
An Event-B Model of the Hybrid ERTMS/ETCS
Level 3 Standard

Amel Mammar1, Marc Frappier2, Steve Jeffrey Tueno Fotso2,3, and Régine
Laleau3

1 Télécom SudParis, SAMOVAR-CNRS, France
amel.mammar@telecom-sudparis.eu

2 Laboratoire GRIL, Département d’informatique, Faculté des sciences
Université de Sherbrooke, Québec, Canada

marc.frappier@usherbrooke.ca
3 Université Paris-Est Créteil, LACL, Créteil, France

steve.tuenofotso@univ-paris-est.fr, laleau@u-pec.fr

Abstract. This paper presents an Event-B model of the ABZ2018
case study on the European Rail Traffic Management System (ERTMS)
standard. The case study focusses on the management of fixed virtual
sub-sections (VSS). We model the hybrid level 3 of the standard, which
assumes that trains may be either equipped with an on-board train in-
tegrity monitoring system (TIMS) and that they report their position
and integrity, ERTMS trains not fitted with TIMS that report only their
front position or non-ERTMS trains that do not report any information
about their position. We take into account most of the main features of
the case study. Our model is decomposed into four refinements. All proof
obligations have been discharged using the Rodin provers, except those
related to the computation of the VSS state machine, which was found
to be ambiguous (nondeterministic). Our model has been validated us-
ing ProB. The main safety property, which is that ERTMS trains do not
collide, is proved.

Keywords: Hybrid ERTMS/ETCS level 3, Event-B, ProB, control system

1 Introduction

This paper proposes an Event-B model of the hybrid ERTMS/ETCS level 3
case study [5] proposed for ABZ2018. The case study concerns the European Rail
Traffic Management System (ERTMS), the system of standards for management
and interoperation of signalling for railways by the European Union. For the sake
of concision, we only provide a brief overview of the case study. The reader is
referred to [2] for more details.

This paper is structured as follows. In Section 2, we summarize the char-
acteristics of the standard that we have taken into account in our model. In
Section 3, we describe our modelling strategy, explaining how we take into ac-
count controller and environment characteristics, while in Section 4, we present

2

an overview of our Event-B model. We describe the refinement strategy, ex-
plaining the order in which the various features of the ERTMS were taken into
account. In Section 5, we describe each refinement. In Section 6, we discuss how
the requirements and our specification of it have been verified. We conclude in
Section 7 with an appraisal of this work. In the sequel, we suppose that the
reader can read the case study text, in order to avoid unnecessary repetitions.

2 Modelled Characteristics

We model the hybrid level 3 of the standard, which assumes that trains may
be equipped with an on-board train integrity monitoring system (TIMS) and
that they report their position and integrity to the train supervisor (the system
controller, called the trackside in the case study), ERTMS trains not fitted with
TIMS that report only their front position or non-ERTMS trains that do not
report any information about their position. We assume that trains move on a
single track, all in the same direction. We also take into account trains that can
enter and move on the track without reporting their position to the supervisor
(i.e., non-ERTMS trains).

A track is divided into sections called TTD (Trackside Train Detection). A
TTD is equipped with sensors that can detect the presence of an object, which
can be a train, or something else; it cannot identify a train with this sensor. A
TTD is further divided into subsections called VSS (virtual sub-section). The
TIMS can be used to determine the VSS occupied by the train and the train’s
integrity. A train can lose its integrity by splitting into several parts.

The supervisor periodically computes an MA (Movement Authority) and
sends it to ERTMS Trains. An MA specifies the VSS that the train can move
up to, but never beyond, in order to avoid collision with another train ahead.
As stated in the case study, the computation of MAs is out of scope; we simply
nondeterministically choose an MA that avoids a collision with the trains ahead.
Trains can be connected or disconnected with the supervisor. When connected,
a train reports its position and integrity to the supervisor on a regular basis.
Timers are used to detect disconnected trains and to manage ghost trains. A
ghost train is either a physical object that is present on the track and detected
by a TTD, but for which no position report has been received, or a failure of the
TTD sensors which incorrectly report the presence of an inexistant object.

3 Modelling Conventions

We reuse the terminology introduced in [8]. A control system interacts with
its environment using sensors and actuators. A sensor measures the value of
some environment characteristic m, called a monitored variable (e.g., train on a
track), and provides this measure (e.g., detection of an object on the track) to
the software controller as an input variable i. In a perfect world, we have m = i,
but a sensor may fail. The software controller can influence the environment by
sending commands, called output variable o to actuators. An actuator influences

3

the value of some characteristics of the environment, call a controlled variable c.
Variables m and c are called environment variables. Variables i and o are called
controller variables. Finally, a controller has its own internal state variables to
perform computations. In this case study, we use Event-B state variables to
represent both environment and controller variables.

