - $M, w \not\models \neg (A \lor B) \implies$ add $M, w \models \neg A$ and add $M, w \models \neg B$
 - $M, w \not\models \neg (A \land B) \implies$ add $M, w \models \neg A$ or add $M, w \models \neg B$

2. apply while possible (saturation)

3. is M a model?
 - NO if both $M, w \models B$ and $M, w \models \neg B$ (closed tableau)
 - ELSE M is a model for A_0 (open tableau)

$W = \{w\}, \quad R = \emptyset, \quad V(w) = \{P : M, w \models P\}$
Modal logic

Basic cases

- $M, w \models \diamond A$
 - \Rightarrow add some new node u, add wRu, add $M, u \models A$

- $M, w \models \Box A$
 - \Rightarrow for all node u s.t. wRu, add $M, u \models A$

Apply truth conditions = Build a labeled graph

- creates nodes
- add links
- add formulas to nodes
Example

a node with the input formula

\[[] \, P \& \leftrightarrow \, Q \& \leftrightarrow \, (R \lor \sim \, P) \]
Example

\[M, w \not\models A \land B \text{ iff } M, w \not\models A \text{ and } M, w \not\models B \]

\[A \text{ is } \Box P \]

\[B \text{ is } \Diamond Q \land \Diamond (R \lor \neg P) \]

\[[] P \land \leftrightarrow Q \land \leftrightarrow (R \lor \neg P) \]
Example

\[M, w \models A \land B \text{ iff } M, w \models A \text{ and } M, w \models B \]

- \(A \) is \(\Box P \)
- \(B \) is \(\Diamond Q \land \Diamond (R \lor \neg P) \)

\[
\begin{align*}
[] P & \land \leftrightarrow Q \land \leftrightarrow (R \lor \neg P) \\
[] P & \\
\leftrightarrow Q & \land \leftrightarrow (R \lor \neg P)
\end{align*}
\]
Example

\[M, w \models A \land B \iff M, w \models A \text{ and } M, w \models B \]

\[
\begin{align*}
[] P & \land <> Q & <> (R \lor \neg P) \\
[] P & \\
<> Q & <> (R \lor \neg P) \\
<> Q & \\
<> (R \lor \neg P)
\end{align*}
\]
Example

\[M, w \models \Diamond A \text{ iff } \exists u \mid wRu \text{ and } M, u \models A \]

\[
\begin{array}{c}
\Box P & \land & \diamondsuit Q & \land & \diamondsuit (R \lor \neg P) \\
\Box P \\
\diamondsuit Q & \land & \diamondsuit (R \lor \neg P) \\
\diamondsuit Q \\
\diamondsuit (R \lor \neg P) \\
\end{array}
\]

\[
\begin{array}{c}
R \\
Q \\
\end{array}
\]
Example

\[M, w \models □A \iff \forall u : wRu \text{ then } M, u \models A \]

\[
\begin{align*}
\□ P & \land \langle\rangle Q \land \langle\rangle (R v \sim P) \\
\□ P & \\
\langle\rangle Q & \land \langle\rangle (R v \sim P) \\
\langle\rangle Q & \\
\langle\rangle (R v \sim P) &
\end{align*}
\]
Example

\[M, w \models A \lor B \text{ iff } M, w \models A \text{ or } M, w \models B \]

Premodel 1

Premodel 2
Example

[p] P & [<> Q & [<> (R v ~ P)]
[p]
[<> Q & [<> (R v ~ P)]
[<> Q
[<> (R v ~ P)]

premodel 1

[p] P & [<> Q & [<> (R v ~ P)]
[p]
[<> Q & [<> (R v ~ P)]
[<> Q
[<> (R v ~ P)]

premodel 2
Example

Premodel 1

\[
\begin{align*}
\Box P & \land \langle< Q & \land \langle< (R \lor \neg P) \\
\Box P & \\
\langle< Q & \land \langle< (R \lor \neg P) \\
\langle< Q & \\
\langle< (R \lor \neg P) &
\end{align*}
\]

\[
\begin{align*}
R & \\
R & \\
R & \\
\end{align*}
\]

\[
\begin{align*}
R \lor \neg P & \\
P & \\
R & \\
\end{align*}
\]

\[
\begin{align*}
Q & \\
P & \\
Q & \\
\end{align*}
\]

Model

\[
\begin{align*}
\neg P & \lor P \\
\neg Q & \lor Q \\
\neg R & \lor R \\
\end{align*}
\]

Extraction

\[
M, w \vDash P \text{ then } P \in V(w)
\]
Historical remarks

Handwritten proofs since 1950’s

- ... Sequent calculi [Beth, Gentzen]
- Tableau calculi
 (tableau proof = sequent proof backwards)
- Kripke: explicit accessibility relation
- Smullyan, Fitting: uniform notation
- Single-step tableau [F. Massacci]
 \[\sigma : \Diamond A \Rightarrow \sigma, n : A \]
- Tableau by graph rewriting [Castilho et al.] ...

