
Lambda Cal
ulus:A Case for Indu
tive De�nitionsPart IIMonotone Indu
tive TypesRalph MatthesInstitut f�ur Informatik der Universit�at M�un
henOettingenstra�e 67, 80538 M�un
henmatthes�informatik.uni-muen
hen.deAugust 11, 2000Abstra
tThese le
ture notes
ontain an advan
ed treatment of indu
tive types.It is assumed that the reader has a

ess to the �rst part of the le
turenotes whi
h introdu
es to �-
al
ulus and system F, and is available athttp://www.t
s.informatik.uni-muen
hen.de/~matthes/Contents1 Introdu
tion 22 Monotone Indu
tive Types 22.1 Tarski's Fixed-Point Theorem and System F 22.2 Fixed-Point Types . 62.2.1 Non-Interleaving Positive Fixed-Point Types 62.2.2 Monotone Fixed-Point Types 102.2.3 Embedding NPF into MF 112.2.4 Embedding MF into NPF 122.3 Positive Indu
tive Types, Monotone Indu
tive Types, PrimitiveRe
ursion, and the Relation to Fixed-Point Types 142.3.1 Positive Indu
tive Types 142.3.2 Monotone Indu
tive Types 162.3.3 Adding (Full) Primitive Re
ursion 182.3.4 Embedding Monotone Indu
tive Types with Primitive Re-
ursion into Non-Interleaving Fixed-Point Types 19
1

1 Introdu
tionAfter having used indu
tion on indu
tively de�ned sets so su

essfully in the�rst part of these notes, the means of indu
tion are added to the lambda
al
ulusitself: By a
onstru
tively-minded inspe
tion of Tarski's �xed-point theorem themost general formulation of indu
tive types is gained (via the Curry-Howardisomorphism). This gives a lot more insight into the
apability of system F formodelling abstra
t data types and into usual formulations of indu
tive typesfound in the literature.Citations are quite rare in these notes. This does not indi
ate that I
onsiderthe results to be original although I hope that several of them are. Credits aregiven in my resear
h papers. In a future version, I might add more
itations toenhan
e fairness.2 Monotone Indu
tive TypesThe expressiveness of system F is highlighted by the fa
t that least pre-�xed-points of monotone operators
an be represented|even with respe
t to redu
-tion behaviour. Its main pra
ti
al
onsequen
e arises in the �eld of programextra
tion: The
omputational
ontent of intuitionisti
 proofs with indu
tivede�nitions
onsists of terms of system F whose normalization yields the obje
tswhose existen
e has been proved.1 Later we will see that one also needs tomodel �xed-points (not only pre-�xed-points) in order to get primitive re
ur-sion (not only iteration), and those �xed-points are not available in system Fas is generally believed and greatly supported by [SU99℄.2.1 Tarski's Fixed-Point Theorem and System FBy studying the
on
ept of a
omplete latti
e and its representation in sys-tem F, we arrive at a representation of iteration on monotone indu
tive typesin system F (for more explanation see [Mat99
℄).De�nition 1 Let U be a set and � be a partial order on U (i. e., � is abinary relation on U whi
h is re
exive, antisymmetri
 and transitive) andV : }U ! U (with }U the powerset of U) a fun
tion whi
h determines forevery M� U the in�mum (the greatest lower bound) of M w. r. t. �, i. e.,8M 2M:VM�M and8N 2 U :(8M 2 M:N �M)) N �^M:Then (U ;�;V) is
alled a
omplete latti
e.Note that in this situation WM := VfN 2 U j 8M 2 M:M � Ng (the in�mumof the upper bounds of M) gives the supremum (the least upper bound) of Mw. r. t. �, i. e., 8M 2 M:M � WM and8N 2 U :(8M 2 M:M � N))_M� N:1Unfortunately, be
ause of la
k of spa
e, this
laim
annot be substantiated in these notes.2

We now show that the in�mum of the family (�[� := �℄)�2Tu
an be repre-sented in system F (
ompare with the treatment of in�mum types in [Mat98,pp.35{38℄).This may be motivated in a
omplete latti
e of sets with �=� and V = T.There, we have x 2^M() 8M 2 U :M 2 M) x 2M:Now we want to represent Vf�[� := �℄ j � 2 Tug by some type i��. U willbe the set Tu of types. Instead of M, we
onsider a type �, seen as a fun
tionof the type variable �. We on
e more pro�t from the �-notation when sayingthat ��� shall model M. The index set be
omes Tu, hen
e we use � instead ofM. How do we express � 2 ���? Simply by �[� := �℄. The equivalen
e abovewould now read x 2 i��() 8� 2 Tu:�[� := �℄) x 2 �:Note that this is only a formal manipulation sin
e the types are no sets. How-ever, modi�ed realizability (see e. g. [Ber93℄) tells us how to interpret thisstatement: Remove the �rst-order part (the o

urren
es of x), internalize thequanti�
ation over the types and repla
e) by ! (the type former pertain-ing to fun
tion spa
es). Hen
e, the left-hand side of the equivalen
e be
omesi��, and the right-hand side 8�:� ! �. This justi�es why we simply de�nei�� := 8�:�! �.Does our i�� have the de�ning properties of the in�mum? In the situationof a
omplete latti
e of sets with �=�, we have to
he
k(VE) If x 2 VM and M 2 M then x 2M.(VI) If 8M 2 U :M 2 M) 8y(y 2 N) y 2M) and x 2 N then x 2 VM.After the translation in the style of modi�ed realizability, we have(VE) If i�� and �[� := �℄ then �.(VI) If 8�:�! �! � and � then i��.Its only reasonable interpretation
an be statements on types of terms. In fa
t,we have:(iE) If � ` r : i�� and � ` s : �[� := �℄ then � ` r�s : �.(iI) If � ` ` : 8�:� ! � ! � (with � =2 FV(�)) and � ` t : � then, forCi��;�`t := ���x�:`�xt (with � =2 FTV(`) [FTV(t) and x =2 FV(`) [FV(t)), we have � ` Ci��;�`t : i��.Moreover, there is a derived �-redu
tion rule for in�ma: (Ci��;�`t)�s!��� `�st.We now turn to �xed-points.Theorem 1 (Tarski) Let (U ;�;V) be a
omplete latti
e and � : U ! U bemonotone (i. e., if M � N then �(M) � �(N)). Then�� :=^fM 2 U j �(M) �Mgis the least �xed-point of �. 3