4 Model Overview

Event-B models are iteratively constructed using refinement. A model compo-
nent can either be a context or a machine. A context contains constants decla-
ration. A machine contains events that modify state variables. A machine can
refine another machine; a context can extends another context. A machine can
see contexts to have access to its constants. Each refinement adds new infor-
mation to the model; these could be new state variables, data refinement of
state variables, new events or new properties. Event-B refinement [1] allows
for guard strengthening, non-determinism reduction, and new events introduc-
tion. New events of a machine M ′ that refines M are considered to refine the
skip event of M , hence they cannot modify a variable introduced in M . Conse-
quently, all events that need to modify a variable v are introduced where v is
first declared.

Our model contains three contexts. Context C0 declares constants related
to the track. We consider a single track which is represented by an interval of
natural numbers minTTD .. maxTTD. A stronger typing using an abstract set
TTD would be more type safe, but it makes the proofs more cumbersome, as
we have experienced in the first drafts of our specification. This is why each
TTD is represented by a natural number of this interval. TTDs are ordered
using their number. The set of trains is partitioned into trains or cars (i.e., cars
that have accidentally split from a train). Constant trainKind indicates for each
actual train whether it is a TIMS train, a ERTMS train or a non-ERTMS train.
Only TIMS and ERTMS trains can connect and send their information to the
supervisor.

CONTEXT C0
SETS
TRAINS StateTTD TrainKind

CONSTANTS
freeT occupiedT Ttds minTTD maxTTD TimErtms Ertms NoErtms
Trains Cars

AXIOMS
axm1 : finite(TRAINS)
axm2 : partition(StateTTD, {freeT}, {occupiedT})
axm3 : partition(TRAINS, Trains, Cars)
axm4 : minTTD ∈ N1 ∧maxTTD ∈ N1 ∧minTTD ≤ maxTTD
axm7 : Ttds = minTTD .. maxTTD
axm8 : partition(TrainKind, {TimErtms}, {Ertms}, {NoErtms})
axm9 : trainKind ∈ Trains→ TrainKind

4

Context C1 declares the VSSs, which are also modelled as an interval of
naturals. We use a total, monotonic, surjective function TtdOfVss to associate
a VSS to its TTD.

axm4 : V ss = minV SS .. maxV SS
axm5 : TtdOfV ss ∈ V ss� Ttds
axm6 : ∀v1, v2 · {v1, v2} ⊆ V ss ∧ v1 < v2 ⇒ TtdOfV ss(v1) ≤ TtdOfV ss(v2)

Context C2 declares an abstract set StateVSS = {freeV, occupiedV, unknown,
ambiguous} to represent the states of a VSS from the supervisor view point. A
VSS in state freeV contains no train. A VSS in state occupiedV contains a single
train. State unknown denotes a VSS for which it is unknown whether there is a
train on it. State ambiguous denotes a VSS which contains at least one train; it
is not sure whether there are more than one train.

The specification is structured into four refinement steps (i.e., four machines).
Machine M0 introduces the trains, the supervisor and the unsupervised move-
ments of trains on TTDs. Machine M1 introduces the reporting of positions by
trains to the supervisor, but still without supervision of their movement. Machine
M2 introduces the VSS, still without supervision. Machine M3 introduces move-
ment supervision with MAs, and the computation of VSS states using timers
and other informations. A final refinement M4 is introduced to prove the main
safety property, namely that trains do not collide when following MAs.

5 Refinements

In this section, we briefly describe each refinement. The complete archive of the
Event-B project is available in [7].

5.1 Machine M0 : free movement on TTDs

This machine contains five variables. Controller variable stateTTD faithfully
represents the real state of TTDs (i.e., the case study assumes m = i for
this variable). Environment variables trainOccupationTTDRear and trainOccu-
pationTTDFront respectively denote the first and last TTD occupied by a given
train. Environment variable isConnected denotes whether a train is connected to
the supervisor. This variable denotes a total function including the trains that
are not on track because some of them should be connected to receive the autho-
rization to enter on the track. Boolean variable trainMvt is used to guard train
movements to ensure that other events like train supervision are interleaved
with train movements. The following invariants type these variables. Symbols
“→” and “ 7→” respectively denote a total function and a partial function.