Nowadays mechanized systems

- Fast provers: FaCT [Horrocks], LWB [Heuerding]
 K-SAT [Giunchiglia & Sebastiani]
- Generic provers: TWB [Abate & Goré], LoTREC
Part 2: Practice

3 LoTREC
 - Language
 - Rules
 - Strategies
 - Tableau notation
 - Certifying algorithms

4 Implementation
 - Classical logic
 - Modal logic K
 - Multi-modal logic K_n
 - $KT \oplus K_n$
 - $S4 \oplus K_n$
 - Suggestions
LoTREC: named after Toulouse-LauTREC
Time-line

- 1999, D. Fauthoux: rewriting kernel + CPL and K
- 2002-2005 M. Sahade: loops in S4, many logics, talking with SAT, completeness and termination general proofs...
- 2006-2009 Me:
 - graph rewriting basis & their theoretical properties,
 - Model checking, LTL, PDL... and other (variants of) logics,
 - One occurrence rule application,
 - Confluence & commutative patterns,
 - Step-by-step run + user interference,
 - GUI, full-web accessibility & performance issues,
 - ...
The black box

Logic Definition

Input Formula
 Partial Premodel

LoTREC

Graphs
 Extensible to models
 Not Extensible to models
User-defined language

Atomic propositions
- Any constant symbol = Capital 1st letter words

Formulas
- defined uniformly as Terms (prefix notation)
- displayed in ≠ form (ex. infix notation)

Example (definition)

<table>
<thead>
<tr>
<th>name</th>
<th>arity</th>
<th>display</th>
</tr>
</thead>
<tbody>
<tr>
<td>not</td>
<td>1</td>
<td>~ -</td>
</tr>
<tr>
<td>and</td>
<td>2</td>
<td>- & -</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pos</td>
<td>1</td>
<td><> -</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example (usage)

- pos P
 - <> P
- and not Q not P
 - ~ Q & ~ P
On paper

Truth conditions

+ Structural constraints

$M, w \models A \land B$ iff

$M, w \not\models A$ and $M, w \not\models B$

as

Graph rewriting rules

\[
\text{A} \& \text{B} \\
\text{A} \\
\text{B}
\]
On paper

Truth conditions

+ Structural constraints

as Graph rewriting rules

\[M, w \vdash \Diamond A \text{ iff } \exists u \mid wRu \text{ and } M, u \vdash A \]
On paper

Truth conditions + Structural constraints as Graph rewriting rules

Model is reflexive
In LoTREC

Graph rewriting rule as “if Conditions ... then Actions”

Rule And

hasElement node and variable A variable B

add node variable A
add node variable B

End
In LoTREC

Graph rewriting rule as “if Conditions ... then Actions”

Rule Pos

hasElement node1 pos variable A

createnewnode node2

link node1 node2 R

add node2 variable A

End
Graph rewriting rule as “if Conditions ... then Actions”

Rule ReflexiveArcs

```plaintext
isNewNode node

link node node R
End
```
Informal definition

Apply rule = apply to every formula in every node (unless..)

→ strategies get more declarative
→ proofs get easier

Tableau rules expand directed graphs by

- adding links
- adding nodes
- adding formulas
- duplicating the graph

\[
\text{rule}(G) = \{ G_1, \ldots, G_n \}
\]

\[
\text{rule}(\{ G_1, \ldots, G_n \}) = \text{rule}(G_1) \cup \ldots \cup \text{rule}(G_n)
\]
Non-determinism
Non-determinism
Non-determinism
Non-determinism
Non-determinism

Premodel$_{1}$ Premodel$_{2}$ Premodel$_{n}$
Why a strategy?

- An order of rules application:
 - **Strategy** CPL
 - Stop
 - And
 - Or...