Example 1 Let U := }(R), �:=�, V := T and �(M) := f0g[fr+ 1 j r 2Mg.Then �� is the set N.De�nition 2 M 2 U is a pre-�xed-point of � i� �(M) � M. M 2 U is apost-�xed-point of � i� M � �(M).Proof Let us prove Tarski's �xed-point theorem. By de�nition, we have that�� � M for all pre-�xed-points M of �. Show that �� is itself a pre-�xed-point of �. Let M be a pre-�xed-point of �. Then �� � M. Be
ause �is monotone, this implies �(��) � �(M). Be
ause M is a pre-�xed-point of� and � is transitive, �(��) � M follows. Hen
e, �(��) � M for everypre-�xed-point M of � and therefore �(��) � �� by de�nition of ��. We
on
lude that �� is the least pre-�xed-point of �.�� is also a post-�xed-point2 of � (and
onsequently the least �xed-point):We have to show that �� � �(��). By de�nition of ��, it suÆ
es to showthat �(��) is a pre-�xed-point of �, i. e., �(�(��)) � �(��). This followsfrom the �rst part of the proof and the monotoni
ity of �. �We now look more
losely at the de�nition and the �rst part of the aboveproof. The de�nition of �� does not need the monotoni
ity of �, but only the
ompleteness of the latti
e. Assume again a latti
e of sets with �=�. By (VE),we have(�E) If x 2 �� and 8y:y 2 �(M)) y 2M then x 2M.From the proof, we see(�I) If � is monotone and x 2 �(��) then x 2 ��.An even more
areful proof would be: Let � be monotone and x 2 �(��) =: N.Show x 2 �� by (VI): Assume M 2 U su
h that �(M) �M and y 2 N. Weshow that y 2 M: Let z 2 ��. Be
ause of (VE) and �(M) � M, z 2 M.Hen
e, �� �M. By monotoni
ity of �, N � �(M),
onsequently y 2 �(M).Sin
e �(M) � M, we arrive at y 2 M. Now, (VI) applies due to x 2 N, andyields x 2 ��.We are now in the position to model the least pre-�xed-point|
alled theindu
tive type ���|of ���, i. e., of the operation � 7! �[� := �℄ instead of �.(Re
all that monotoni
ity is not needed for the de�nition.) Sin
e�� =^fM 2 U j 8x:x 2 �(M)) x 2Mg;we
learly have to set ��� := i�:�! � = 8�:(�! �)! �.The \modi�ed realizability version" of (�E) would be:(�E) If ��� and �[� := �℄! � then �.And,
learly, if � ` r : ��� and � ` s : �[� := �℄ ! � then � ` r�s : �. Of
ourse, this is no surprise, sin
e (�E) is nothing but an appli
ation of (VE)whi
h has already been modeled in system F. On the other hand, (�I) shrinksto 2Unfortunately, this fa
t
annot be used to embed �xed-point types (see se
tion 2.2.1) intoF be
ause of bad redu
tion behaviour. 4

(�I) If 8�8�:(�! �)! �! �[� := �℄ and �[� := ���℄ then ���.Hen
e, assume that � ` m : 8�8�:(�! �) ! � ! �[� := �℄ and � ` t : �[� :=���℄. We
onstru
t a term C���mt su
h that � ` C���mt : ���, exa
tlya

ording to the proof of (�I): C���mt := Ci�:�!�;�[�:=���℄`t with` := ���z�!��y�[�:=���℄:z�m(���)�(�x���:x�z)y�:The term m is
alled a monotoni
ity witness for ��� or even for ���.Exer
ise 1 Verify step by step that this
onstru
tion serves its purpose,and that it indeed
an be read o� the proof of (�I). (Do not be puzzled withthe two
ompletely di�erent meanings of x, y and z.)Obviously, C���mt!��� ���z�!�:z�m(���)�(�x���:x�z)t�. Hen
e,(C���mt)�s!��� s�m(���)�(�x���:x�s)t�whi
h provides F with iteration on monotone indu
tive types, to be under-stood as follows: � ` F := �x���:x�s : ��� ! � if � ` s : �[� := �℄ ! �. Frepresents the fun
tion from ��� to � de�ned by iteration on ���, with stepfun
tion s, and the
hara
teristi
 redu
tion behaviour (note that appli
ationasso
iates to the left, and hen
e F is not applied to t in the redu
t shown)F(C���mt)!��� s(m(���)�Ft):Example 2 The standard representation of the naturals in system F is8�:(� ! �) ! � ! �. The aim is to give one by using the
on
ept ofindu
tive types. First re
all that 1 = 8�:�! �, ��� = 8�:(�! �! �)! �and � + � = 8�:(�! �)! (�! �)! � for some � =2 FV(�) [FV(�).Intuitively, 1! � is isomorphi
 to �, and (�! �)! �! � isomorphi
to ((� ! �)� �) ! �, hen
e to ((� ! �)� (1 ! �)) ! � whi
h in turn isintuitively isomorphi
 to ((� + 1) ! �) ! �, hen
e to ((1 + �) ! �) ! �.We now set nat := ��:1 + � = 8�:((1+ �)! �)! �:A
losed monotoni
ity witness for nat is given bym := �����f�!��x1+��
�u1!
�v�!
:x
u(�z�:v(fz)):De�ne 0 := Cnatm(INL1;natIN1) and St := Cnatm(INR1;natt) (with IN1 = ���x�xthe
anoni
al inhabitant of 1 and INL�;�r = ���x�!��y�!�:xr and INR�;�r =���x�!��y�!�:yr the
anoni
al inje
tions into �+ �). Then ` 0 : nat and� ` t : nat) � ` St : nat.Now assume � ` a : � and � ` b : � ! �. Set sa;b := �z1+�:z�(�u1a)b.Setting Fa;b := �xnat:x�sa;b, we get � ` Fa;b : nat ! �, and, by some
al-
ulation, Fa;b0 !��� a and Fa;b(St) !��� b(Fa;bt). Therefore, iteration onnatural numbers is a (basi
) example of our
on
ept of monotone indu
tivetypes. 5