inv1 : stateTTD ∈ Ttds→ StateTTD
inv2 : trainOccupationTTDFront ∈ TRAINS 7→ Ttds
inv3 : trainOccupationTTDRear ∈ dom(trainOccupationTTDFront)→Ttds
inv4 : ∀tr·tr ∈ dom(trainOccupationTTDFront)⇒

trainOccupationTTDRear(tr) ≤ trainOccupationTTDFront(tr)

5

inv5 : isConnected ∈ trainKind−1[{Ertms, T imErtms}]→BOOL
inv6 : trainMvt ∈ BOOL

The set of trains on the track is represented by the domain of function trainOccu-
pationTTDFront (i.e., dom(trainOccupationTTDFront)). We consider events
that model the sensing of all the TTD states by the supervisor, the entering
and exiting of a train on the track, the movement of a train on the track, the
connection and disconnection of a train. The movement of a train is decomposed
into three events to distinguish between the cases where the train moves within
the same TTD, the front of the train enters a new TTD and the rear of the train
leaves a TTD. This decomposes the proofs for train movement into smaller ones.
Trains move freely and collisions can occur at this level. The supervisor does not
know the position of a train; it only knows the states of TTDs. Also, we have
defined an event to split a train into two parts, the train with the engine and
the cars left behind, to model the loss of integrity. As a simple illustration, we
provide below the specification of event trainSupervisor.

Event trainSupervisor =̂
any ttds active
where

grd1 : ttds = (
⋃
tr·tr ∈ dom(trainOccupationTTDFront) |

trainOccupationTTDRear(tr)..trainOccupationTTDFront(tr))
grd2 : active ∈ BOOL

then
act1 : stateTTD := (ttds× {occupiedT}) ∪ ((Ttds \ ttds)× {freeT})
act2 : trainMvt := active

end

Guard grd1 constrains event local variable ttds to the set of TTDS which are
occupied by trains. Action act1 updates TTD states. Action act2 nondeterminis-
tically gives controls to either the trains or the supervisor using the choice made
in guard grd2.

5.2 Machine M1 : Trains Reporting their Positions

This machine adds controller variables trainLocationTTDRear and trainLoca-
tionTTDFront to store in the supervisor train positions as reported by ERTMS
trains. The case study assumes that reports are accurate. The following invari-
ants provide the types of these variables. Note that the location of a train on a
track may be unknown to the supervisor. Thus, trainLocationTTDFront is mod-
eled as a partial function of the domain of trainOccupationTTDFront, which
denotes the real train position. Invariant inv3 states that the rear is known only
for TIMS ERTMS trains that have already provided their front positions.

inv1 : trainLocationTTDFront ∈
dom(TrainsC trainOccupationTTDFront) 7→ Ttds

inv2 : trainLocationTTDRear ∈ dom(trainLocationTTDFront) 7→ Ttds

6

inv3 : trainKind−1[{TimErtms}] ∩ dom(trainLocationTTDFront)
⊆ dom(trainLocationTTDRear)

inv4 : ∀tr·tr ∈ dom(trainLocationTTDFront) ⇒
trainLocationTTDRear(tr) ≤ trainLocationTTDFront(tr)

This refinement introduces a new event, trainSnd, to report train positions. Ex-
isting events are refined (extended) to take into account the new variables. Event
trainSnd reports the position of a train by modifying controller variables train-
LocationTTDRear and trainLocationTTDFront using the environment variables
trainOccupationTTDRear and trainOccupationTTDFront. Train integrity is non-
deterministically chosen to reflect the possibility of loosing it at any point. When
train integrity is lost, the rear position of a train is not updated, in order to en-
sure that its last known rear position remains and to avoid collision with the
preceding train when computing the MA. However, there is no provision in M1
to avoid collision; this is introduced in M3.

The specification of event trainSnd is provided below. Action act2 simulates
an if-then-else by using a set containing two tuples of the form {TRUE 7→
e1, FALSE 7→ e2}; hence this set is a function and it is evaluated with the
value of integ, acting like if integ then e1 else e2. Guard grd6 ensures that the
reported position does not decrease, since a train cannot move backward.

