
Lambda Cal
ulus:A Case for Indu
tive De�nitionsRalph MatthesInstitut f�ur Informatik der Universit�at M�un
henOettingenstra�e 67, 80538 M�un
henmatthes�informatik.uni-muen
hen.deJuly 8, 2000Abstra
tThese le
ture notes intend to introdu
e to the subje
t of lambda
al-
ulus and types. A spe
ial fo
us is on the use of indu
tive de�nitions.The ultimate goal of the
ourse is an advan
ed treatment of indu
tivetypes.Contents1 Overview 22 Introdu
tion to Indu
tive De�nitions 43 Lambda Cal
ulus 133.1 Motivation . 133.2 Pure Untyped Lambda Cal
ulus 154 Con
uen
e 195 Weak and Strong Normalization 276 Simple and Interse
tion Types 336.1 Simply-Typed Lambda Cal
ulus 346.2 Lambda Cal
ulus with Interse
tion Types 366.3 Strong Normalization of Typable Terms 396.4 Typability of Strongly Normalizing Terms 417 Parametri
 Polymorphism 417.1 Strong Normalization of Typable Terms 447.1.1 Saturated Sets . 447.1.2 Cal
ulating with Saturated Sets 457.1.3 Strong Computability . 461

7.2 Unde
idability of Type Che
king 487.3 An Expli
it System of Parametri
 Polymorphism 487.4 Strong Normalization and Typed Con
uen
e of F 538 Monotone Indu
tive Types 608.1 The Example of Continuations 611 OverviewTyped �-
al
uli are espe
ially simple typed fun
tional programming languages.The study of those basi
 formalisms has appli
ations to the design and the devel-opment of programming languages, program logi
s and in
uen
es mathemati
allogi
 (espe
ially stru
tural proof theory) from whi
h it originated.Starting with the indu
tive de�nitions of (untyped) �-terms and �-redu
tion,the normal terms, the weakly normalizing terms and the strongly normalizingterms are
hara
terized indu
tively. This means, the properties of not havinga redu
t or not having an in�nite redu
tion sequen
e, are turned into positivestatements. Moreover, with strongly normalizing terms it is done in a way fa
il-itating a proof of strong normalization of interse
tion-typed terms enormously(whi
h would even
over �-rules). Con
erning the weakly normalizing terms, anindu
tively de�ned relation is introdu
ed for the proof of standardization (dealtwith in the exer
ises). The te
hnique of superdelopments is used to establish
on
uen
e. The system of universal types (system F �a la Curry) is proved to bestrongly normalizing, and system F �a la Chur
h is introdu
ed at length. Again
on
uen
e and strong normalization are established whi
h later requires but asmall modi�
ation to
over the extensions of system F by monotone indu
tivetypes.After having used indu
tion on indu
tively de�ned sets so su

essfully, themeans of indu
tion are added to the lambda
al
ulus itself: By a
onstru
tively-minded inspe
tion of Tarski's �xed-point theorem the most general formulationof indu
tive types is gained (via the Curry-Howard isomorphism). This givesa lot more insight into the
apability of system F for modelling abstra
t datatypes and into usual formulations of indu
tive types found in the literature. Theidea of interpolation will elu
idate why those systems give equal
omputationalpower. Unfortunately, the material
on
erning indu
tive types is not availablein the present version of these notes.In essen
e, this
ourse is a presentation (of a logi
ian's view) of several ofthe most important results on the syntax (and operational semanti
s) by help ofgeneral indu
tion (in prin
iple known to everybody who knows about
ontext-free grammars), and then a re
e
tion of the prin
iple via �-
al
uli with indu
tivetypes.Des
ription of the "
ourse's philosophy": In some sense, the presentationwill be more elementary than in standard textbooks be
ause everything is a
-
omplished in a stri
tly
onstru
tive fashion. On the other hand, it requiressome level of mathemati
al sophisti
ation to fully understand indu
tion on in-du
tively de�ned sets although the
on
ept will be introdu
ed
arefully and2