- **Saturation:**
 - **Strategy** K
 - repeat
 - CPL
 - Pos
 - Nec
 - end
Semantics

- **block**: `rule1 ... rulen ... anotherStrategy ...`
- apply all applicable rules in **order** then **stops**

Example

Strategy CPL

- Stop
- And
- Or
- Not_Not

...
Semantics

- block: `rule1 ... ruleN ... anotherStrategy ...`
 apply all applicable rules in order then **stops**

- **repeat** block **end**
 repeat until no rule applicable (**saturation**)

Example

Strategy K

```
repeat
  CPL
    Pos
    Nec
end
```

In most cases: **repeat** and blocks are sufficient!
Semantics

- **block**: `rule1 ... rule n ... anotherStrategy ...` apply all applicable rules in **order** then **stops**

- **repeat** block **end**
 repeat until no rule applicable (**saturation**)

- **firstRule** block **end**
 apply first applicable rule, then stop (**unfair!**)

Example

```c
repeat
  firstRule
  rule1
  rule2  x
  end
end
```

`rule1` is always applicable
`rule2` is applicable
BUT never applied!
Semantics

- **block**: `rule1 ... ruleren ... anotherStrategy ...`
 apply all applicable rules in **order** then **stops**

- **repeat block end**
 repeat until no rule applicable (**saturation**)

- **firstRule block end**
 apply first applicable rule, then stop (**unfair!**)

- **allRules block end**
 exactly as a “**block**”, but needed inside **firstRule**

Example

```
[89x107] firstRule
rule1
[101x80] allRules
[113x67] rule2
[113x53] rule3
end
[89x12] end
```

[33 / 56]
Semantics

- block: `rule1 ... rulesn ... anotherStrategy ...`
 apply all applicable rules in order then stops

- `repeat block end`
 repeat until no rule applicable (saturation)

- `firstRule block end`
 apply first applicable rule, then stop (unfair!)

- `allRules block end`
 exactly as a “block”, but needed inside `firstRule`

- `applyOnce rule`
 apply the rule on only one occurrence
Tableau definition

The set of tableaux for A with strategy S is the set of graphs obtained by applying the strategy S to an initial single-node graph whose root contains only A.

- Notation: $S(A)$

Remark

our tableau = “tableau branch” in the literature (sounds odd to call a graph a branch)
Open or Closed?

- A node is closed iff it contains “False” (unless..)
- A tableau is closed iff it has a closed node
- A set of tableaux is closed iff all its elements are closed

An open tableau is a premodel

⇒ build a model
To be proved for each strategy S!

- **Termination**
 For every A, $S(A)$ terminates.

- **Soundness**
 If $S(A)$ is closed then A is unsatisfiable.

- **Completeness**
 If $S(A)$ is open then A is satisfiable
In general...

- Soundness proofs: easy (we apply truth conditions)
- Termination proofs: not so easy (case-by-case)
- Completeness proofs...
 - ...for fair strategies: standard techniques work “in most cases”
 but fair strategies do not terminate in general
 - ...for terminating strategies: difficult
 rigorous proofs rare even for the basic modal logics!
 reason: strategy = imperative programming
In general...

BUT soundness + termination is practically sufficient (e.g. when experimenting with a logic):

- apply strategy to A
- take an open tableau and build pointed model (M, w)
- check if M in desired class of models
- check if $M, w \models A$
A general termination theorem

[O. Gasquet et al., AIML 2006]

- IF for every rule ρ:
 - the RHS of ρ contains **strict** subformulas of its LHS
 - AND
 - some restriction on node creation

- THEN
 - for every formula A:
 - the tableaux construction terminates
Another general termination theorem

[O. Gasquet et al., AIML 2006]

- IF for every rule ρ:
 - the RHS of ρ contains subformulas of its LHS
 - AND
 - some restriction on node creation
 - AND
 - some loop testing in the strategy

- THEN
 - for every formula A:
 - the tableaux construction terminates
Termination from graph rewriting

Similarly, undecidable. . . BUT:

- **Forward closures** [D. Plump]
 - delete at least one element of a pattern on which a rule was applied ⇒ do not apply a rule twice on the same pattern ⇒ guaranteed by default in LoTREC

- **Layered graph grammars** [G. Taentzer]
 - rules of one strata i: once applied, go to next strata $i+1$ & never back again to i . . .

. . .
Part 2: Practice

3 LoTREC
- Language
- Rules
- Strategies
- Tableau notation
- Certifying algorithms

4 Implementation
- Classical logic
- Modal logic K
- Multi-modal logic K_n
- $KT \oplus K_n$
- $S4 \oplus K_n$
- Suggestions
How to get LoTREC

http://www.irit.fr/Lotrec (Capital “L”)

- Launch

- or, Download → Executable to get LoTREC_2.0.zip, so unzip, then run.bat

(I will check install problems with you during the break)
How to proceed

CPL: Classical Propositional Logic

1. From the task pane, open:
 Open Predefined logic → *Others* → *CPL*

2. Run with
 Build Models

3. Why these results?
 - Predefined formula
 - Predefined Main strategy

4. Review the logic definition: *Connectors, Rules* . . .

5. Change the formula

6. Re-run . . .
Adding “↔”

What about formulas with “↔” operator?