Event trainSnd =̂
any tr integ lengch
where

grd2 : tr ∈ dom(trainOccupationTTDFront)
grd3 : tr ∈ dom(isConnected) ∧ isConnected(tr) = TRUE
grd4 : integ ∈ BOOL
grd5 : tr ∈ trainKind−1[{TimErtms}]∧tr /∈ dom(trainLocationTTDRear)⇒
integ = TRUE

grd6 : tr ∈ dom(trainLocationTTDFront)⇒
trainOccupationTTDFront(tr) ≥ trainLocationTTDFront(tr)

then
act2 : trainLocationTTDRear :=

{TRUE 7→ trainLocationTTDRear C−
{tr 7→ trainOccupationTTDRear(tr)},

FALSE 7→ trainLocationTTDRear} (integ)
act3 : trainLocationTTDFront(tr) := trainOccupationTTDFront(tr)

end

5.3 Machine M2 : Introducing VSSs

Recall that a TTD is divided into VSSs. This refinement data replaces (i.e., data
refines) the train position variables based on TTDs (i.e., trainOccupationTTDx
and trainLocationTTDx) with position variables based on VSSs. New environ-
ment variables trainOccupationVSSRear and trainOccupationVSSFront repre-
sent the real VSS position of a train. New controller variables trainLocationVSS-

7

Rear and trainLocationVSSFront represent the VSS positions computed by the
supervisor using train reports.

inv5 : trainLocationV SSFront ∈ dom(trainLocationTTDFront)→ V ss
inv6 : trainLocationV SSRear ∈ dom(trainLocationV SSFront)→ V ss
inv7 : trainOccupationV SSFront ∈ dom(trainOccupationTTDFront)→V ss
inv8 : trainOccupationV SSRear ∈ dom(trainOccupationV SSFront)→ V ss

Four gluing invariants stating that the VSS positions and the TTD positions are
consistent, for both the controller and the environment, using function TtdOfVss,
are also added, like the following one.

inv11 : ∀tr ·tr ∈ dom(trainOccupationV SSFront)⇒
TtdOfV ss(trainOccupationV SSFront(tr))

= trainOccupationTTDFront(tr)

No new event is added. The existing events are refined to take into account
these new variables. As in M1, train collisions can occur in M2.

5.4 Machine M3 : Computing VSS States and Assigning MAs

Introducing New Variables This refinement is the most complex one. The
state of each VSS is computed and MAs are assigned to trains. At this level,
the integrity and the length information of a train are stored by two Boolean
variables since they are used in the VSS computation. Timers are introduced to
detect disconnected trains, the loose of integrity and ghost trains. New variables
are introduced and typed using the following invariants.

inv1 : MATrainRear ∈ dom(trainLocationV SSFront) 7→ V ss
inv2 : MATrainFront ∈ dom(MATrainRear)→ V ss
inv3 : ∀tr·tr ∈ dom(MATrainRear)⇒

MATrainRear(tr) ≤MATrainFront(tr)
inv4 : ∀tr1, tr2·tr1 ∈ dom(MATrainFront) ∧

tr2 ∈ dom(MATrainFront) ∧ tr1 6= tr2⇒
MATrainRear(tr1) .. MATrainFront(tr1)
∩MATrainRear(tr2) .. MATrainFront(tr2)
= ∅

Controller variables MATrainRear and MATrainFront define the MA of each
train that the supervisor knows. An MA is an interval of VSSs. Invariant inv4
states that the MAs of trains are disjoint, to avoid collisions.

The next invariants introduce timers; timers related to trains may be running
or expired while those associated with the VSS and TTD may be running or
expired but also inactive.

inv5 : muteT imer ∈ dom(trainLocationV SSFront)→{running, expired}
inv6 : integrityT imer ∈ dom(trainLocationV SSFront)→{running, expired}
inv7 : disconnectT imer ∈ V ss→{inactive, running, expired}

8

inv8 : ghostT imer ∈ Ttds→{inactive, running, expired}

The muteTimer is used to detect that a train has failed to report its position
within the required time frame; in that case, the state of the VSSs in front of
that train and within the train’s MA becomes unknown.

Finally, the following variables are introduced to compute the VSS states.

inv9 : currentStateV SS ∈ V ss→ StateV SS
inv10 : previousFront ∈ dom(trainLocationV SSFront) 7→ V ss
inv11 : previousFrontState ∈ dom(previousFront) 7→ StateV SS

Variables previousFrontState and previousFront respectively record the previous
value of currentStateVSS and the previous front position of the trains. They are
respectively updated when the supervisor computes the states of the VSS and
when the train reports its position; they are needed in the computation of some
VSS state transitions.

EEIG ERTMS Users Group

16E042
1A
14/07/2017

Hybrid ERTMS/ETCS Level 3 Page 24/48

5 State machine for VSS
5.1.1.1 The Figure 7 represents the state machine of each VSS. The Table 2 gives the

conditions for the transition from each state to each other. The sub-conditions (e.g. #1A,
#1B) are always combined with a logical OR to give the result for the main condition,
e.g. #4 = #4A OR #4B OR #4C.