applied to a wide range of examples (the �rst part of whi
h
ould as well betreated by ordinary indu
tion). Con
erning
ontent, most of the
ourse willsti
k to results found in standard textbooks su
h as [Bar84, Bar93, GLT89,Hin97, Kri93, Mit96℄. The reader may easily gain insight by
omparing thequite di�erent styles of presentation.To sum up, the material is self-
ontained and is intended to
onvey severalof the
entral insights of �-
al
ulus in a way whi
h should also be interestingfor those who already know the results.Citations are quite rare in these notes. This does not indi
ate that I
onsiderthe results to be original. Credits are given in my resear
h papers. In a futureversion, I might add many more
itations to enhan
e fairness.A
knowledgements to my
olleagues Thorsten Altenkir
h and Felix Jo-a
himski for helpful
omments on drafts of this work.Se
tion 2 deals with an extended example of simultaneous indu
tive de�ni-tions:
ontext-free grammars. Two grammars for the same language are provento be equal. The proofs are done so
arefully that a fun
tional program
anbe read o� immediately. Its purpose is the transformation of the parse treesfrom one grammar into the other. But the main purpose is the illustration ofindu
tion.In se
tion 3 the
on
ept of binding is motivated from
al
ulus. Untyped�-
al
ulus is introdu
ed: terms, substitution, �-equality, Cur
h numerals, �-redu
tion.Con
uen
e of �-redu
tion is de�ned and proved in se
tion 4. Friends ofdiagrams may enjoy the proof of lo
al
on
uen
e whi
h is given beforehand sin
eit is mu
h more perspi
uous. However, the method of establishing
on
uen
e inthe spirit of M. Takahashi with superdevelopments �a la F. von Raamsdonk, isexplained in great detail in order to make it as
on
eivable as the lo
al
on
uen
eproof.Se
tion 5 provides the notions of normalizability. Weak and strong normal-izability are both
hara
terized in a syntax-dire
ted way|useful for proofs ofnormalization in later se
tions.Types enter the s
ene in se
tion 6: Simple and interse
tion types are moti-vated and studied. The te
hni
al development is
on�ned to interse
tion typessin
e it is more demanding as well as more informative: type assignment mat-ters! The results are
losure under substitution and reverse substitution, In-version and Subje
t Redu
tion, and the main result the well-known fa
t thatexa
tly the strongly normalizing terms are typable with interse
tion types.In se
tion 7 universal types prevail. First, the �-terms get a ri
her typingsystem (system of universal types=system F �a la Curry) whi
h requires the
andidate method for the proof of strong normalization. After a glan
e at theunde
idability of type
he
king, the expli
it form of system F is introdu
ed witha ri
her term stru
ture. Several te
hni
al
ompli
ations o

ur (e. g., lo
al
on-
uen
e fails without typability restri
tion). A �rst set of examples demonstratesF's ability to en
ode datatypes. Strong normalization is proved as a preparationfor the system with �xed-point types. 3

Se
tion 8 is in
omplete: After an illuminating ML program a dis
ussion ofthe virtues of indu
tive types and the limitations of F's en
odings therof
anbe found. It is intended to make this quite large a se
tion in later versions ofthese le
ture notes.2 Introdu
tion to Indu
tive De�nitionsIn theoreti
al
omputer s
ien
e, indu
tive de�nitions are ubiquitous. Mostly,they appear in the disguise of formal grammars whi
h are idealizations of nat-ural language grammars. Therefore, this introdu
tion to indu
tive de�nitions
on
entrates on examples of (even
ontext-free) grammars. In [ASU86, Exam-ple 4.8℄ two equivalent grammars for arithmeti
 expressions are studied for thepurpose of illustrating the elimination of left re
ursion. The �rst one is (withid a set of identi�ers): E ! E+ T j TT ! T � F j FF ! (E) j idThe intuition of the non-terminals is given by:� E: expression = a sum of terms� T: term = a produ
t of fa
tors� F: fa
tor = a parenthesized expression or an identi�erThus we model that in arithmeti
 expressions, � has a higher pre
eden
e than+, and that parentheses enfor
e grouping. The grammar is left re
ursive andtherefore
annot be treated by top-down parsing methods: One runs into theloop E! E + T! E+ T+ T! E+ T+ T + T! : : :The se
ond grammar is as follows (with empty word �):E ! THH ! +TH j �T ! FKK ! �FK j �F ! (E) j idThe idea is to de
ompose an expression into a term and a string of the form+T+ T+ : : :+ T (expressed by the auxiliary non-terminal H) while in the �rstgrammar, the de
omposition would be into a list of T's with +'s inbetween. Thesame idea is used for the terms.The
laim is that both grammars are equivalent, i. e., that the same expres-sions
an be derived from the non-terminal E. How
an we prove that with fullmathemati
al rigour? Answer: By indu
tion. More
on
retely: By indu
tion onthe generation of the expressions a

