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Abstract

These lecture notes contain an advanced treatment of inductive types.
It is assumed that the reader has access to the first part of the lecture
notes which introduces to A-calculus and system F, and is available at

http://www.tcs.informatik.uni-muenchen.de/ "matthes/
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1 Introduction

After having used induction on inductively defined sets so successfully in the
first part of these notes, the means of induction are added to the lambda calculus
itself: By a constructively-minded inspection of Tarski’s fixed-point theorem the
most general formulation of inductive types is gained (via the Curry-Howard
isomorphism). This gives a lot more insight into the capability of system F for
modelling abstract data types and into usual formulations of inductive types
found in the literature.

Citations are quite rare in these notes. This does not indicate that I consider
the results to be original although I hope that several of them are. Credits are
given in my research papers. In a future version, I might add more citations to
enhance fairness.

2 Monotone Inductive Types

The expressiveness of system F is highlighted by the fact that least pre-fixed-
points of monotone operators can be represented—even with respect to reduc-
tion behaviour. Its main practical consequence arises in the field of program
extraction: The computational content of intuitionistic proofs with inductive
definitions consists of terms of system F whose normalization yields the objects
whose existence has been proved.! Later we will see that one also needs to
model fixed-points (not only pre-fixed-points) in order to get primitive recur-
sion (not only iteration), and those fixed-points are not available in system F
as is generally believed and greatly supported by [SU99].

2.1 Tarski’s Fixed-Point Theorem and System F

By studying the concept of a complete lattice and its representation in sys-
tem F, we arrive at a representation of iteration on monotone inductive types
in system F (for more explanation see [Mat99c]).

Definition 1 Let U be a set and < be a partial order on U (i.e., < is a
binary relation on U which is reflezive, antisymmetric and transitive) and
N\ oU = U (with pU the powerset of U) a function which determines for
every M C U the infimum (the greatest lower bound) of M w.r.t. <, 1.e.,
YMeM.AM<M and

YNeUYMeMNIM) =N AM.
Then (U, <, \) s called a complete lattice.

Note that in this situation \/ M := A{N € U/ | VM € M.M < N} (the infimum
of the upper bounds of M) gives the supremum (the least upper bound) of M
w.r.t. <,ie, YM € MM <\/ M and

YNeUYMe MM<N) = \/M<N.

1Unfortunately, because of lack of space, this claim cannot be substantiated in these notes.




We now show that the infimum of the family (p[x := 0])gse7, can be repre-
sented in system F (compare with the treatment of infimum types in [Mat98,
pp.35-38)).

This may be motivated in a complete lattice of sets with <=C and A =().
There, we have

xe A\M&SYMeUMeM= xeM.

Now we want to represent A{p[x := o] | 0 € T..} by some type ixp. U will
be the set 7 of types. Instead of M, we consider a type p, seen as a function
of the type variable «. We once more profit from the A-notation when saying
that Aaxp shall model M. The index set becomes 7y, hence we use o instead of
M. How do we express 0 € Axp? Simply by p[x := o]. The equivalence above
would now read

X €iap & Vo € Ty.plx:=0] = x € 0.

Note that this is only a formal manipulation since the types are no sets. How-
ever, modified realizability (see e.g. [Ber93]) tells us how to interpret this
statement: Remove the first-order part (the occurrences of x), internalize the
quantification over the types and replace = by — (the type former pertain-
ing to function spaces). Hence, the left-hand side of the equivalence becomes
ixp, and the right-hand side Va.p — «. This justifies why we simply define
iap :=Voa.p — «.

Does our ixp have the defining properties of the infimum? In the situation
of a complete lattice of sets with <=C, we have to check

(Ag) If x e AM and M € M then x € M.

(A;) EYMeUMeM = VylyeN=yeM)and x € N thenx € A M.
After the translation in the style of modified realizability, we have

(Ag) If ixp and plx := o] then o.

(A;) If YVa.p = T — « and T then iop.

Its only reasonable interpretation can be statements on types of terms. In fact,
we have:

(ig) T Fr:iapand 'k s: p[x:= o] then "'+ ros: o.

(i) ETFL:Vap 51— o (with « ¢ FV(t)) and I' F t : T then, for
Cip,clt := AoAxP Loxt (with o« ¢ FTV({) UFTV(t) and x ¢ FV({) U
FV(t)), we have I' F Cixp Lt : icxp.

Moreover, there is a derived 3-reduction rule for infima: (Ciyp,<ft)os —py lost.
We now turn to fixed-points.

Theorem 1 (Tarski) Let (U, <, \) be a complete lattice and ® : U — U be
monotone (1. e., if M <N then ®(M) < ®(N)). Then

nd = AM e | ®(M) < M}
1s the least fized-point of ©.



Example 1 Let U := p(R), <:=C, A :=[) and O(M) :={0}U{r+1|re M}.
Then u® is the set N.

Definition 2 M € U/ is a pre-fired-point of ® ff O(M) < M. M €U s a
post-fized-point of © iff M < ®(M).

Proof Let us prove Tarski’s fixed-point theorem. By definition, we have that
pud® < M for all pre-fixed-points M of ®. Show that pu® is itself a pre-fixed-
point of ®. Let M be a pre-fixed-point of ®. Then u® < M. Because ®
is monotone, this implies @ (u®) < ®(M). Because M is a pre-fixed-point of
® and < is transitive, ®(ud) < M follows. Hence, ®(u®) < M for every
pre-fixed-point M of ® and therefore ®(u®) < ud by definition of p®. We
conclude that p® is the least pre-fixed-point of O@.

n® is also a post-fixed-point? of @ (and consequently the least fixed-point):
We have to show that u® < @ (ud). By definition of u®, it suffices to show
that ®(ud) is a pre-fixed-point of @, i.e., D(O(pud)) < O(ud). This follows
from the first part of the proof and the monotonicity of ®@. O

We now look more closely at the definition and the first part of the above
proof. The definition of u® does not need the monotonicity of @, but only the
completeness of the lattice. Assume again a lattice of sets with <=C. By (A¢),
we have

(kg) If x € u® and Vy.y € ®(M) = y € M then x € M.
From the proof, we see
(ur) If ® is monotone and x € @ (u®d) then x € pud.