UNKNOWN AMBIGUOUS

FREE OCCUPIED

1 4 11 8

5

10

6

2

9

3

12

7

Figure 7: VSS section state diagram

5.1.1.2 VSS states are updated based on the following events:

x PTD information on front-end position (processed first)
x PTD information on rear-end position (including integrity info and (safe) train length)
x TTD information (occupied/free)
x Timer expiration (see 3.3.4.5)

5.1.1.3 Events are handled in the order of reception as atomic events for all VSS sections.

5.1.1.3.1 Note: This means that time differences between information received from PTD and
TTD are by definition taken into account in the state machine.

5.1.1.4 At the start-up of the trackside system all VSS are in state ―unknown‖.

5.1.1.5 Note: ―TTD‖ without a qualifier like ―previous‖ refers to the TTD of the VSS for which the
condition is checked.

5.1.1.6 A timer is only considered as ―not expired‖ if it is running, i.e. was activated by a start
event in the context of the concerning train run.

Condition Priority
over

Section
ref.

#1A (TTD is occupied)

AND (no FS MA is issued or no train is located on this TTD)

 4.2.2

#1B (TTD is occupied)

AND (VSS is part of the MA sent to a train for which the mute timer is expired)

AND (VSS is located in advance of the VSS where the train was last reported)

 4.2.1.3

#1C (TTD is occupied)

AND (there is(/are) only “free” or “unknown” VSS or none between this VSS

 4.2.1.4

Fig. 1. The state machine of VSS reproduced from Fig.7 of [2]

Modelling VSS State Machine Transitions The main complexity of this
refinement is to compute the VSS states, which depend on several conditions.
These conditions are described by a state machine in Figure 7 of [2] and repro-
duced here in Figure 1. The guards of its transitions are described, using natural
language, in Table 2 of [2]. This table spans 3.5 pages (pp. 24–28). Figure 2
provides an excerpt of this table. The guard of a transition i in Fig. 1 is given by
the disjunction of the guards labeled #iX in Fig. 2. For example, the guard of
transition 1 is #1A ∨ #1B ∨ . . . #1F; only #1A and #1B are shown in Fig. 2. Some
transitions have priority over others (e.g., guards #2A and #2B have precedence
over transition 3).

Ideally, the computation of the state of each VSS should be done in a single
event, because the states must be all computed before assigning MAs. It also en-
sures that Table 2 of [2] is deterministic, i.e., well-defined. Furthermore, it allows

9

for taking into account the priority between transitions for a given VSS. We have
coded the state machine of Figure 1 into a single event, namely trainSupervisor.
We use guard numbers (e.g., #1A) to name local variables of the event (e.g.,
vss1A). Such a variable is constrained to contain the new state values for the
VSSs satisfying the corresponding guard. For instance, set vss1A contains the
VSSs satisfying guard #1A and their state will change from FREE to UNKNOWN.
The union of sets vss iX is used to update state variable currentStateVSS in event
trainSupervisor.

To illustrate our approach, we provide in Fig. 3 an excerpt of the guards
of event trainSupervisor that models guards #1A and #1B of Fig. 2. Guard grd4
of Fig. 3 represents guard #1A. We use a quantified union to identify the VSSs
satisfying #1A. It reads as follows: a VSS must currently be free, since transition
1 start from state FREE; it must also be on an occupied TTD (first conjunct of
guard #1A) and any VSS of this TTD must not be within an MA or occupied by a
train (second conjunct of #1A). The resulting state of these VSSs is UNKNOWN
as given by transition 1, which is represented by taking the Cartesian product
of the VSSs returned by the quantified union with the singleton set {unknown}.
In summary, guard #1A says that the TTD sensor detected an object, but the
supervisor has no record of a train on a VSS of that TTD, thus it’s status is
unknown.

EEIG ERTMS Users Group

16E042
1A
14/07/2017

Hybrid ERTMS/ETCS Level 3 Page 24/48

5 State machine for VSS
5.1.1.1 The Figure 7 represents the state machine of each VSS. The Table 2 gives the

conditions for the transition from each state to each other. The sub-conditions (e.g. #1A,
#1B) are always combined with a logical OR to give the result for the main condition,
e.g. #4 = #4A OR #4B OR #4C.

UNKNOWN AMBIGUOUS

FREE OCCUPIED

1 4 11 8

5

10

6

2

9

3

12

7

Figure 7: VSS section state diagram

5.1.1.2 VSS states are updated based on the following events:

x PTD information on front-end position (processed first)
x PTD information on rear-end position (including integrity info and (safe) train length)
x TTD information (occupied/free)
x Timer expiration (see 3.3.4.5)

5.1.1.3 Events are handled in the order of reception as atomic events for all VSS sections.

5.1.1.3.1 Note: This means that time differences between information received from PTD and
TTD are by definition taken into account in the state machine.

