Nos partenaires

CNRS

Rechercher





Accueil du site > Français > Evénements > Agenda

Agenda

 

Agenda des manifestations organisées ou co-organisées par l’IRIT RSS

 

Soutenance de thèse

Analyse multifractale de données multivariées avec application à la télédétection
Multifractal analysis for multivariate data with application to remote sensing

Sébastien COMBREXELLE - Equipe SC - IRIT

Mercredi 12 Octobre 2016, 10h00
INP-ENSEEIHT, Salle des thèses
Version PDF :

Jury

Patrice Abry, CNRS, Directeur de recherche, Examinateur
Laure Blanc-Féraud, CNRS, Directeur de recherche, Examinateur
Philippe Ciuciu, CEA, Directeur de recherche, Rapporteur
Stephen McLaughlin, Professeur à l'Université Heriot-Watt, Co-directeur de thèse
Gabriel Peyré, CNRS, Directeur de recherche, Rapporteur
Véronique Serfaty, Scientifique DGA - Responsable domaine, Examinateur
Jean-Yves Tourneret, Professeur à l'INPT-ENSEEIHT, Directeur de thèse
Herwig Wendt, CNRS, Chargé de recherche, Encadrant de thèse
Victoria Cox, Chercheuse DSTL, Invité

Résumé

La caractérisation de texture est centrale dans de nombreuses applications liées au traitement d'images. L'analyse de textures peut être envisagée dans le cadre mathématique de l'analyse multifractale qui permet d'étudier les fluctuations de la régularité ponctuelle de l'amplitude d'une image et fournit les outils pratiques pour leur évaluation grâce aux coefficients d'ondelettes ou aux coefficients dominants. Bien que mise à profit dans de nombreuses applications, l'analyse multifractale souffre à présent de deux limitations majeures.
Premièrement, l'estimation des paramètres multifractaux reste délicate, notamment pour les images de petites tailles. Deuxièmement, l'analyse multifractale a été jusqu'à présent uniquement considérée pour l'analyse univariée d'images, alors que les données à étudier sont de plus en plus multivariées.
L'objectif principal de cette thèse est la mise au point de contributions pratiques permettant de pallier ces limitations. La première limitation est abordée en introduisant un modèle statistique générique pour le logarithme des coefficients dominants, paramétrisé par les paramètres multifractaux d'interêt. Ce modèle statistique permet de contrebalancer la variabilité résultant de l'analyse d'images de petite taille et de formuler l'estimation dans un cadre bayésien. Cette approche aboutit à des procédures d'estimation robustes et efficaces, que ce soit pour des images de petites ou grandes tailles. Ensuite, l'analyse multifractale d'images multivariées est traitée en généralisant ce cadre bayésien à des modèles hiérarchiques capables de prendre en compte l'hypothèse d'une évolution lente des propriétés multifractales d'images multi-temporelles ou multi-bandes. Ceci est réalisé en définissant des lois a priori reliant les propriétés dynamiques des paramètres multifractaux des différents éléments composant le jeu de données. Différents types de lois a priori sont étudiés dans cette thèse au travers de simulations numériques conduites sur des images multifractales multivariées synthétiques.
Ce travail est complété par une étude du potentiel apport de l'analyse multifractale et de la méthodologie bayésienne proposée pour la télédétection à travers l'exemple de l'imagerie hyperspectrale.

Abstract

Texture characterization is a central element in many image processing applications. Texture analysis can be embedded in the mathematical framework of multifractal analysis, enabling the study of the fluctuations in regularity of image intensity and providing practical tools for their assessment, the wavelet coefficients or wavelet leaders. Although successfully applied in various contexts, multifractal analysis suffers at present from two major limitations. First, the accurate estimation of multifractal parameters for image texture remains a challenge, notably for small image sizes. Second, multifractal analysis has so far been limited to the analysis of a single image, while the data available in applications are increasingly multivariate.
The main goal of this thesis is to develop practical contributions to overcome these limitations. The first limitation is tackled by introducing a generic statistical model for the logarithm of wavelet leaders, parametrized by multifractal parameters of interest. This statistical model enables us to counterbalance the variability induced by small sample sizes and to embed the estimation in a Bayesian framework. This yields robust and accurate estimation procedures, effective both for small and large images. The multifractal analysis of multivariate images is then addressed by generalizing this Bayesian framework to hierarchical models able to account for the assumption that multifractal properties evolve smoothly in the dataset. This is achieved via the design of suitable priors relating the dynamical properties of the multifractal parameters of the different components composing the dataset. Different priors are investigated and compared in this thesis by means of numerical simulations conducted on synthetic multivariate multifractal images. This work is further completed by the investigation of the potential benefits of multifractal analysis and the proposed Bayesian methodology for remote sensing via the example of hyperspectral imaging.

 

Retour