An even more careful proof would be: Let ® be monotone and x € ®(pu®) =: N.
Show x € u® by (/\;): Assume M € U/ such that ®(M) C M and y € N. We
show that y € M: Let z € p®. Because of (A¢) and ®(M) C M, z € M.
Hence, u® C M. By monotonicity of ®, N C ®(M), consequently y € ®(M).
Since ®(M) C M, we arrive at y € M. Now, (A;) applies due to x € N, and
yields x € n®.

We are now in the position to model the least pre-fixed-point—called the
inductive type pap—of Axp, i.e., of the operation o — p[x := o] instead of ®.
(Recall that monotonicity is not needed for the definition.) Since

nd = AfM € U | ¥xx € ®(M) = x € M},

we clearly have to set uoxp :=1ic.p = x =Voa.(p = &) > «.
The “modified realizability version” of (wg) would be:

(ug) If pxp and plo := o] — o then o.

And, clearly, if ' r: pap and '+ s : p[x := 0] = o then '+ ros : 0. Of
course, this is no surprise, since (ug) is nothing but an application of (Ag)
which has already been modeled in system F. On the other hand, (1) shrinks
to

2Unfortunately, this fact cannot be used to embed fixed-point types (see section 2.2.1) into
F because of bad reduction behaviour.




(ur) EVaVB.(x — B) — p — ploe := B] and plo := pap] then pop.

Hence, assume that T'- m:VaVp.(a 2 B) 2 p 2 pla:=Pland T'F t: pla :=
popl. We construct a term Cpqpomt such that I' - C,npomt : pop, exactly
according to the proof of (ur): Capmt = Cix poya,ploc=paplft With

0 := AoAzP ™ Xy Pl kol .z(m(uocp)oc()\x”“p.xocz)y).
The term m is called a monotonicity witness for Axp or even for pop.

Exercise 1 Verify step by step that this construction serves its purpose,
and that it indeed can be read off the proof of (u1). (Do not be puzzled with
the two completely different meanings of x, y and z.)

Obviously, Cpaxpmt —p, /\oc?\z"_’“.z(m(uocp)oc(?\x““".xocz)t). Hence,

(Cpaxomt)os —pn S (m(p.ocp)a()\x“"‘p.xos)t)

which provides F with iteration on monotone inductive types, to be under-
stood as follows: I' - F := Ax**P.xos : pap = o if ' s: pla :==0] - 0. F
represents the function from pop to o defined by iteration on pap, with step
function s, and the characteristic reduction behaviour (note that application
associates to the left, and hence F is not applied to t in the reduct shown)

F(Cuapmt) =5, s(m(pnap)oFt).

Example 2 The standard representation of the naturals in system F 1s
Va.(w = «) & o« = «. The aim is to gwe one by using the concept of
inductive types. First recall that1 =Voa.ax = «, pxo=VYa.(p 50— a) = «
and p+ o0 =Va.(p = &) = (0 = ) = « for some x &€ FV(p)U FV(o).

Intuttively, 1 = « is isomorphic to «, and (x = &) = & — & isomorphic
to ((¢ — o) X ) = «, hence to ((¢ — &) X (1 = «)) = &« which in turn s
intuttively isomorphic to ((x +1) = o) — «, hence to ((1 +a) = &) — «.
We now set

nat := po.1 + ax =Vo.((1 + o) = o) — o

A closed monotonicity witness for nat s given by
m = AdABAM BT FXAYALT Y AB Y xyu(Az% v (fz)).

Define 0 := Cpatm(INL7 natIN1) and St := Cratm(INRq natt) (with IN1 = AocAx*x
the canonical inhabitant of 1 and INL, o7 = AxAXP 7 Ay~ * xr and INR;, 7 =
AOAXPTXAY % yr the canonical injections into p+ ). Then - 0:nat and
I't:nat = 'k St:nat.

Now assume T a:0 andTHb: 0 — 0. Set sqp = Az'"%.zo(Au'a)b,
Setting Fqp = A" x0sq b, we get T'F Fqp : nat — o, and, by some cal-
culation, Fq 0 —hy @ and Fa.b(St) B b(Fa bt). Therefore, iteration on
natural numbers s a (basic) ezample of our concept of monotone inductive
types.



Exercise 2 Let p be an arbitrary type with « ¢ FV(p). Set
T:=(((xa =2 p) 2> a) 5 &) > «.
Show that there 1s a term m in system F such that
Fm:Vavp.(aw— p) = 17— 1l := B].

Use m to construct an inhabitant of ux.1 + 1, . e., a term r such that
Fr:po.l 4+, and normalize it. (Remark: The idea to study this type ts
due to Ulrich Berger.)

Exercise 3 Set tree(p) := px.1 4+ (p = «) for some « & FV(p). This type
represents the well-founded trees branching over the type p: Define a mono-
tonicity witness for tree(p) and terms nil and limt such that  nil : tree(p)
and T'Ft:p — tree(p) = I'F limt: tree(p) (hence, limt represents the tree
consisting of a p-family of trees) and that iteration on tree(p) ts recovered
in the sense that for terms a and b withTFa:0 andT-b: (p — 0) = o,
one can find a term Gqp with '+ Gqp : tree(p) — o and Gg pnil —)En a
and Gq p(limt) —Bn b(AzP.Gq b(t2)).