5.1.1.4 At the start-up of the trackside system all VSS are in state ―unknown‖.

5.1.1.5 Note: ―TTD‖ without a qualifier like ―previous‖ refers to the TTD of the VSS for which the
condition is checked.

5.1.1.6 A timer is only considered as ―not expired‖ if it is running, i.e. was activated by a start
event in the context of the concerning train run.

Condition Priority
over

Section
ref.

#1A (TTD is occupied)

AND (no FS MA is issued or no train is located on this TTD)

 4.2.2

#1B (TTD is occupied)

AND (VSS is part of the MA sent to a train for which the mute timer is expired)

AND (VSS is located in advance of the VSS where the train was last reported)

 4.2.1.3

#1C (TTD is occupied)

AND (there is(/are) only “free” or “unknown” VSS or none between this VSS

 4.2.1.4

Fig. 2. An excerpt of Table 2 in [2]

6 Requirements Verification and Model Validation

This section describes the verifications carried out using the provers of Rodin
(Event-B’s development platform) and the model checker/animator ProB [6]
plug-in for Rodin. ProB is an explicit state-based model checker for the the B
methods (classic B and Event-B) and several others (TLA, CSP, Alloy). Our
strategy to verify the development and the requirements is as follows. We used
ProB mainly to discover possible invariant violations prior to the proof phase
that may be long and complex. ProB has proved to be a useful and effective tool
to check the sequencing of the events. We have also used it to play the scenarios
provided in the case study to validate our specification.

10

grd4 : vss1A =
(
⋃

vs · currentStateV SS(vs) = freeV ∧
vs ∈ ttds ∧
((∀tr ·tr ∈ dom(MATrainFront)⇒ TtdOfV ss(vs) /∈

TtdOfV ss(MATrainRear(tr)) ..
T tdOfV ss(MATrainFront(tr))) ∨

(∀tr ·tr ∈ dom(trainLocationV SSFront)⇒ TtdOfV ss(vs) /∈
TtdOfV ss(trainLocationV SSRear(tr)) ..
T tdOfV ss(trainLocationV SSFront(tr))))

| {vs})× {unknown}
grd5 : vss1B =

(
⋃

vs · currentStateV SS(vs) = freeV ∧
vs ∈ ttds ∧
(∃tr ·(tr ∈ dom(muteT imer) ∧

muteT imer(tr) = FALSE ∧
vs ∈MATrainRear(tr) .. MATrainFront(tr)) ∧
vs ≥ trainLocationV SSFront(tr))

| {vs})× {unknown}

Fig. 3. An excerpt of the guards of trainSupervisor corresponding to Fig. 2

6.1 Proving Safety Properties

We have stated one main safety property, which is that two TIMS/ERTMS trains
cannot be on the same VSS, and thus TIMS/ERTMS trains should not collide,
but non-ERTMS trains could. This property is expressed using the environment
variables trainOccupationVSSRear and trainOccupationVSSFront, which repre-
sent the real position of the trains (not the position as known by the supervisor).
This proof was conducted in a new refinement machine M4, for the sake of mod-
ularity.

inv1 : ∀tr1, tr2·tr1 ∈ Trains ∧ tr2 ∈ Trains ∧ tr1 6= tr2 ∧
tr1 ∈ dom(trainOccupationV SSFront) ∧
tr2 ∈ dom(trainOccupationV SSFront) ∧
trainKind(tr1) ∈ {TimErtms,Ertms} ∧
trainKind(tr2) ∈ {TimErtms,Ertms}
⇒
trainOccupationV SSRear(tr1) .. trainOccupationV SSFront(tr1)
∩
trainOccupationV SSRear(tr2) .. trainOccupationV SSFront(tr2)
= ∅

The guards of events that modify these variables are based solely on the controller
variables, and thus represent the fact that trains move according to their MAs
computed by the supervisor. If the invariant holds, it means that trains following
their MAs should not collide.

To prove this property, we needed to add and prove the following invariants,
which can be seen as lemmas required for the main proof.