1. Save as CPL locally as “CPL_complete.xml”
2. Add to Connectors:
 - Name: equiv
 - Arity: 2
 - Display: _<-->_
 - Priority: 0 (or whatever)
3. Add to Rules:
 - Equiv, and NotEquiv
4. Call them in the strategy
5. Try some formulas...
Algorithm

Classical logic +

- for every $\Diamond A$ at every node w
 create a successor u and add A to it
- for every $\Box A$ at every node w, and for every successor u
 add A to u
- transform $\neg\Diamond A$ into $\Box\neg A$
- transform $\neg\Box A$ into $\Diamond\neg A$
- Strategy: saturation with all the rules...
Hints

- **Rule** Pos

 `hasElement w pos variable a`

 `createNewNode u`

 `link w u R`

 `add u variable a`

- **Rule** Nec

 `hasElement w nec variable a`

 `isLinked w u R`

 `add u variable a`
How to proceed

1. Continue with your “CPL_complete.xml”, or
 Open Predefined logic → Others → CPL_complete

2. Add the necessary connectors and rules

3. Call NotNec and NotNec in CPLStrategy

4. Create a new strategy KStrategy which calls repeatedly CPLStrategy, and the rules Pos and Nec

5. Test with
 and nec P and pos Q pos or R not P
 i.e. [] P & <> Q & <> (R v ¬ P)

6. Play with other formulas...
From K To K_n

- Replace the connector \Diamond_- by $\langle _ \rangle_-$
- Change all the predefined formulae 😄
- Change the modal rules: Pos, Nec, $NotPos$ and $NotNec$

Rule Pos_K

hasElement w pos variable a

createNewNode u
link w u R
add u variable a

Rule Pos_Multi_K

hasElement w pos variable r variable a

createNewNode u
link w u variable r
add u variable a
How to proceed

1. From the task pane, open: *Open Predefined logic* → *Others* → *Multi K*
2. Play with formulas . . .
From K_n To $KT \oplus K_n$

The idea is to have:

- Axiom T for “$R1$”: $[R1]P \rightarrow P$ as valid

Or:

- Reflexive models on “$R1$”
From K_n To $KT \oplus K_n$

1. Save $Multi\ K$ as $T + Multi\ K$
2. Add the following rule

 Rule NecT_R1

   ```
   hasElement\ node\ nec\ R1\ variable\ a
   add\ node\ variable\ a
   ```

 Or:

 Rule Reflexive_arcs_for_R1

   ```
   isNewNode\ w
   link\ w\ w\ R1
   ```

3. Call it in the strategy
4. Play …
From $\text{KT} \oplus K_n$ To $\text{S4} \oplus K_n$

Recall: $\text{S4} = \text{KT}4$

The idea is to have:

- Axiom 4 for "$R1$": $[R1]P \rightarrow [R1][R1]P$ as valid

 + Axiom T for "$R1$": $[R1]P \rightarrow P$ as valid

Or:

- Transitive models on "$R1$"

 + Reflexive models on "$R1$"
From KT ⊕ K_n To S4 ⊕ K_n

1. Save as again...
2. Copy/Paste \(\text{Nec} \), and rename it as \(\text{Nec4}_R1 \)
3. Change it to the following:

Rule Nec4_R1

\[
\text{hasElement} \ \text{node} \ \text{nec} \ R1 \ \text{variable} \ \text{a} \\
\text{isLinked} \ \text{node} \ \text{node}' \ R1
\]

\[
\text{add} \ \text{node}' \ \text{nec} \ R1 \ \text{variable} \ \text{a}
\]

Or:

Rule Transitive_arcs_for_R1

\[
\text{isLinked} \ \text{w1} \ \text{w2} \ R1 \\
\text{isLinked} \ \text{w2} \ \text{w3} \ R1
\]

\[
\text{link} \ \text{w1} \ \text{w3} \ R1
\]

But be careful with... \[R1 \langle R1 \rangle P \]
Debugging $S4 \oplus K_n$

$[R1] \langle R1 \rangle P$ is looping!

Solution:

1. Add the rule `loopTest` (from S4Optimal)

 Rule `loopTest`

 `isNewNode node'`

 `isAncestor node node'` (or `isLinked` with transitive arcs)

 `contains node node'` (or `haveSameFormulaSet` for=)

 `mark node' CONTAINED`

 `link node' node Loop` (optional)

2. Change **Pos**: do not create successors for loop nodes!

3. Call it in the strategy

4. Run again...

 PS: change the rule `Or` too, if interested in performance...
It is up to you...

- S4 with histories,
- S5, K+Universal operator,
- Confluence,
- Model checking,
- LTL, PDL (need Model checking first),
- Intuitionistic logic,
- ...
Thank you!