Set T :=tree(a) —» « and define a closed monotonicity witness for Axt.
(Remark: This type was brought to my attention by Ulrich Berger, too.)

Exercise 4 Show that there i1s no term r in system F such that F r: pox.
Hint: Study the shapes of the normal forms and use normalization of
system F.

2.2 Fixed-Point Types

The aim of this section is the study of systems with the (generalized) successor
and the (generalized) predecessor in isolation. Hence, we do neither consider
means of iteration nor those of primitive recursion although the former are
already present in system F and the latter are representable as will be shown in
section 2.3.4.

2.2.1 Non-Interleaving Positive Fixed-Point Types

We eztend system F by types fop which are supposed to describe arbitrary
fixed-points of Axp, i.e., of the operation ¢ — p[x := o]. For the time being, we
confine ourselves to (non-strictly) positive dependencies which moreover have
to be non-interleaved, i. e., fap may only be formed when every occurrence of «
in p is “to the left of an even number of —” and not free in some subexpression
fRo of fap. The last clause may be rephrased as follows: If fixed-point types
fR o are formed with a free parameter « then the formation of a fixed-point type
foap—hence w.r.t. that parameter x—is forbidden.® More formally:

3Note that otherwise there would be a very high degree of freedom in the interpretation
of fp since fR o is intended only to model an arbitrary fixed-point.



Definition 3 We inductively define the set Tnp¢ of non-interleaving posi-
tive fized-point types and simultaneously for every p € Tnps the sets N (p)
and N_(p) of type variables which occur only positively or occur only nega-
twely, respectively, and moreover do not occur in the scope of a fized-point
type formation (the set FV(p) of free type variables is defined as before
with the additional FV(fap) := FV(p) \{«}). Let always range p over the
set {+,—} of polarities and set —+ := — and —— := +.

(V) oo € Tapr. Np(o) :==V7. N_(a) := V7 \ {}.
(=) Ifp,0 € Tups then p — 0 € Tnps and Nyp(p — o) := N_, (p)NN, (o).
(V) If p € Tapr then Vap € Tapr and Ny (Vop) := Ny (p) U {af.

(f) If p € Tapt and & € N (p) (the only place where the N, (p) enter
the conditions) then fap € Thpr and Ny (fap) :=Vr \ FV(fap).

Note the change of the polarity in rule (—) which substantiates the slogan
that «’s occurrences may only be to the left of an even number of —. In
rule (f) we achieve non-interleavedness by removing any free variable of
fap.

Examples 3 o Tu C Tapt-

e B¢ Ny((p—B)— (00— p)— B) although (p = B) = (0= P) =B €
ﬁtpf Zf P)O'Gﬂpf-

%, e Ny(ox+p).

fa.l+a € 7:1_1){.

fB.1+(p = B) € Tnpr for p € Tnpr and B ¢ FV(p).

(fR.14 (x = B)) = & € Tapr and « € Ny ((fB.1 + (¢ = B)) = «)
although « only occurs positively.

We now define the extension NPF of system F by non-interleaving positive
fixed-point types. The set of types is Tnpf. The term formation rules are
extended, hence the set Typr of terms has the same defining clauses as 7¢ (but
with 7¢ replaced by 7npr) and, additionally,

e If t € Tnpr and fap € Trpr then Cegpt € Tnpr.
e If r € Tnpr and fap € Tnpe* then Efqp € Trpr.
The definition of the free variables is extended in the obvious way:
o FV(Ciqpt) :=FVI(t).
o FV(rE¢np) := FV(r).

The definition of the free type variables of a term is extended by:

4In the sequel, it will be understood that all the mentioned types are taken from Trpt-



o FTV(Cixpt) :=FV(fap) UFTV(t).
o FTV(rEfyp) :=FTV(r) UFV(fap).

The substitution p[x := o] of ¢ for the variable « in the type p is defined as
expected: The binder f is treated like the binder V. Note that this does not
lead out of the set Typr.5

The definition of r[x := s] gets the new clauses

o (Crapt)x:=s] = Ceyptlx :=s].
o (TEfxp)lx = s] :=7[x := s]Efqp.
Finally, r[x := o] is extended by
o (Ceypt)lax == 0] == Csypjo—otlox := 0ol
o ("Efap)lac:= 0] :=r[at:= 0]E¢yp1e:=01-
Note that we may assume in the preceding clauses that v ¢ {«} U FV(0).

Definition 4 (Typing for system NPF) The inductive definition of the re-
lation T'F v : p for system F is reinterpreted over the larger sets Thpr and
Tnpr of types and terms of NPF, and the following rules are added:

I'Et:plo:=Tfap] Er:fap
(f1)

f
INF Ceapt: fap I'FrEfxp : ploci= focp]( £)

Definition 5 (pn-reduction for NPF) The relation —pg, of system F s
rewnterpreted over the sets Thp¢ and Tnpr, and the following clauses are
added to the inductive definition:

(Bf) (Crapt)Efap —pn t (outer fized-point B-reduction).
(M) Ctap(rEfxp) —pn T (outer fized-point n-reduction).
(C) t 2pn t' = Crapt —pn Crapt’ (reduction under Ciqp).
(E) v —=pn " = TEfap —pn T'Efxp (reduction under E¢qp).