11

inv2 : ∀tr·tr ∈ dom(trainOccupationV SSFront) ∧
tr ∈ Train ∧ trainKind(tr) ∈ {TimErtms,Ertms}⇒
tr ∈ dom(MATrainFront) ∧
trainOccupationV SSRear(tr) .. trainOccupationV SSFront(tr)
⊆
MATrainRear(tr) .. MATrainFront(tr)

inv3 : ∀tr·tr ∈ dom(trainOccupationV SSFront) ∧
tr ∈ dom(trainLocationV SSRear)⇒
trainOccupationV SSRear(tr) ≥ trainLocationV SSRear(tr)

inv4 : ∀tr·tr ∈ dom(trainOccupationV SSFront) ∧
tr ∈ dom(trainLocationV SSRear)⇒
trainOccupationV SSFront(tr) ≥ trainLocationV SSFront(tr)

Invariant inv2 states that a TIMS/ERTMS train can occupy only the VSS in-
cluded in its MA. Invariants inv3 and inv4 state that the position of a train
known by the supervisor is behind the real position of the train. Recall that the
case study assumes that the position reported by trains are accurate.

6.2 Proving the Determinacy of the VSS State Machine

Recall that state variable currentStateVSS is typed as a function. The proof
obligation generated by this typing invariant ensures that each VSS state has
a single new value, hence there is a single transition that updates it. This is
equivalent to proving that the VSS state machine described in the case study is
deterministic. This turns out to be fairly complex. For each VSS state value (e.g.,
FREE), there are three outgoing transitions to the other three possible VSS state
values (e.g., transitions 1, 2 and 3 of Fig. 1). To ensure determinacy, we must
prove that the guards of these three transitions are mutually disjoint. Let ni be
the number of disjuncts in the disjonctive normal form of the guard of transition
i. Then we have to consider ni∗nj cases in the proof of disjointness of transitions
i and j. Luckily, transitions priorities eliminate a few cases to consider. In total,
there are 47 high-level cases to consider, which is a significant proof effort.

One way to simplify the handling of this proof in Rodin would be to decom-
pose event trainSupervisor into four events, one for each VSS state value. That
would still allow us to prove the determinacy of the VSS state machine, but we
would lose the atomicity of VSS state computation. We would then have to con-
trol the ordering of events to ensure that these four events are computed before
assigning MAs. For the sake of simplicity and to ease the construction of the
overall specification, we have chosen to use a single event.

Using ProB to Check the Determinacy of the VSS State Machine ProB
can be used to find invariant violations with counterexamples. We have used this
feature extensively. The counter-examples provided help in identifying the miss-
ing guards and invariants required to prove invariant preservation. However, the
state space of machine M3 is huge, with its 22 variables, most of them typed
as functions. ProB will only check the reachable states, and when it does not

12

terminate in a reasonable time, one cannot determine which interesting condi-
tions have been explored, for instance among the 47 cases of guard disjointness
discussed earlier.

An alternative way to check the determinacy of the VSS state machine is to
use the constraint satisfier of ProB, which can find models for a formula. ProB
uses it to find values of constants in an Event-B context. To specifically check
one case among the 47 cases for the determinacy of the VSS state machine, we
construct a new context that declares the state variables, used in the guards
of the VSS state machine, as constants, and their related invariants as axioms.
We finally add to this context the local variables of event trainSupervisor that
computes new sets of VSS states and we check that these two sets are not
disjoint (e.g., check that dom(vss1A)∩dom(vss2A) 6= {}). If ProB finds a model
for this context, it means that the corresponding transition guards in the VSS
state machine are not disjoint, given the invariants used in our machine. It thus
means that the invariants are insufficient to prove the determinacy of the VSS
state machine and that they must enriched or strengthened.

Dealing with Inconsistencies of the VSS State Machine We have found
several cases where the guards are not disjoint, which means that one of the
following three alternatives holds: i) our representation of the guards are incor-
rect, ii) the case study text is incorrect, iii) invariants are missing to rule out
these counterexamples (i.e., these Event-B states are not reachable from the
initial state of the system). Since we are not expert of the ERTMS standard, it
is hard for us to determine which alternative holds. In a first model of the sys-
tem ProB finds several counterexamples when searching for invariant violations,
that leads to a state where two transitions are not disjoint. Such traces are due,
for instance, to the expiration of several timers reported at the same moment
as the reporting of the train position. Thus, we do not know if the case study is
wrong, or if this trace is impossible in the real world where the timers represent
actual clocks with different values or perhaps there are implicit assumptions in
the case study that we missed or we could not figure out by simply reading it. To
rule them out, we assume that the transitions depending on the timers are dealt
with last; priority is given to those depending on the train position. From the
Event-B point of view, we use the overload operator to express it. Moreover, as
for the representation of the guards, we have used a straight forward translation
of the phrasal terms of the natural language text into state variables, to simplify
as much as possible the translation of the guards. However, there is still the
possibility of misinterpreting the natural language text. For instance, consider
the following conjunct of #2A.