ording to these grammars. This generationpro
ess may be made pre
ise as follows: We simultaneously de�ne the sets E ,T and F of strings derivable in the �rst grammar from the non-terminals E, Tand F, respe
tively. This will be done by means of an indu
tive de�nition to beexpressed by the following rules: 4

(1) If e 2 E and t 2 T then e + t 2 E .(2) If t 2 T then t 2 E .(3) If t 2 T and f 2 F then t � f 2 T .(4) If f 2 F then f 2 T .(5) If e 2 E then (e) 2 F .(6) If i 2 id then i 2 F .These rules have to be interpreted as des
ribing the generation of the sets E , Tand F , hen
e the three sets will have all the properties expressed by the rules,and an element only enters one of the three sets if this is possible by one of thesix rules. E. g., e+ t only enters E by the �rst rule, if already e 2 E and t 2 T .Clearly, we are only interested in the set E of expressions, but we have tode�ne sets for every non-terminal in the grammar.Analogously, we indu
tively de�ne �ve sets E 0;H 0; T 0;K 0;F 0,
orrespondingto the �ve non-terminals of the se
ond grammar:(a) If t 2 T 0 and h 2 H 0 then th 2 E 0.(b) If t 2 T 0 and h 2 H 0 then +th 2 H 0.(
) � 2 H 0.(d) If f 2 F 0 and k 2 K 0 then fk 2 T 0.(e) If f 2 F 0 and k 2 K 0 then �fk 2 K 0.(f) � 2 K 0.(g) If e 2 E 0 then (e) 2 F 0.(h) If i 2 id then i 2 F 0.Lemma 1 (Equivalen
e) E = E 0.Proof It is obvious that we
annot prove E = E 0 in isolation. We �rst proveE � E 0 and simultaneously prove T � T 0 and F � F 0 by indu
tion on thesimultaneous indu
tive de�nition of E , T and F . Proving by indu
tion meansarguing on the generation of all the strings in E , T and F by help of the rules(1) to (6). Sin
e the rules spe
ify whi
h strings have to be in E , T or F before,we may assume that for those strings we already have that they are in E 0, T 0and F 0, respe
tively. This is always
alled the indu
tion hypothesis.We go through (1) to (6):(1) If e + t 2 E has been
on
luded from e 2 E and t 2 T , we have to showthat e + t 2 E 0. By indu
tion hypothesis, e 2 E 0 and t 2 T 0. Sin
e thereis only one rule for E 0, we
on
lude that e = t 0h with t 0 2 T 0 and h 2 H 0.Now, we �rst prove an auxiliary statement: If h 2 H 0 and t 2 T 0 thenh+ t 2 H 0. This is proved by indu
tion on H 0: If h 2 H 0 due to rule (b)5