Hence, (B¢) and (n¢) establish the intuitive isomorphism fap ~ plx = fapl.
Clearly, subject reduction still holds for NPF.6 The proof of typed local conflu-
ence carries over from system F with the interesting new cases of the rule pairs
E/B¢ and C/ny. In the first case, we have

(szxp(rEfocp))Efcxp

ﬁ/ \Bn

TEf‘Xp TEfO(p

5A precise proof needs additional statements which are shown in footnote 2 in [Mat99b).

6The rule (n¢) requires to attach the type information to E since fap cannot be read off
plx := fopl: one can always produce the decomposition plx := fap] = plx = fapl[B =
fB.ple := fopl] with “fresh” . (The index to C is even more needed, but has already been
extensively used in the constructions of section 2.1.)



The second critical pair is also trivial:

Cfcxp((cfzxpt)Efcxp)

s/ \sn

Cfo(pt Cftxpt

Note that in both situations, the three type indices always have to be equal in
order to allow the alternatives (w.r.t. the rule applied).

Theorem 2 (Strong normalization of system NPF) If 'k r:p then r is
strongly normalizing w.r. t. —py.

Proof By a relatively straightforward extension of the proof for system F in
the first part of these notes (p.52 and pp.55-60; this is no surprise since that
proof has been designed for the purpose of extensions to inductive types and
fixed-point types). O

Exercise 5 Consider the following stmplification of NPF: Remowve the type
information from E¢y,, hence only form rE instead of rE¢«,. Keep the typ-
ing rules (which do not exploit this information) and remove (n¢) (since
subject reduction otherwise fails, cf. footnote 6). Prove strong normaliza-
tion of the resulting system by merging the proof for NPFe,y tn [Mat99b,
pp.305-309] into the one for system F.7

Hints: Give a presentation of the forms of typable terms with vectors S
which now shall denote lists of terms, types and symbols E. Reinterpret
the definition of SN with these vectors, close SN under Ciy, and under
B¢-ezpansion (with vectors added, hence under head B¢-ezpansion). Show
that SN is contained in the set of strongly normalizing terms. Draw the
definition of saturatedness from that of SN and adjust the saturated clo-
sure cl. Check that the constructions of M — N and YO are not af-
fected by the modifications. Define a fized-point construction on satu-
rated sets: Assume that ® 1s a monotone function from saturated sets
to saturated sets, 1.e., ® : SAT — SAT. Define for M € SAT the sets
lo(M) = {Ciqpt | t € D(M)} and Ex(M) = {r | TfE € O(M)}, and the
monotone functions ®; and ®g from SAT to SAT by ®{(M) := cl(lp(M))
and Og(M) :=cl(Ep(M)). Since SAT is a complete lattice, they have fized-
points {1 (@) and fe (D), respectively (we do not constrain the choice among
the possible fized-points except that it has to be a function of ®). Prove
that 1p(M) C SN, Egp(M) NSN € SAT, and lp(M) C Eqp(M). Conclude
that lo (M) C ®1(M), Pg(M) = Eo (M) N SN, and that f1(D) is a post-
fized-point of @ and T (D) 2s a pre-fized-point of ®;. Write f(®) for both
fi(®) and fe(D@) and put the facts together to prove:

"For the original NPF, one has to assign types to the saturated sets in the candidate
assignments, and therefore has to keep more closely to the proof in [Mat99b] which even
considers typed saturated sets (because there fixed types are assumed, in contrast to our type
assignment system).



(fr) If t € O(f(D)) then Ciqpt € f(D).
(fe) If r € (D) then TE € O(f(D)).

The definition of candidate assignment may remain unchanged. The def-
inition of the saturated set SC°[I'] of the strongly computable terms w. r. t.
the type p and the candidate assignment I' has to be giwen simultaneously
with the proof that if (x: M) €T and o € N, (p) then SCP[I'] is an increas-
ing function of M, and if x € N_(p) then SCP[I'] is a decreasing function of
M, and if a ¢ FV(p) then SC°[F'\{(a: M)}] =SCPI']. We may then define
SC'*P[I] := f(®) with ®(M) := SC°[I,«: M], since O is monotone by the
induction hypothesis (x € N (p) s required for fap being a type). Since
N, (fap) = Vr\FV(fap), the additional statements immediately follow from
the induction hypothests.

The remaining steps are as before: HEztend the proof of the substitution
lemma and of the fact that typable terms are strongly computable under
substitution. Specialization yields the result.

2.2.2 Monotone Fixed-Point Types

We are not confined to non-interleaving positive fixed-point types. Monotonicity
suffices. We first give a naive example showing how it should not be done. The
correct formulation yields a confluent and strongly normalizing system MF.
However, since MF and NPF can be embedded into each other even with respect
to reduction behaviour, monotonicity is no real extension of non-interleaving
positivity.

We turn to the unsuccessful way of introducing monotone fixed-point types.
Consider p := fa.oc — 1 (which is not allowed in NPF). Intuitively, p ~ p — 1.
A closed monotonicity witness for p is given by

m = AaABAF*PAX* > TAy P IN1,

e, Fm:Vavp. (a6 - B) = (6 = 1) - B — 1. We assume that we have
Co, and E, in the system, with the same typing rules as for NPF. Setting w :=
AxP . (xEp)x, we therefore get - w:p — 1. Hence - Cow : p and F w(Cyow) : 1.
However, w(Cow) —pn ((Cow)E,)(Cow) —pn w(Cow), provided we include
(Cot)Ep —pn t into the definition of —p,. Consequently, the system is not
strongly normalizing (and since there are no other reduction possiblities except
those leading to the cycle, it is not even weakly normalizing).