#2A . . .
AND (VSS where the estimated front end of the train was

last reported, was “occupied” after the processing of this
previous position report)

13

This conjunct can be interpreted as an implication, which means that the guard
holds even when only one position report has been issued for the train. Or, it
can be interpreted as a conjunction, which means that at least two position
reports must have been issued for the train, for the guard to hold. Given the
length of the case study, our limited expertise in the domain and the number of
ambiguities or missing (implicit) assumptions, we decided not to elicit further
these aspects, because there is no point in making hypothetical (as opposed
to “realistic”) assumptions in order to prove the determinacy of the VSS state
machine. The key issue is more to be able to identify ambiguities, thanks to
formalisation, validation and verification. In a real context, they can be resolve in
a systematic manner using domain experts. Moreover, since proof obligations can
be independently discharged, not proving the determinacy of the state machine
does not prevent us from proving the main safety property; we can assume that
the VSS state machine can be made deterministic. In addition, the four VSS
states can be reduced to only two (free or occupied), since the other two are
used to manage potentially hazardous situations, as noted in the case study
(paragraph 3.2.1.1.1 of [2]).

7 Conclusion

Our model covers the essential parts of the case study. We were able to prove the
safety of TIMS/ERTMS trains. It only remains to prove the determinacy of the
VSS state machine, which could not be completed because of the ambiguities of
the case study text. Understanding the case study itself was a challenge, because
of the difficulty to identify missing assumptions. Determining the ordering of
events was anything but trivial. Domain experts typically write for other domain
experts; it is not natural for them to think of all the details that a non-expert
does not know.

We have found Event-B to be adequate to model this case study. In this
paper, we deliberately chose not to use any Event-B plugins (e.g., [3,9]) in order
to be able to compare our solution with solutions based on them (and assuming
that a paper using them will be submitted to ABZ2018). In a companion paper,
we explore the use of ontologies and SysML/KAOS to model this case study [4].
Acknowledgements This research was supported in part by NSERC (Natu-
ral Sciences and Engineering Research Council of Canada) and the FORMOSE
project funded by the French National Research Agency (ANR).

References

1. Abrial, J.: Modeling in Event-B. Cambridge University Press (2010)
2. EEIG ERTMS Users Group: Hybrid ERTMS/ETCS Level 3: Principles. Tech. rep.,

Brussels, Belgium (July 2007)
3. Fathabadi, A.S., Butler, M.J., Rezazadeh, A.: Language and Tool Support for Event

Refinement Structures In Event-B. Formal Asp. Comput. 27(3), 499–523 (2015)

14

4. Fotso, S.J.T., Frappier, M., Laleau, R., Mammar, A.: Modeling the Hybrid
ERTMS/ETCS Level 3 Implementation through Goal Diagrams and Ontolo-
gies Using the FORMOSE Approach. http://info.usherbrooke.ca/mfrappier/
abz2018-ERTMS-Case-Study-Formose (February 2018)

5. Hoang, T.S., Butler, M., Reichl, K.: The Hybrid ERTMS/ETCS Level 3 Case Study.
Tech. rep., ECS, University of Southampton, U.K. (July 2007)

6. Leuschel, M., Butler, M.J.: ProB: A model checker for B. In: Araki, K., Gnesi, S.,
Mandrioli, D. (eds.) FME 2003: Formal Methods Europe, Pisa, Italy, September
8-14, 2003. LNCS, vol. 2805, pp. 855–874. Springer (2003)

7. Mammar, A., Frappier, M., Fotso, S.J.T., Laleau, R.: An Event-B Model of the Hy-
brid ERTMS/ETCS Level 3 Standard. http://info.usherbrooke.ca/mfrappier/
abz2018-ERTMS-Case-Study (February 2018)

8. Parnas, D.L., Madey, J.: Functional Documents for Computer Systems. Science of
Computer Programming 25(1), 41–61 (1995)

9. Said, M.Y., Butler, M.J., Snook, C.F.: A method of refinement in UML-B. Software
and System Modeling 14(4), 1557–1580 (2015)

http://info.usherbrooke.ca/mfrappier/abz2018-ERTMS-Case-Study-Formose
http://info.usherbrooke.ca/mfrappier/abz2018-ERTMS-Case-Study-Formose
http://info.usherbrooke.ca/mfrappier/abz2018-ERTMS-Case-Study
http://info.usherbrooke.ca/mfrappier/abz2018-ERTMS-Case-Study

	An Event-B Model of the Hybrid ERTMS/ETCS Level 3 Standard