Exer
ise 2 Let � be an arbitrary type with � =2 FV(�). Set� := (((�! �)! �)! �)! �:Show that there is a term m in system F su
h that` m : 8�8�:(�! �)! �! �[� := �℄:Use m to
onstru
t an inhabitant of ��:1 + �, i. e., a term r su
h that` r : ��:1 + �, and normalize it. (Remark: The idea to study this type isdue to Ulri
h Berger.)Exer
ise 3 Set tree(�) := ��:1 + (� ! �) for some � =2 FV(�). This typerepresents the well-founded trees bran
hing over the type �: De�ne a mono-toni
ity witness for tree(�) and terms nil and lim t su
h that ` nil : tree(�)and � ` t : � ! tree(�)) � ` lim t : tree(�) (hen
e, lim t represents the tree
onsisting of a �-family of trees) and that iteration on tree(�) is re
overedin the sense that for terms a and b with � ` a : � and � ` b : (�! �)! �,one
an �nd a term Ga;b with � ` Ga;b : tree(�) ! � and Ga;bnil !��� aand Ga;b(lim t)!��� b(�z�:Ga;b(tz)).Set � := tree(�) ! � and de�ne a
losed monotoni
ity witness for ���.(Remark: This type was brought to my attention by Ulri
h Berger, too.)Exer
ise 4 Show that there is no term r in system F su
h that ` r : ���.Hint: Study the shapes of the normal forms and use normalization ofsystem F.2.2 Fixed-Point TypesThe aim of this se
tion is the study of systems with the (generalized) su

essorand the (generalized) prede
essor in isolation. Hen
e, we do neither
onsidermeans of iteration nor those of primitive re
ursion although the former arealready present in system F and the latter are representable as will be shown inse
tion 2.3.4.2.2.1 Non-Interleaving Positive Fixed-Point TypesWe extend system F by types f�� whi
h are supposed to des
ribe arbitrary�xed-points of ���, i. e., of the operation � 7! �[� := �℄. For the time being, we
on�ne ourselves to (non-stri
tly) positive dependen
ies whi
h moreover haveto be non-interleaved, i. e., f�� may only be formed when every o

urren
e of �in � is \to the left of an even number of!" and not free in some subexpressionf�� of f��. The last
lause may be rephrased as follows: If �xed-point typesf�� are formed with a free parameter � then the formation of a �xed-point typef��|hen
e w. r. t. that parameter �|is forbidden.3 More formally:3Note that otherwise there would be a very high degree of freedom in the interpretationof f�� sin
e f�� is intended only to model an arbitrary �xed-point.6

De�nition 3 We indu
tively de�ne the set Tnpf of non-interleaving posi-tive �xed-point types and simultaneously for every � 2 Tnpf the sets N+(�)and N-(�) of type variables whi
h o

ur only positively or o

ur only nega-tively, respe
tively, and moreover do not o

ur in the s
ope of a �xed-pointtype formation (the set FV(�) of free type variables is de�ned as beforewith the additional FV(f��) := FV(�) n f�g). Let always range p over theset f+;-g of polarities and set -+ := - and -- := +.(V) � 2 Tnpf. N+(�) := VT. N-(�) := VT n f�g.(!) If �; � 2 Tnpf then �! � 2 Tnpf and Np(�! �) := N-p(�)\Np(�).(8) If � 2 Tnpf then 8�� 2 Tnpf and Np(8��) := Np(�) [f�g.(f) If � 2 Tnpf and � 2 N+(�) (the only pla
e where the Np(�) enterthe
onditions) then f�� 2 Tnpf and Np(f��) := VT n FV(f��).Note the
hange of the polarity in rule (!) whi
h substantiates the sloganthat �'s o

urren
es may only be to the left of an even number of !. Inrule (f) we a
hieve non-interleavedness by removing any free variable off��.Examples 3 � Tu � Tnpf.� � =2 N+((� ! �) ! (� ! �) ! �) although (� ! �) ! (� ! �) ! � 2Tnpf if �; � 2 Tnpf.� �;� 2 N+(�+ �).� f�:1+ � 2 Tnpf.� f�:1+ (�! �) 2 Tnpf for � 2 Tnpf and � =2 FV(�).� (f�:1 + (� ! �)) ! � 2 Tnpf and � =2 N+((f�:1 + (� ! �)) ! �)although � only o

urs positively.We now de�ne the extension NPF of system F by non-interleaving positive�xed-point types. The set of types is Tnpf. The term formation rules areextended, hen
e the set TNPF of terms has the same de�ning
lauses as TF (butwith TF repla
ed by TNPF) and, additionally,� If t 2 TNPF and f�� 2 Tnpf then Cf��t 2 TNPF.� If r 2 TNPF and f�� 2 Tnpf4 then rEf�� 2 TNPF.The de�nition of the free variables is extended in the obvious way:� FV(Cf��t) := FV(t).� FV(rEf��) := FV(r).The de�nition of the free type variables of a term is extended by:4In the sequel, it will be understood that all the mentioned types are taken from Tnpf.7

� FTV(Cf��t) := FV(f��) [FTV(t).� FTV(rEf��) := FTV(r) [FV(f��).The substitution �[� := �℄ of � for the variable � in the type � is de�ned asexpe
ted: The binder f is treated like the binder 8. Note that this does notlead out of the set Tnpf.5The de�nition of r[x := s℄ gets the new
lauses� (Cf��t)[x := s℄ := Cf��t[x := s℄.� (rEf��)[x := s℄ := r[x := s℄Ef��.Finally, r[� := �℄ is extended by� (Cf
�t)[� := �℄ := Cf
�[�:=�℄t[� := �℄.� (rEf��)[� := �℄ := r[� := �℄Ef
�[�:=�℄.Note that we may assume in the pre
eding
lauses that
 =2 f�g [FV(�).De�nition 4 (Typing for system NPF) The indu
tive de�nition of the re-lation � ` r : � for system F is reinterpreted over the larger sets Tnpf andTNPF of types and terms of NPF, and the following rules are added:� ` t : �[� := f��℄� ` Cf��t : f�� (fI) � ` r : f��� ` rEf�� : �[� := f��℄ (fE)De�nition 5 (��-redu
tion for NPF) The relation !�� of system F isreinterpreted over the sets Tnpf and TNPF, and the following
lauses areadded to the indu
tive de�nition:(�f) (Cf��t)Ef�� !�� t (outer �xed-point �-redu
tion).(�f) Cf��(rEf��)!�� r (outer �xed-point �-redu
tion).(C) t!�� t 0) Cf��t!�� Cf��t 0 (redu
tion under Cf��).(E) r!�� r 0) rEf�� !�� r 0Ef�� (redu
tion under Ef��).Hen
e, (�f) and (�f) establish the intuitive isomorphism f�� ' �[� := f��℄.Clearly, subje
t redu
tion still holds for NPF.6 The proof of typed lo
al
on
u-en
e
arries over from system F with the interesting new
ases of the rule pairsE=�f and C=�f. In the �rst
ase, we have(Cf��(rEf��))Ef����
wwnnnnnnnnnnnn ��

''PPPPPPPPPPPPrEf�� rEf��5A pre
ise proof needs additional statements whi
h are shown in footnote 2 in [Mat99b℄.6The rule (�f) requires to atta
h the type information to E sin
e f��
annot be read o��[� := f��℄: one
an always produ
e the de
omposition �[� := f��℄ = �[� := f��℄[� :=f�:�[� := f��℄℄ with \fresh" �. (The index to C is even more needed, but has already beenextensively used in the
onstru
tions of se
tion 2.1.)8

The se
ond
riti
al pair is also trivial:Cf��((Cf��t)Ef��)��
wwnnnnnnnnnnnn ��

''PPPPPPPPPPPPCf��t Cf��tNote that in both situations, the three type indi
es always have to be equal inorder to allow the alternatives (w. r. t. the rule applied).Theorem 2 (Strong normalization of system NPF) If � ` r : � then r isstrongly normalizing w. r. t. !��.Proof By a relatively straightforward extension of the proof for system F inthe �rst part of these notes (p.52 and pp.55{60; this is no surprise sin
e thatproof has been designed for the purpose of extensions to indu
tive types and�xed-point types). �Exer
ise 5 Consider the following simpli�
ation of NPF: Remove the typeinformation from Ef��, hen
e only form rE instead of rEf��. Keep the typ-ing rules (whi
h do not exploit this information) and remove (�f) (sin
esubje
t redu
tion otherwise fails,
f. footnote 6). Prove strong normaliza-tion of the resulting system by merging the proof for NPFeta+ in [Mat99b,pp.305{309℄ into the one for system F.7Hints: Give a presentation of the forms of typable terms with ve
tors ~Swhi
h now shall denote lists of terms, types and symbols E. Reinterpretthe de�nition of SN with these ve
tors,
lose SN under Cf�� and under�f-expansion (with ve
tors added, hen
e under head �f-expansion). Showthat SN is
ontained in the set of strongly normalizing terms. Draw thede�nition of saturatedness from that of SN and adjust the saturated
lo-sure
l. Che
k that the
onstru
tions of M ! N and 8� are not af-fe
ted by the modi�
ations. De�ne a �xed-point
onstru
tion on satu-rated sets: Assume that � is a monotone fun
tion from saturated setsto saturated sets, i. e., � : SAT ! SAT. De�ne for M 2 SAT the setsI�(M) := fCf��t j t 2 �(M)g and E�(M) := fr j rE 2 �(M)g, and themonotone fun
tions �I and �E from SAT to SAT by �I(M) :=
l(I�(M))and �E(M) :=
l(E�(M)). Sin
e SAT is a
omplete latti
e, they have �xed-points fI(�) and fE(�), respe
tively (we do not
onstrain the
hoi
e amongthe possible �xed-points ex
ept that it has to be a fun
tion of �). Provethat I�(M) � SN, E�(M) \ SN 2 SAT, and I�(M) � E�(M). Con
ludethat I�(M) � �I(M), �E(M) = E�(M) \ SN, and that fI(�) is a post-�xed-point of �E and fE(�) is a pre-�xed-point of �I. Write f(�) for bothfI(�) and fE(�) and put the fa
ts together to prove:7For the original NPF, one has to assign types to the saturated sets in the
andidateassignments, and therefore has to keep more
losely to the proof in [Mat99b℄ whi
h even
onsiders typed saturated sets (be
ause there �xed types are assumed, in
ontrast to our typeassignment system). 9

(fI) If t 2 �(f(�)) then Cf��t 2 f(�).(fE) If r 2 f(�) then rE 2 �(f(�)).The de�nition of
andidate assignment may remain un
hanged. The def-inition of the saturated set SC�[�℄ of the strongly
omputable terms w. r. t.the type � and the
andidate assignment � has to be given simultaneouslywith the proof that if (� :M) 2 � and � 2 N+(�) then SC�[�℄ is an in
reas-ing fun
tion ofM, and if � 2 N-(�) then SC�[�℄ is a de
reasing fun
tion ofM, and if � =2 FV(�) then SC�[� n f(� :M)g℄ = SC�[�℄. We may then de�neSCf��[�℄ := f(�) with �(M) := SC�[�;� : M℄, sin
e � is monotone by theindu
tion hypothesis (� 2 N+(�) is required for f�� being a type). Sin
eNp(f��) = VTnFV(f��), the additional statements immediately follow fromthe indu
tion hypothesis.The remaining steps are as before: Extend the proof of the substitutionlemma and of the fa
t that typable terms are strongly
omputable undersubstitution. Spe
ialization yields the result.2.2.2 Monotone Fixed-Point TypesWe are not
on�ned to non-interleaving positive �xed-point types. Monotoni
itysuÆ
es. We �rst give a naive example showing how it should not be done. The
orre
t formulation yields a
on
uent and strongly normalizing system MF.However, sin
e MF and NPF
an be embedded into ea
h other even with respe
tto redu
tion behaviour, monotoni
ity is no real extension of non-interleavingpositivity.We turn to the unsu

essful way of introdu
ing monotone �xed-point types.Consider � := f�:�! 1 (whi
h is not allowed in NPF). Intuitively, � ' � ! 1.A
losed monotoni
ity witness for � is given bym := �����f�!��x�!1�y�:IN1;i. e., ` m : 8�8�:(� ! �) ! (� ! 1) ! � ! 1. We assume that we haveC� and E� in the system, with the same typing rules as for NPF. Setting ! :=�x�:(xE�)x, we therefore get ` ! : � ! 1. Hen
e ` C�! : � and ` !(C�!) : 1.However, !(C�!) !�� ((C�!)E�)(C�!) !�� !(C�!), provided we in
lude(C�t)E� !�� t into the de�nition of !��. Consequently, the system is notstrongly normalizing (and sin
e there are no other redu
tion possiblities ex
eptthose leading to the
y
le, it is not even weakly normalizing).What is the problem with this example? We showed monotoni
ity, but didnot use it. This will be remedied in the following system MF of monotone �xed-point types: It is the extension of system F by arbitrary types f��. The newterm rules, de�ning TMF, are� If t 2 TMF and m 2 TMF then Cf��mt 2 TMF.� If r 2 TMF then rEf�� 2 TMF. 10