What is the problem with this example? We showed monotonicity, but did
not use it. This will be remedied in the following system MF of monotone fixed-
point types: It is the extension of system F by arbitrary types fop. The new
term rules, defining Tyf, are

o If t € Tur and m € Tur then Cixpmt € Tur.

o If r € Tur then rE¢yp € Tur.

10



The typing rule (f;) of NPF is changed to

N -m:vVavp.(x = B) = p — pla:=B] I'Et:plo:=fap]
Crapmt: fap

(f1)

(fg) is taken from NPF. Note that we could redo the above example with the
only difference that the term m would have to be carried around. But we did
not yet specify () for MF!

Definition 6 (pn-reduction for MF) The relation — gy of system F is ex-
tended by the following clauses:

(Bt) (Crapmt)Efap —pn m(fap)(fap)(Ay *Py)t (outer fized-point (-
reduction).

(C) m —=py M' At 2py t' = Cigpmt —py Crapm't’ (reduction under
Crap)-

(E) 1 —pn 7" = TEfap —pn 7'Efap (reduction under E¢qp).

Clearly, we still have subject reduction and typed local confluence. But why
is it reasonable to reduce (Cixpmt)Esqp to m(fap)(fap)(Ayf*Py)t? Because
“typical” monotonicity witnesses m have the property that for any p and any t,
mpp(AyPy)t —py t- And “bizarre” monotonicity witnesses like in the example
above do not lead to non-normalizing terms. This will now be expressed more
formally by giving embeddings of NPF (without outer fixed-point n-reduction)
into MF and vice versa.

2.2.3 Embedding NPF into MF

We embed NPF, but without outer fixed-point n-reduction, into MF, i.e., we
define for every term r € Typr aterm v/ € Typ such that TEr:p=>TkH1r':p
and v —py T = v =3 ' (with =} the transitive closure of —p, which
intuitively says that there is at least one —p, step). We first define closed
monotonicity witnesses m for every fap € Tnp¢ such that for any T and any t,
mtt(AyTy)t —py t. Since positivity and negativity are defined simultaneously,
we cannot deal with monotonicity witnesses in isolation.

Definition 7 For every p € Thpr and x € Ny (p) define a term Iiftio(p such
that + /iftimp Vo Vat.(am = at) = pla = «P] = pla := oP] (with «~
and o different type variables not in FV(p)). This is done by induction
on p.

(triv) If o ¢ FV(p) then it} , = Ao Aot Af* =2« AxPx. All the other

cases are under the proviso “otherwise”.
(V) ity o i= Ao Ao TAF =7 f,
(—) /ift}zmp_ny = /\of/\ocﬂxf"‘fﬁf}\xp[“‘:"‘ﬂ)]_"ﬂ“‘:“ﬂ)]?\yp“"‘:"‘p].

lift} oot f (x(lift;;’p o ot fy )) .

Axo
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(V) ift} gy p = AT A AT -t AxVypla=c Y If} o ot (xy) (we

assume thaty & {o,x™, o }).

Note that there 1s no specific case for (f) since this is already covered by
(triv)—thanks to the ezclusion of interleaving.

Lemma 1 Whenever o« € Ny(p) then lift] , Tt(AyTy)t =, t.
Proof Easy induction on p. O

The embedding of NPF into MF is straightforward: Define v’ by recursion on
r with homomorphic rules except for (Cexpt)’ := Cfo(plift;xpt’. This is a valid
term in 7umr since no C¢gs appears in Iiftiap—again thanks to the exclusion of
interleaving. Clearly, ' r: p (in NPF) implies I' - 1’ : p (in MF).

Lemma 2 (v[x:=5s]) =1'[x :=3s'] and (r[oc ;= 0])" = r'[xx := 0.

Proof Induction on r. The first result holds since Iift{o(p is closed, the second

since (Iiftiap[[i =o0]) = Iiftia.pm::d for « ¢ {B}UFV(0). O

Lemma 3 If r —py © without the rule of outer fized-point n-reduction then
MY
ot

Proof By induction on —py.

Case (B): ((AxPr)s)’ = (AxPr)s’ =gy v'[x:=s'] = (v[x :=s])".

Case (Br): ((Aar)o)' = (Aar')o —py v'oci= 0] = (v[x := o])".

These two cases needed the preceding lemma, while the most interesting case

is (Bf):
((Cfcxpt)Efocp)l = (Cﬁxp“ftio(ptl)Efocp _>[5n Iift;xp(focp)(f(xp)(}\yfo‘py)tl _)En tl

by the last but one lemma. O

2.2.4 Embedding MF into NPF

While the last section only justified the formulation of monotone fixed-point
types, we will now give an embedding of MF into NPF which allows us to
conclude that also MF is strongly normalizing. This time, clearly also the types
have to be transformed. Hence, we define a type p’ € Ty for every type of
MF, and for every term r € Ty a term 1’ € Typr such that whenever '+ 1:pin
MF then I'" - r': p’ in NPF (where I'’ is derived from I" by replacing every type
o occurring in I' by ¢'). Moreover, if v —gy, ? in MF then ’ —)gn #" in NPF.
Therefore, strong normalization of typable terms of NPF carries over to strong
normalization of typable terms of MF since an infinite — g -reduction sequence
starting in r induces an infinite —>‘[§n—reduction sequence starting from r’, hence
also an infinite — gy -reduction sequence from r’ which does not exist. Since our
aim is to inherit strong normalization via embeddings, this notion will now be
fixed as follows:

12



Definition 8 (Embedding) A type-respecting reduction-preserving embed-
ding (embedding for short) of a term rewrite system S with typing relation
Fs wnto a term rewrite system S’ with typing relation s/ 1s a function
—' (the — sign represents the indefinite argument of the function ') which
assigns to every type p of S a type p' of S' and to every term v of S a
term v’ of S’ such that the following implications hold: If ' ks v: p then
I'bEgrov':p, (where ' is I with all the types primed), and if r — # in S,
then v’ =57 %" in S§'. (=" denotes the transitive closure of —.)