then h = +t 0h 0 with t 0 2 T 0 and h 0 2 H 0 whi
h entered H 0 before h. Byindu
tion hypothesis, h 0 + t 2 H 0, hen
e h + t = +t 0h 0 + t 2 H 0 by rule(b) again. If h 2 H 0 due to rule (
) then h = �. By rules (
) and (b),h+ t = � + t = +t = +t� 2 H 0. By help of this statement, we infer thath+ t 2 H 0, hen
e e + t = t 0h+ t 2 E 0 by rule (a).(2) If t 2 E has been
on
luded from t 2 T , we have to show that t 2 E 0, andthe indu
tion hypothesis is t 2 T 0. We are done by rules (
) and (a).(3) We need another auxiliary lemma: If k 2 K 0 and f 2 F 0 then k � f 2 K 0.The proof and the whole
ase are similar to (1).(4) Similar to (2).(5) If (e) 2 F has been
on
luded from e 2 E , we have to show that (e) 2 F 0,and the indu
tion hypothesis is e 2 E 0. So were are done by rule (g).(6) If i 2 F has been
on
luded from i 2 id, we have to show that i 2 F 0.This holds by rule (h).Let us prove E 0 � E . Sin
e the de�nitions of E 0, H 0, T 0, K 0 and F 0 areentangled, we need to prove something for all of those. Therefore, we indu
tivelyde�ne two auxiliary sets H and K. H is de�ned by mimi
king rules (b) and (
):(b+) If t 2 T and h 2 H then +th 2 H.(
+) � 2 H.Analogously, K is de�ned after the model of (e) and (f):(e+) If f 2 F and k 2 K then �fk 2 K.(f+) � 2 K.Now, we
an simultaneously prove E 0 � E , H 0 � H, T 0 � T , K 0 � K andF 0 � F by indu
tion on the simultaneous indu
tive de�nition of E 0, H 0, T 0,K 0 and F 0. In order to do this, we �rst prove that (a) to (h) hold when all theprimed entities X 0 are repla
ed by the X , for X 2 fE ;H; T ;K;Fg.(a) Show that if t 2 T and h 2 H then th 2 E . We need an auxiliarylemma: If e 2 E and e 0 2 E then e + e 0 2 E . It is proved by indu
tionon the generation of e 0 2 E : If e 0 2 E has been
on
luded by rule (1)then e 0 = e 00 + t for some previously found e 00 2 E and some t 2 T . Byindu
tion hypothesis, e+e 00 2 E , hen
e by rule (1), e+e 0 = e+e 00+t 2 E .If e 0 2 E has been
on
luded by rule (2) from e 0 2 T then e + e 0 2 E by(1).Now, the
laim is proved for arbitrary t 2 T by indu
tion on h 2 H: Ifh 2 H stems from rule (b+) then h = +t 0h 0 for some t 2 T and somepreviously generated h 0 2 H. By indu
tion hypothesis, t 0h 0 2 E . Sin
et 2 E , the auxiliary lemma yields th = t+ t 0h 0 2 E . If h 2 H by rule (
+)then h = � and therefore th = t 2 E .6

(b) By rule (b+): If t 2 T and h 2 H then +th 2 H.(
) � 2 H by rule (
+).(d) Show that if f 2 F and k 2 K then fk 2 T . In analogy to (a), we �rstprove t; t 0 2 T) t�t 0 2 T by indu
tion on t 0 2 T and then do indu
tionon k 2 K.(e) By rule (e+): If f 2 F and k 2 K then �fk 2 K.(f) � 2 K by rule (f+).(g) By rule (5): If e 2 E then (e) 2 F .(h) If i 2 id then i 2 F by (6).Therefore, the unprimed entities ful�ll the de�ning
lauses of the primed enti-ties. Sin
e the primed entities are assumed to be the smallest sets with thoseproperties (elements only enter if one of the rules applies), we
on
lude that theprimed entities are all in
luded in the unprimed ones, respe
tively.Readers not being familiar with this order-theoreti
 arguments may simplydo an indu
tive proof of x 2 X 0) x 2 X for X 2 fE ;H; T ;K;Fg in traditionalstyle. We only
onsider this for rule (a): Assume that th 2 E 0 has been
on-
luded from t 2 T 0 and h 2 H 0. By indu
tion hypothesis, t 2 T and h 2 H.Therefore, by the validity of (a) with T 0, H 0 and E 0 repla
ed by T , H and E ,respe
tively, we get th 2 E and are done. �Sin
e our proof only
ontained
onstru
tive arguments, it is straightforwardto write a program by whi
h the parse trees for expressions a