The typing rule (fI) of NPF is
hanged to� ` m : 8�8�:(�! �)! �! �[� := �℄ � ` t : �[� := f��℄Cf��mt : f�� (fI)(fE) is taken from NPF. Note that we
ould redo the above example with theonly di�eren
e that the term m would have to be
arried around. But we didnot yet spe
ify (�f) for MF!De�nition 6 (��-redu
tion for MF) The relation !�� of system F is ex-tended by the following
lauses:(�f) (Cf��mt)Ef�� !�� m(f��)(f��)(�yf��y)t (outer �xed-point �-redu
tion).(C) m !�� m 0 ^ t !�� t 0) Cf��mt !�� Cf��m 0t 0 (redu
tion underCf��).(E) r!�� r 0) rEf�� !�� r 0Ef�� (redu
tion under Ef��).Clearly, we still have subje
t redu
tion and typed lo
al
on
uen
e. But whyis it reasonable to redu
e (Cf��mt)Ef�� to m(f��)(f��)(�yf��y)t? Be
ause\typi
al" monotoni
ity witnesses m have the property that for any � and any t,m��(�y�y)t!��� t. And \bizarre" monotoni
ity witnesses like in the exampleabove do not lead to non-normalizing terms. This will now be expressed moreformally by giving embeddings of NPF (without outer �xed-point �-redu
tion)into MF and vi
e versa.2.2.3 Embedding NPF into MFWe embed NPF, but without outer �xed-point �-redu
tion, into MF, i. e., wede�ne for every term r 2 TNPF a term r 0 2 TMF su
h that � ` r : �) � ` r 0 : �and r !�� r̂) r 0 !+�� r̂ 0 (with !+�� the transitive
losure of !�� whi
hintuitively says that there is at least one !�� step). We �rst de�ne
losedmonotoni
ity witnesses m for every f�� 2 Tnpf su
h that for any � and any t,m��(�y�y)t!��� t. Sin
e positivity and negativity are de�ned simultaneously,we
annot deal with monotoni
ity witnesses in isolation.De�nition 7 For every � 2 Tnpf and � 2 Np(�) de�ne a term liftp��� su
hthat ` liftp��� : 8�-8�+:(�- ! �+) ! �[� := �-p℄ ! �[� := �p℄ (with �-and �+ di�erent type variables not in FV(�)). This is done by indu
tionon �.(triv) If � =2 FV(�) then liftp��� := ��-��+�f�-!�+�x�x. All the other
ases are under the proviso \otherwise".(V) lift+��� := ��-��+�f�-!�+f.(!) liftp��:�!� := ��-��+�f�-!�+�x�[�:=�-p℄!�[�:=�-p℄�y�[�:=�p℄:liftp����-�+f�x(lift-p����-�+fy)�.11

(8) liftp��8
� := ��-��+�f�-!�+�x8
�[�:=�-p℄�
:liftp����-�+f(x
) (weassume that
 =2 f�;�-; �+g).Note that there is no spe
i�

ase for (f) sin
e this is already
overed by(triv)|thanks to the ex
lusion of interleaving.Lemma 1 Whenever � 2 Np(�) then liftp�����(�y�y)t!��� t.Proof Easy indu
tion on �. �The embedding of NPF into MF is straightforward: De�ne r 0 by re
ursion onr with homomorphi
 rules ex
ept for (Cf��t) 0 := Cf��lift+���t 0. This is a validterm in TMF sin
e no Cf�� appears in liftp���|again thanks to the ex
lusion ofinterleaving. Clearly, � ` r : � (in NPF) implies � ` r 0 : � (in MF).Lemma 2 (r[x := s℄) 0 = r 0[x := s 0℄ and (r[� := �℄) 0 = r 0[� := �℄.Proof Indu
tion on r. The �rst result holds sin
e lift+��� is
losed, the se
ondsin
e (liftp���[� := �℄) 0 = liftp��:�[�:=�℄ for � =2 f�g [FV(�). �Lemma 3 If r!�� r̂ without the rule of outer �xed-point �-redu
tion thenr 0 !+�� r̂ 0.Proof By indu
tion on !��.Case (�): ((�x�r)s) 0 = (�x�r 0)s 0 !�� r 0[x := s 0℄ = (r[x := s℄) 0.Case (�F): ((��r)�) 0 = (��r 0)�!�� r 0[� := �℄ = (r[� := �℄) 0.These two
ases needed the pre
eding lemma, while the most interesting
aseis (�f):((Cf��t)Ef��) 0 = (Cf��lift+���t 0)Ef�� !�� lift+���(f��)(f��)(�yf��y)t 0 !��� t 0by the last but one lemma. �2.2.4 Embedding MF into NPFWhile the last se
tion only justi�ed the formulation of monotone �xed-pointtypes, we will now give an embedding of MF into NPF whi
h allows us to
on
lude that also MF is strongly normalizing. This time,
learly also the typeshave to be transformed. Hen
e, we de�ne a type � 0 2 Tnpf for every type ofMF, and for every term r 2 TMF a term r 0 2 TNPF su
h that whenever � ` r : � inMF then � 0 ` r 0 : � 0 in NPF (where � 0 is derived from � by repla
ing every type� o

urring in � by � 0). Moreover, if r !�� r̂ in MF then r 0 !+�� r̂ 0 in NPF.Therefore, strong normalization of typable terms of NPF
arries over to strongnormalization of typable terms of MF sin
e an in�nite!��-redu
tion sequen
estarting in r indu
es an in�nite!+��-redu
tion sequen
e starting from r 0, hen
ealso an in�nite!��-redu
tion sequen
e from r 0 whi
h does not exist. Sin
e ouraim is to inherit strong normalization via embeddings, this notion will now be�xed as follows: 12