Definition 9 Define p' € Ty for every type p of MF by recursion on p as
follows:

(V) a' = «.
(=) (p—= o) i=p"—= 0.
(V) (Vap) :==Vap'.

(f) (fap)' = faVp.(x = B) — p'lae ;= B]. (Note that by induction hy-
pothesis, p' € Tnps, hence p'[x = B] € Tnps. Since v & FV(p'[oe := BI),
a € Ny (p'la:=Bl), hence x € N (VB.(x = B) — p'lax :=B])).

Obviously, FV(p’) = FV(p).
Lemma 4 (plx:=0])' = p'[ax:=0'].
Proof Induction on p. O

Definition 10 Define v’ € Typr for every r € Tur by recursion on r as
follows:

o (Aar) = Aar’.

e (o) :=1'0’.

(Crapmt)’ = Crap) (ABAZT*P)P.m/ (foxp) Bt’).
o (tEfap)’ = 1"E(tap) (fap) (AyF*P)'y).
Lemma 5 If'Fr1:p then ' F1':p’.
Proof Inductionon ' r: p. O
Lemma 6 (r[x:=5s]) =v'[x:=5s'] and (r[ax:=0]) = 1r'[x := 0'].

Proof Induction on r. O

13



Lemma 7 Ifr —py ¥ then v/ — 1.

Proof By induction on —p,. The only interesting case is that of an outer
fixed-point B-reduction: (Ciypmt)Esnp)’ =

= C(focp)/ (AB}\ZHLXP)'—)B_m’(f(xp)’ﬁztl)E[fo‘p)’(f(xp),(}\y(ﬂxp)ry)
—)Bn (AB}\Z{fLXP)'_)B_mI(f(Xp)IBZt/) (f(Xp)'(?\y(f"‘p)’y)
—pn (}\Z(fcxp)’_>(fcxp)’_ml(f(xp)/(f(xp)lzt,)(}\y(ﬁxp)/y)

s (fap)' (Fxp) (y () y )t = (m(faep) (fxp) Ay “Py)t) 0

Corollary 8 (Strong normalization of MF) If ' F v : p in MF then r s
strongly normalizing w. r. t. —py.

2.3 Positive Inductive Types, Monotone Inductive Types,
Primitive Recursion, and the Relation to Fixed-Point
Types

2.3.1 Positive Inductive Types

System F is extended by constructions for iteration on types pap with « only
occurring positively in p. In this way, the monotonicity witnesses need not be
carried around in the terms, and canonical closed monotoncity witnesses are
used, which exist by positivity, and are defined once and for all. The resulting
system is called PI.

Definition 11 Inductively define the set Tpi of positive inductive types and
simultaneously for every p € Tpi the sets +(p) and —(p) of type vari-
ables which occur only positively or occur only negatively in p, respectively.
(Again, p will always range over {+,—}, and —+ = — and — = +.)

(V) € Tpi- +H(a) :=Vr. —(a) := V1 \{a}.

(=) If p,0 € Tyi then p = 0 € Tpi and p(p — o) := (—p)(p) Np(0).

(V) If p € Tpi then Yap € Tpi and p(Vap) :=p(p) U{a).

(W) If p € Tyi and o € +(p) (the place where the p(p) enter the condi-

tions) then pap € Tpi and p(pop) :=p(p) U{a}.

The set FV(p) of free type variables of p is defined as expected (with FV(pap) =
FV(p) \{«}).

Examples 4 For p € Tpi, the type of well-founded trees with branching
degree p, tree(p) := px.1 + (p — o) € Tpi, and also the type of “heavily-
branching” well-founded trees Tree := po.1 + (tree(at) — ) € Tpi since
x € —(tree(«)). This type ezhibits interleaving since the free parameter «
of tree(a) s bound by the outer u. Note that the branching degree of Tree
is tree(Tree), hence the well-founded trees over Tree about to be defined.

14



Note that 7, is closed under substitution.

System Pl has 7, as the set of types, and the term formation rules of F are
reinterpreted over 7,i, and extended by the following two clauses to yield the
set 7Tp; of terms of PI:

o Ift € 7p and pop € Tpi then Cpnpt € Tpi.
e If r € Tpi, 0 € Tpi and s € Tpy then TE, 08 € Tp).

Free type variables FTV (r), free term variables FV(r) and r[x := s] and r[x := 0]
are defined in the obvious way.
The typing rules of F are extended by:

Fl—t:p[oc::uocp](u) NEr:pap Es:pla:=0] >0
1

k- Cuzxpt: HXp rFT‘EuGS: o (1)

Before the B-reduction rule of iteration for Pl can be defined, we have to
provide the canonical monotonicity witnesses. Because of the possible interleav-
ing of inductive types, we first have to define the height h(A&p) of a multiply
abstracted type A&p which is nothing but the type p, seen as dependent on the
type variables & = 1, ..., &n.

Definition 12 Define the hetght h(A&p) € N by recursion on p as follows:
o If &N FV(p) =0 then h(A&kp) := 0. Otherwise:
e h(Adx) :=0.
e h(AX.p — o) := 1+ max(h(A&p), h(AXo)).
e h(A&Vap) :=1+ h(A&Aaxp) for V € {V, u}.
Define (A&p)ly := o] := A&.ply := o] (we assume that & N ({y}UFV(o)) = 0).
Lemma 9 h((A&p)[y := ol) = h(A&p). For & C &, h(A&p) > h(AX'p).