ording to the �rstand the se
ond grammar
an be transformed into ea
h other. The programminglanguage we
hose is Standard ML of New Jersey (Version 110.0.6 of O
tober1999).The readers are not expe
ted to be familiar with SML. Nevertheless, itshould be possible to understand the program text without explaining the syn-tax. Only the intentions are given and the output of the system when fed withthe program lines shown so far.datatype'id expr = Pnode (* P for plus *) of 'id expr * 'id term |Tnode (* T for term *) of 'id termand 'id term = Mnode (* M for multiply *) of 'id term * 'id fa
tor |Fnode (* F for fa
tor *) of 'id fa
torand 'id fa
tor = Bnode (* B for bra
ket *) of 'id expr |Inode (* I for identifier *) of 'id;Three indu
tive datatypes are introdu
ed whi
h are parameterized by 'id rep-resenting the set of identi�ers (in our examples this will always be the built-intype string of strings). They model the set of derivation trees for E , T andF . The rules (1) to (6) are represented by
onstru
tors (whi
h are nothing buttags). So, e. g., Pnode stands for (1) and thus requires some 'id expr and some7

'id term (* denotes pairing). Note that only the derivation trees are modeledand not the expressions themselves. The system's answer (with its preferredtype variable name 'a):datatype 'a expr = Pnode of 'a expr * 'a term | Tnode of 'a termdatatype 'a term = Fnode of 'a fa
tor | Mnode of 'a term * 'a fa
tordatatype 'a fa
tor = Bnode of 'a expr | Inode of 'aval f1 = Bnode(Pnode(Tnode(Fnode(Inode("7"))),Fnode(Inode("3"))));val t1 = Fnode(Bnode(Tnode(Mnode(Fnode(Inode("8")),f1))));val e1 = Pnode(Tnode(t1),Mnode(Fnode(Inode("6")),Inode("5")));fun itplus(expr,n) =if n <= 0 then exprelse Pnode(expr,Fnode(Bnode(itplus(expr,n-1))));(* for the formation of big terms *)val e2 = itplus(e1,50);val e3 = itplus(e1,1000);val e4 = itplus(e1,100000);Some examples are provided, leading to the outputval f1 = Bnode (Pnode (Tnode (Fnode #),Fnode (Inode #))) : string fa
torval t1 = Fnode (Bnode (Tnode (Mnode (#,#)))) : string termval e1 = Pnode (Tnode (Fnode (Bnode #)),Mnode (Fnode #,Inode #)) : string exprval itplus = fn : 'a expr * int -> 'a exprval e2 = Pnode (Pnode (Tnode #,Mnode #),Fnode (Bnode (Pnode #))) : string exprval e3 = Pnode (Pnode (Tnode #,Mnode #),Fnode (Bnode (Pnode #))) : string exprval e4 = Pnode (Pnode (Tnode #,Mnode #),Fnode (Bnode (Pnode #))) : string exprNote that # indi
ates trun
ation of output. By re
ursion on the derivation treeswe de�ne the derived elements of E , T and F as lists of symbols:fun ppe(Pnode(expr,term)) = ppe(expr)�["+"℄�ppt(term) |ppe(Tnode(term)) = ppt(term)and ppt(Mnode(term,fa
tor)) = ppt(term)�["*"℄�ppf(fa
tor) |ppt(Fnode(fa
tor)) = ppf(fa
tor)and ppf(Bnode(expr)) = ["("℄�ppe(expr)�[")"℄ |ppf(Inode(ident)) = [ident℄;val str1 = ppf f1;val str2 = ppt t1;val str3 = ppe e1;Note that � denotes
on
atenation of lists. We get8