De�nition 8 (Embedding) A type-respe
ting redu
tion-preserving embed-ding (embedding for short) of a term rewrite system S with typing relation`S into a term rewrite system S 0 with typing relation `S 0 is a fun
tion- 0 (the - sign represents the inde�nite argument of the fun
tion 0) whi
hassigns to every type � of S a type � 0 of S 0 and to every term r of S aterm r 0 of S 0 su
h that the following impli
ations hold: If � `S r : � then� 0 `S 0 r 0 : �; (where � 0 is � with all the types primed), and if r ! r̂ in S,then r 0 !+ r̂ 0 in S 0. (!+ denotes the transitive
losure of !.)De�nition 9 De�ne � 0 2 Tnpf for every type � of MF by re
ursion on � asfollows:(V) � 0 := �.(!) (�! �) 0 := � 0 ! � 0.(8) (8��) 0 := 8�� 0.(f) (f��) 0 := f�8�:(� ! �) ! � 0[� := �℄. (Note that by indu
tion hy-pothesis, � 0 2 Tnpf, hen
e � 0[� := �℄ 2 Tnpf. Sin
e � =2 FV(� 0[� := �℄),� 2 N+(� 0[� := �℄), hen
e � 2 N+(8�:(�! �)! � 0[� := �℄)).Obviously, FV(� 0) = FV(�).Lemma 4 (�[� := �℄) 0 = � 0[� := � 0℄.Proof Indu
tion on �. �De�nition 10 De�ne r 0 2 TNPF for every r 2 TMF by re
ursion on r asfollows:� x 0 := x.� (�x�r) 0 := �x� 0r 0.� (rs) 0 := r 0s 0.� (��r) 0 := ��r 0.� (r�) 0 := r 0� 0.� (Cf��mt) 0 := C(f��) 0����z(f��) 0!�:m 0(f��) 0�zt 0�.� (rEf��) 0 := r 0E(f��) 0(f��) 0(�y(f��) 0y).Lemma 5 If � ` r : � then � 0 ` r 0 : � 0.Proof Indu
tion on � ` r : �. �Lemma 6 (r[x := s℄) 0 = r 0[x := s 0℄ and (r[� := �℄) 0 = r 0[� := � 0℄.Proof Indu
tion on r. �13

Lemma 7 If r!�� r̂ then r 0 !+�� r̂ 0.Proof By indu
tion on !��. The only interesting
ase is that of an outer�xed-point �-redu
tion: (Cf��mt)Ef��) 0 == C(f��) 0����z(f��) 0!�:m 0(f��) 0�zt 0�E(f��) 0(f��) 0(�y(f��) 0y)!�� ����z(f��) 0!�:m 0(f��) 0�zt 0�(f��) 0(�y(f��) 0y)!�� ��z(f��) 0!(f��) 0 :m 0(f��) 0(f��) 0zt 0�(�y(f��) 0y)!�� m 0(f��) 0(f��) 0(�y(f��) 0y)t 0 = �m(f��)(f��)(�yf��y)t� 0. �Corollary 8 (Strong normalization of MF) If � ` r : � in MF then r isstrongly normalizing w. r. t. !��.2.3 Positive Indu
tive Types, Monotone Indu
tive Types,Primitive Re
ursion, and the Relation to Fixed-PointTypes2.3.1 Positive Indu
tive TypesSystem F is extended by
onstru
tions for iteration on types ��� with � onlyo

urring positively in �. In this way, the monotoni
ity witnesses need not be
arried around in the terms, and
anoni
al
losed monoton
ity witnesses areused, whi
h exist by positivity, and are de�ned on
e and for all. The resultingsystem is
alled PI.De�nition 11 Indu
tively de�ne the set Tpi of positive indu
tive types andsimultaneously for every � 2 Tpi the sets +(�) and -(�) of type vari-ables whi
h o

ur only positively or o

ur only negatively in �, respe
tively.(Again, p will always range over f+;-g, and -+ := - and -- := +.)(V) � 2 Tpi. +(�) := VT. -(�) := VT n f�g.(!) If �; � 2 Tpi then �! � 2 Tpi and p(�! �) := (-p)(�) \ p(�).(8) If � 2 Tpi then 8�� 2 Tpi and p(8��) := p(�) [f�g.(�) If � 2 Tpi and � 2 +(�) (the pla
e where the p(�) enter the
ondi-tions) then ��� 2 Tpi and p(���) := p(�) [f�g.The set FV(�) of free type variables of � is de�ned as expe
ted (with FV(���) =FV(�) n f�g).Examples 4 For � 2 Tpi, the type of well-founded trees with bran
hingdegree �, tree(�) := ��:1 + (� ! �) 2 Tpi, and also the type of \heavily-bran
hing" well-founded trees Tree := ��:1 + (tree(�) ! �) 2 Tpi sin
e� 2 -(tree(�)). This type exhibits interleaving sin
e the free parameter �of tree(�) is bound by the outer �. Note that the bran
hing degree of Treeis tree(Tree), hen
e the well-founded trees over Tree about to be de�ned.14

Note that Tpi is
losed under substitution.System PI has Tpi as the set of types, and the term formation rules of F arereinterpreted over Tpi, and extended by the following two
lauses to yield theset TPI of terms of PI:� If t 2 TPI and ��� 2 Tpi then C���t 2 TPI.� If r 2 TPI, � 2 Tpi and s 2 TPI then rE��s 2 TPI.Free type variables FTV(r), free term variables FV(r) and r[x := s℄ and r[� := �℄are de�ned in the obvious way.The typing rules of F are extended by:� ` t : �[� := ���℄� ` C���t : ��� (�I) � ` r : ��� � ` s : �[� := �℄! �� ` rE��s : � (�E)Before the �-redu
tion rule of iteration for PI
an be de�ned, we have toprovide the
anoni
al monotoni
ity witnesses. Be
ause of the possible interleav-ing of indu
tive types, we �rst have to de�ne the height h(�~��) of a multiplyabstra
ted type �~�� whi
h is nothing but the type �, seen as dependent on thetype variables ~� = �1; : : : ; �n.De�nition 12 De�ne the height h(�~��) 2 N by re
ursion on � as follows:� If ~� \ FV(�) = ; then h(�~��) := 0. Otherwise:� h(�~��) := 0.� h(�~�:�! �) := 1 + max(h(�~��); h(�~��)).� h(�~�r��) := 1+ h(�~����) for r 2 f8; �g.De�ne (�~��)[
 := �℄ := �~�:�[
 := �℄ (we assume that ~� \ (f
g [FV(�)) = ;).Lemma 9 h((�~��)[
 := �℄) = h(�~��). For ~� 0 � ~�, h(�~��) � h(�~� 0�).Proof Indu
tion on �. Unequality may o

ur when the removal of type variablesleads into the initial
ase of the height de�nition. �Corollary 10 If � 2 FV(r
�) then h(��r
�) > h(�
:�[� := �℄) (we assumethat
 =2 f�g [FV(�)) and h(��r
�) > h(��:�[
 := �℄) (we assume that� =2 f
g [FV(�)).De�nition 13 For every � 2 Tpi and � 2 p(�) de�ne a term liftp��� su
hthat ` liftp��� : 8�-8�+:(�- ! �+) ! �[� := �-p℄ ! �[� := �p℄ (with �-and �+ di�erent type variables not in FV(�)). This is done by indu
tionon h(���) (
ompare with se
tion 2.2.3).(triv) If � =2 FV(�) then liftp��� := ��-��+�f�-!�+�x�x. All the other
ases are under the proviso \otherwise".(V) lift+��� := ��-��+�f�-!�+f.15