Proof Induction on p. Unequality may occur when the removal of type variables
leads into the initial case of the height definition. O

Corollary 10 If x € FV(Vyp) then h(AaVyp) > h(Ay.pla := 0]) (we assume
that v € {a} U FV(0)) and h(AaVyp) > h(Ax.ply := o]) (we assume that
« ¢ {y}U FV(o)).

Definition 13 For every p € Tpi and o € p(p) define a term /ifthp such
that + /ifthp Vo Vot (om0 = at) = pla := «P] = pla := oP] (with «~
and o™ different type variables not in FV(p)). This is done by induction
on h(Aap) (compare with section 2.2.3).

(triv) If x ¢ FV(p) then /ift}f“p = Ao AxTAfX 2% AxPx. All the other

cases are under the proviso “otherwise”.

(V) lifty o = Aot Ao TAf® =7 f,
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(=) By oo = Ao AahAf® = pxplos=ac Plmoloc=ac Py plac=al],

liftY o« otf (x(lift;(}zp o ot fy )) .

Axo

(V) Jift} gy 2= A0 AT AF -t Ay Vypla=a p]/\y.liftio(poc’oﬁf(xy) (we
assume thaty & {o,x™, " }).

m /ift}zmlwp = /\oc*/\oc+?\f°‘7_’°‘+?\XW"["“:“*D].xEu(uy.p[oc = aP])
AzPloc=o p”y::“y'p[“::“l”-Cuy-P[tx::cxP](”ftiocph/::u\/.P[oc::oc"]]ocioc-’—fz))'
Note that h(Aapyp) > h(Aaply := wy.pla ;= «P]]) by the corollary. (We
again assumed thaty ¢ {x, ¢ ,a"}.)

Lemma 11 Every occurrence of Cuyrpit tn /iftimp has h(Aa'p') < h(Axp).
Proof By induction on p, using the corollary. O

Definition 14 (Bn-reduction for Pl) The relation —g, of system F is ex-
tended by the following clauses:

(Bu) (Cuapt)Enos —=pn s(Iift{o(p(p.ocp)c(?\x““p.xEuas)t> (B-reduction rule

of iteration on positive inductive types).
(C) t =pn t' = Cuapt =pn Cuapt’ (reduction under C,xp).
(E) 1 —pn " As —2pn 8" = rE 08 =pn 1'Epos’ (reduction under E, ).

Exercise 6 Set cont(p) := px.1 + (« — p) = p for some «x ¢ FV(p). Set
D := Ccont[p)(INLL(cont(p)—)p)—)plNl) and Cf := ccont[p)“NRL(cont(p)—)p)—)pf)-
Show that F D : cont(p) and that whenever I' F f : (cont(p) — p) — p,
then ' - Cf : cont(p). Define a term e such that I e : cont(nat) — nat
and eD — 4 0 and e(Cf) =}, fe. (Therefore, definitions of this kind are
strongly normalizing. Note that fe is by no means e applied to an argument
smaller than Cf in any sense. The idea to study e s taken from [Hof95].)

2.3.2 Monotone Inductive Types

In contrast to Pl, we do not specify the monotonicity witnesses in advance but
carry them around like in MF. The resulting system will be called MI. It has
types pap without restriction, and the term rules of F are extended to yield Ty,
as follows:

o If me Ty and t € Ty then prmt € Twi
e If r € Twi and s € 7w then rE o5 € Twmi.
The typing rules of system F are extended by

N -m:vVavp.(x — B) — p — pla:= B] M- t:pla:= pap]

I Cugpmt : pocp (k)

I'Er:pop 'Es:pla:=0] >0

'ErEpos:o (he)
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The reduction relation —py of F is now extended by the B-reduction rule of
iteration on monotone inductive types (and the obvious rules of term closure
not shown here):

(Bu) (Chuxpmt)Enos —py s(m(uocp)o(?\x““p.xEuas)t)

We already know this rule from section 2.1 where the encoding of monotone
inductive types in F had the property that

(Cuapmt)os —>F§n s (m(uocp)cr()\x”"‘p .xcrs)t) )

(The property was stated with —hn instead of —)En, but trivially, at least one
reduction step was needed.) Therefore, it is obvious that M| embeds into F,
hence strong normalization is inherited from F for typable terms. Nevertheless,
there are good reasons to extend system F by those constructions explicitly
which will become clear in the next section. But before that, it is shown that
MI at least covers the positive inductive types, as expressed by an embedding
of system Pl into MI.

Definition 15 Define the set ST of stratified terms of Pl inductively:
e x € ST.
e Ifr € ST then AxPr € ST.
e Ifr,s € ST then rs € ST.
o Ifte ST, uap € Tpi and lift],, € ST then Ciqpt € ST.
e Ifr,s € ST then vE, 05 € ST.

Define by recursion on r € ST the term 1’ € Ty such that ' - r: p (in PI)
implies ' - 1’ : p (in MI): Everything shall be done homomorphically, except for
(Cpapt)' = Cu“p(lift{ap)’t’ (for which the definition of ST has been designed).

Lemma 12 Forr € ST, (r[x:=s]) =1'[x :=s'] and (v[x := 0])' =7'[ax := 0].