(!) liftp��:�!� := ��-��+�f�-!�+�x�[�:=�-p℄!�[�:=�-p℄�y�[�:=�p℄:liftp����-�+f�x(lift-p����-�+fy)�.(8) liftp��8
� := ��-��+�f�-!�+�x8
�[�:=�-p℄�
:liftp����-�+f(x
) (weassume that
 =2 f�;�-; �+g).(�) liftp���
� := ��-��+�f�-!�+�x�
�[�:=�-p℄:xE�(�
:�[� := �p℄)��z�[�:=�-p℄[
:=�
:�[�:=�p℄℄:C�
:�[�:=�p℄(liftp���[
:=�
:�[�:=�p℄℄�-�+fz)�.Note that h(���
�) > h(���[
 := �
:�[� := �p℄℄) by the
orollary. (Weagain assumed that
 =2 f�;�-; �+g.)Lemma 11 Every o

urren
e of C�� 0� 0t in liftp��� has h(�� 0� 0) < h(���).Proof By indu
tion on �, using the
orollary. �De�nition 14 (��-redu
tion for PI) The relation !�� of system F is ex-tended by the following
lauses:(��) (C���t)E��s!�� s�lift+���(���)�(�x���:xE��s)t� (�-redu
tion ruleof iteration on positive indu
tive types).(C) t!�� t 0) C���t!�� C���t 0 (redu
tion under C���).(E) r!�� r 0 ^ s!�� s 0) rE��s!�� r 0E��s 0 (redu
tion under E�).Exer
ise 6 Set
ont(�) := ��:1 + (� ! �) ! � for some � =2 FV(�). SetD := C
ont(�)(INL1;(
ont(�)!�)!�IN1) and Cf := C
ont(�)(INR1;(
ont(�)!�)!�f).Show that ` D :
ont(�) and that whenever � ` f : (
ont(�) ! �) ! �,then � ` Cf :
ont(�). De�ne a term e su
h that ` e :
ont(nat) ! natand eD !+�� 0 and e(Cf) !+�� fe. (Therefore, de�nitions of this kind arestrongly normalizing. Note that fe is by no means e applied to an argumentsmaller than Cf in any sense. The idea to study e is taken from [Hof95℄.)2.3.2 Monotone Indu
tive TypesIn
ontrast to PI, we do not spe
ify the monotoni
ity witnesses in advan
e but
arry them around like in MF. The resulting system will be
alled MI. It hastypes ��� without restri
tion, and the term rules of F are extended to yield TMIas follows:� If m 2 TMI and t 2 TMI then C���mt 2 TMI� If r 2 TMI and s 2 TMI then rE��s 2 TMI.The typing rules of system F are extended by� ` m : 8�8�:(�! �)! �! �[� := �℄ � ` t : �[� := ���℄� ` C���mt : ��� (�I)� ` r : ��� � ` s : �[� := �℄! �� ` rE��s : � (�E)16

The redu
tion relation !�� of F is now extended by the �-redu
tion rule ofiteration on monotone indu
tive types (and the obvious rules of term
losurenot shown here):(��) (C���mt)E��s!�� s�m(���)�(�x���:xE��s)t�We already know this rule from se
tion 2.1 where the en
oding of monotoneindu
tive types in F had the property that(C���mt)�s!+�� s�m(���)�(�x���:x�s)t�:(The property was stated with !��� instead of !+��, but trivially, at least oneredu
tion step was needed.) Therefore, it is obvious that MI embeds into F,hen
e strong normalization is inherited from F for typable terms. Nevertheless,there are good reasons to extend system F by those
onstru
tions expli
itlywhi
h will be
ome
lear in the next se
tion. But before that, it is shown thatMI at least
overs the positive indu
tive types, as expressed by an embeddingof system PI into MI.De�nition 15 De�ne the set ST of strati�ed terms of PI indu
tively:� x 2 ST.� If r 2 ST then �x�r 2 ST.� If r; s 2 ST then rs 2 ST.� If t 2 ST, ��� 2 Tpi and lift+��� 2 ST then C���t 2 ST.� If r; s 2 ST then rE��s 2 ST.De�ne by re
ursion on r 2 ST the term r 0 2 TMI su
h that � ` r : � (in PI)implies � ` r 0 : � (in MI): Everything shall be done homomorphi
ally, ex
ept for(C���t) 0 := C���(lift+���) 0t 0 (for whi
h the de�nition of ST has been designed).Lemma 12 For r 2 ST, (r[x := s℄) 0 = r 0[x := s 0℄ and (r[� := �℄) 0 = r 0[� := �℄.Proof Indu
tion on r 2 ST. We need the same observations on liftp��� as in theproof of Lemma 2. �Lemma 13 Every (not ne
essarily proper) subterm r of liftp��� is strati�ed,i. e., r 2 ST.Proof Main indu
tion on h(���), side indu
tion on the term r. If r is not of theform C�� 0� 0t then the side indu
tion hypothesis applies. If r = C�� 0� 0t then byLemma 11, h(�� 0� 0) < h(���). By the main indu
tion hypothesis, applied tolift+�� 0� 0 itself, lift+�� 0� 0 2 ST. By the side indu
tion hypothesis, t 2 ST, hen
ealso r 2 ST. �Corollary 14 ST = TPI, hen
e every term is strati�ed.17

Proof Sin
e lift+��� 2 ST, the de�nition of ST does not impose any restri
tionon the terms in TPI that enter ST. �Hen
e, r 0 is de�ned for every r 2 TPI, and it is easy to
he
k that if r!�� r̂ inPI then r 0 !�� r̂ 0 in MI.Note that the te
hni
al problems only arised sin
e the
anoni
al monotoni
-ity witnesses may
ontain C���t due to the allowed interleaving of positiveindu
tive types.2.3.3 Adding (Full) Primitive Re
ursionIn the systems PI and MI, we only have modeled iteration on indu
tive typeswhi
h is already available in system F. Re
all from example 2 that in the
aseof naturals, this provides us with a term
onstru
tion Fa;b su
h that whenever� ` a : � and � ` b : � ! � then � ` Fa;b : nat ! � and Fa;b0 !�� a andFa;b(St) !��� b(Fa;bt). But we also want to model primitive re
ursion. In the
ase of naturals, this would require a term
onstru
tion Ra;b su
h that � ` a : �and � ` b : nat ! � ! � imply � ` Ra;b : nat ! �, and Ra;b0 !�� a andRa;b(St)!��� bt(Fa;bt). Obviously, this is a
ombination of inversion (providedby the systems of �xed-point types) and iteration (allowing to use the fun
tionto be de�ned at the smaller argument t). In the general situation, a slightlydi�erent formulation is used: We extend PI to PIR (positive indu
tive typeswith iteration and primitive re
ursion) by keeping the types and extending theset of terms by one rule, leading to the set TPIR, as follows: If r; s 2 TPIR thenrE+��s 2 TPIR. The additional typing rule is:� ` r : ��� � ` s : �[� := ���� �℄! �� ` rE+��s : � (�+E)This gives rise to the additional �-redu
tion rule (�+�) of primitive re
ursion onpositive indu
tive types:8(C���t)E+��s!�� s�lift+���(���)(�����)��x���:hx; (�x���:xE+��s)xi���;��t�:Note that we keep iteration sin
e this is needed for the de�nition of liftp���.Clearly, subje
t redu
tion still holds.Exer
ise 7 Show that we indeed modeled primitive re
ursion on naturalsin PIR. (Of
ourse, this is a very spe
ial instan
e of primitive re
ursionon arbitrary positive indu
tive types.)System MI may be extended by (full) primitive re
ursion as well: The systemMIR has the same types as MI, but the term system is extended to the set TMIRby adding rE+��s and the respe
tive typing rule as for PIR. A

ordingly, thenew redu
tion rule (�+�) be
omes(C���mt)E+��s!�� s�m(���)(�����)��x���:hx; (�x���:xE+��s)xi���;��t�:8Re
all that hr; si�;� = ���z�!�!�:zrs gives the pair, and rL�;� = r�(�x��y�:x) andrR�;� = r�(�x��y�:y) model the proje
tions.18

MIR again enjoys subje
t redu
tion. The embedding of PI into MI may beextended in the obvious way to an embedding of PIR into MIR. In [Mat99a, 3.2℄it is shown that NPF (without (�f)) embeds into the non-interleaved fragment(
alled NPI) of PIR without iteration, hen
e an embedding of PIR into systemF is at least as unlikely to �nd as one of NPF (without (�f)) into F.2.3.4 Embedding Monotone Indu
tive Types with Primitive Re
ur-sion into Non-Interleaving Fixed-Point TypesAlthough we added a lot of expressivity to system F when de�ning MIR, wedo not get beyond NPF|even w. r. t. redu
tion behaviour, i. e., there is anembedding of MIR into NPF whi
h is indeed a
ollapse: Primitive re
ursion onarbitrary monotone indu
tive types (with possible interleaving and also possi-bly free variables in the monotoni
ity witnesses) is redu
ed to the folding andunfolding of �xed-points for non-interleaved positive dependen
ies.The embedding is given as follows: De�ne � 0 2 Tnpf by re
ursion on �homomorphi
ally, ex
ept for(���) 0 := f�8
:��8�:(��
! �)! � 0�!
�!
:By indu
tion hypothesis, � 0 2 Tnpf. Hen
e, (���) 0 2 Tnpf sin
e � only o

urspositively in 8
:��8�:(��
! �)! � 0�!
�!
:In fa
t, the only o

urren
e of � is 6 times to the left of ! (do not forget thatthe
oding of ��
 provides 2 of them).De�ne r 0 2 TNPF by re
ursion on r 2 TMIR homomorphi
ally, but with(C���mt) 0 := C(���) 0��
�z(8�:((���) 0�
!�)!� 0)!
:z����u(���) 0�
!�:m 0(���) 0���x(���) 0 :uhx; (�x(���) 0 :xE(���) 0
z)xi(���) 0;
�t��and(rE+��s) 0 := r 0E(���) 0� 0��z8�:((���) 0�� 0!�)!� 0 :s 0�z((���) 0�� 0)(�x(���) 0�� 0x)��Quite similarly,(rE��s) 0 := r 0E(���) 0� 0��z8�:((���) 0�� 0!�)!� 0 :s 0�z� 0(�x(���) 0�� 0 :xR(���) 0;� 0)��It is routine to
he
k that � ` r : � in MIR implies � 0 ` r 0 : � 0 in NPF, andalso that redu
tion is preserved, i. e., that r !�� r̂ in MIR implies r 0 !+�� r̂ 0in NPF. Therefore, we have an embedding of MIR into NPF, and
onsequently,strong normalization of the typable terms of MIR ensues.
19

Referen
es[Ber93℄ Ulri
h Berger. Program extra
tion from normalization proofs. InMar
 Bezem and J.F. Groote, editors, Typed Lambda Cal
uli andAppli
ations, volume 664 of Le
ture Notes in Computer S
ien
e,pages 91{106. Springer Verlag, 1993.[Hof95℄ Martin Hofmann. Approa
hes to re
ursive datatypes|a
ase study.5 pages. Unpublished, April 1995.[Mat98℄ Ralph Matthes. Extensions of System F by Iteration and Primi-tive Re
ursion on Monotone Indu
tive Types. Doktorarbeit (PhDthesis), University of Muni
h, 1998. Available via the homepagehttp://www.t
s.informatik.uni-muen
hen.de/~matthes/.[Mat99a℄ Ralph Matthes. Monotone (
o)indu
tive types and positive�xed-point types. Theoreti
al Informati
s and Appli
ations,33(4/5):309{328, 1999.[Mat99b℄ Ralph Matthes. Monotone �xed-point types and strong normaliza-tion. In Georg Gottlob, Etienne Grandjean, and Katrin Seyr, editors,Computer S
ien
e Logi
, 12th International Workshop, Brno,Cze
h Republi
, August 24{28, 1998, Pro
eedings, volume 1584of Le
ture Notes in Computer S
ien
e, pages 298{312. SpringerVerlag, 1999.[Mat99
℄ Ralph Matthes. Tarski's �xed-point theorem and lambda
al
uli withmonotone indu
tive types. To appear in: Benedikt L�owe and FlorianRudolph, Foundations of the Formal S
ien
es, Refereed Papers ofa Resear
h Colloquium, Humboldt-Universit�at zu Berlin, May 7-9,1999.[SU99℄ Zdzis law Sp lawski and Pawe l Urzy
zyn. Type Fixpoints: Iterationvs. Re
ursion. SIGPLAN Noti
es, 34(9):102{113, 1999. Pro
eed-ings of the 1999 International Conferen
e on Fun
tional Programming(ICFP), Paris, Fran
e.

20