Proof Induction on r € ST. We need the same observations on liftY _ asin the

Axp
proof of Lemma 2. O

Lemma 13 Every (not necessarily proper) subterm v of lift, , = is stratified,

i.e., v €ST.

xp

Proof Main induction on h(Axp), side induction on the term r. If r is not of the
form C, «/pt then the side induction hypothesis applies. If r = Cj /'t then by
Lemma 11, h(Aa'p’) < h(Axp). By the main induction hypothesis, applied to
Iift{o(,p, itself, Iift;\r‘x,p, € ST. By the side induction hypothesis, t € ST, hence
also r € ST. O

Corollary 14 ST = Tp|, hence every term 1s stratified.
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Proof Since Iift;fo(p € ST, the definition of ST does not impose any restriction
on the terms in 7p; that enter ST. 0

Hence, 1’ is defined for every r € Tpi, and it is easy to check that if r =g, ?in
Pl then r' — g, #' in ML

Note that the technical problems only arised since the canonical monotonic-
ity witnesses may contain C, 4ot due to the allowed interleaving of positive
inductive types.

2.3.3 Adding (Full) Primitive Recursion

In the systems Pl and MI, we only have modeled iteration on inductive types
which is already available in system F. Recall from example 2 that in the case
of naturals, this provides us with a term construction F, p such that whenever
'ra:oandT'Fb:o—= othenl'F Fyp :nat = o and Fy 0 —py a and
Fa b(St) —Bn b(Fq bt). But we also want to model primitive recursion. In the
case of naturals, this would require a term construction Ry p such that ' a: o
and 'Fb:nat = 0 — o imply ' F Rq b : nat = o, and Ry 50 —pn a and
Ra b(St) —Bn bt(Fq bt). Obviously, this is a combination of inversion (provided
by the systems of fixed-point types) and iteration (allowing to use the function
to be defined at the smaller argument t). In the general situation, a slightly
different formulation is used: We extend Pl to PIR (positive inductive types
with iteration and primitive recursion) by keeping the types and extending the
set of terms by one rule, leading to the set 7pr, as follows: If r,s € Tpg then
T‘E:[GS € Tpir. The additional typing rule is:

I'Er:pop Nes:pla:=paxpx ol = o
l-rElos:o

(uf)

This gives rise to the additional 3-reduction rule ([SI) of primitive recursion on
positive inductive types:®

(Chapt)Eos —pn's (Iift{ap(uocp)(uocpx o) ()\x‘“"p.(x, (AXHXP xE F os)x) uocp.o) t) )

p

Note that we keep iteration since this is needed for the definition of Iift)\“p.

Clearly, subject reduction still holds.

Exercise 7 Show that we indeed modeled primitive recursion on naturals
in PIR. (Of course, this is a very special instance of primitive recursion
on arbitrary positive inductive types.)

System MI may be extended by (full) primitive recursion as well: The system
MIR has the same types as MI, but the term system is extended to the set Tyr
by adding rEﬁ os and the respective typing rule as for PIR. Accordingly, the
new reduction rule (Bﬁ) becomes

(Chxpmt)E, oS —py s (m(uocp)(uocpxcr) (?\x““p.(x, (}\x”"‘p.xE:[crs)x)Wp_g) t).

8Recall that (1,5)p,0 = AAzP %% zrs gives the pair, and 1Ly ¢ = rp(AxPAy°.x) and
TRy, = 10(AxPAY°.y) model the projections.
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MIR again enjoys subject reduction. The embedding of Pl into MI may be
extended in the obvious way to an embedding of PIR into MIR. In [Mat99a, 3.2]
it is shown that NPF (without (1¢)) embeds into the non-interleaved fragment
(called NPI) of PIR without iteration, hence an embedding of PIR into system
F is at least as unlikely to find as one of NPF (without (1)) into F.

2.3.4 Embedding Monotone Inductive Types with Primitive Recur-
sion into Non-Interleaving Fixed-Point Types

Although we added a lot of expressivity to system F when defining MIR, we
do not get beyond NPF—even w.r.t. reduction behaviour, i.e., there is an
embedding of MIR into NPF which is indeed a collapse: Primitive recursion on
arbitrary monotone inductive types (with possible interleaving and also possi-
bly free variables in the monotonicity witnesses) is reduced to the folding and
unfolding of fixed-points for non-interleaved positive dependencies.

The embedding is given as follows: Define p’ € Tnp¢ by recursion on p
homomorphically, except for

(Lxp)' := f[S‘v’y.((‘v’oc.(B XYy — ) = p’) —)y) - v.

By induction hypothesis, p’ € Thp¢. Hence, (Lap)’ € Thps since B only occurs
positively in
‘v’y.((‘v’oc.([% XY= )= p’) —)y) - .

In fact, the only occurrence of {3 is 6 times to the left of — (do not forget that
the coding of 3 x y provides 2 of them).
Define v/ € Typr by recursion on r € Tyr homomorphically, but with

(Charpmt)" 1= Ciyumpys (AYAZT (a0 Y2020 027 1 (g ae) v e,

1

m'(uocp)’oc()\x[”"‘p) w(x, ()\x[”"‘p)l.xE(Wp)/yz)x>(u“p)W)t))
and
(rEfos)" == T'E(Wp)rG'()\zv“'((““p)lxal_’“)_’pl.s'(z((p.ocp)'XG')(?\X(““")IX‘TIX)))
Quite similarly,
(rE os) := TIE(WXD)rO'I()\Zvo"(““xp)’XG’_)“)_)DI.SI(ZGI(?\X(““p)’XGI.XR(WXPV‘W)))

It is routine to check that ' F r : p in MIR implies ' F v’ : p’ in NPF, and
also that reduction is preserved, i.e., that v =g, * in MIR implies r’ —)gn i
in NPF. Therefore, we have an embedding of MIR into NPF, and consequently,

strong normalization of the typable terms of MIR ensues.
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