val ppe = fn : string expr -> string listval ppt = fn : string term -> string listval ppf = fn : string fa
tor -> string listval str1 = ["(","7","+","3",")"℄ : string listval str2 = ["(","8","*","(","7","+","3",")",")"℄ : string listval str3 = ["(","8","*","(","7","+","3",")",")","+","6","*",...℄ : string listNote that ... denotes trun
ation of the list (although in this example ...stands for nothing but "5" whi
h
an be
he
ked by entering the line(str3=["(","8","*","(","7","+","3",")",")","+","6","*","5"℄);the response to whi
h should be val it = true : bool).The se
ond grammar is dealt with similarly:datatype'id ee = THnode of 'id tt * 'id hhand 'id hh = PPnode of 'id tt * 'id hh |EmptyHand 'id tt = FKnode of 'id ff * 'id kkand 'id kk = MMnode of 'id ff * 'id kk |EmptyKand 'id ff = BBnode of 'id ee |IInode of 'id;(* examples *)val hh1 = PPnode(FKnode(IInode("6"),MMnode(IInode("5"),EmptyK)),EmptyH);val kk1 = MMnode(BBnode(THnode(FKnode(IInode("7"),EmptyK),PPnode(FKnode(IInode("3"),EmptyK),EmptyH))),EmptyK);val ee1 = THnode(FKnode(BBnode(THnode(FKnode(IInode("8"),kk1),EmptyH)),EmptyK),hh1);(* string representation *)fun ppee(THnode(tt,hh)) = pptt(tt)�pphh(hh)and pphh(PPnode(tt,hh)) = ["+"℄�pptt(tt)�pphh(hh) |pphh(EmptyH) = niland pptt(FKnode(ff,kk)) = ppff(ff)�ppkk(kk)and ppkk(MMnode(ff,kk)) = ["*"℄�ppff(ff)�ppkk(kk) |ppkk(EmptyK) = niland ppff(BBnode(ee)) = ["("℄�ppee(ee)�[")"℄ |ppff(IInode(ident)) = [ident℄;This yieldsdatatype 'a ee = THnode of 'a tt * 'a hh9

datatype 'a hh = EmptyH | PPnode of 'a tt * 'a hhdatatype 'a tt = FKnode of 'a ff * 'a kkdatatype 'a kk = EmptyK | MMnode of 'a ff * 'a kkdatatype 'a ff = BBnode of 'a ee | IInode of 'aval hh1 = PPnode (FKnode (IInode #,MMnode #),EmptyH) : string hhval kk1 = MMnode (BBnode (THnode (#,#)),EmptyK) : string kkval ee1 = THnode (FKnode (BBnode #,EmptyK),PPnode (FKnode #,EmptyH)): string eeval ppee = fn : string ee -> string listval pphh = fn : string hh -> string listval pptt = fn : string tt -> string listval ppkk = fn : string kk -> string listval ppff = fn : string ff -> string listval str4 = ppee(ee1);val ok1 = (str3 = str4);leads toval str4 = ["(","8","*","(","7","+","3",")",")","+","6","*",...℄ : string listval ok1 = true : booland shows that ee1 is the derivation in the se
ond grammar of the same ex-pression as that derived by e1 in the �rst one.Now we
ome to the
onversion from the �rst grammar to the se
ond gram-mar re
e
ting the �rst part of the proof of the lemma. The auxiliary statementfor (1), namely if h 2 H 0 and t 2 T 0 then h+ t 2 H 0, is turned into a fun
tionplus whi
h takes an argument in 'a hh and one in 'a tt to produ
e that in'a hh re
e
ting their addition. Similarly, we de�ne mult to re
e
t the auxiliarylemma for (3). Moreover, we exploit that there are only one rule for E 0 and T 0ea
h whi
h allows to de
ompose the derivations into two pie
es.fun plus(PPnode(tt',hh),tt) = PPnode(tt',plus(hh,tt)) |plus(EmptyH,tt) = PPnode(tt,EmptyH);fun mult(MMnode(ff',kk),ff) = MMnode(ff',mult(kk,ff)) |mult(EmptyK,ff) = MMnode(ff,EmptyK);fun eetott(THnode(tt,hh)) = tt;fun eetohh(THnode(tt,hh)) = hh;fun tttoff(FKnode(ff,kk)) = ff;fun tttokk(FKnode(ff,kk)) = kk;val plus = fn : 'a hh * 'a tt -> 'a hhval mult = fn : 'a kk * 'a ff -> 'a kkval eetott = fn : 'a ee -> 'a ttval eetohh = fn : 'a ee -> 'a hhval tttoff = fn : 'a tt -> 'a ffval tttokk = fn : 'a tt -> 'a kk 10

The following de�nitions of the transforming fun
tions are straightforwardlyread o� the proofs of (1) to (6). Clearly, they have to be de�ned simultaneously,and every appli
ation of the indu
tion hypothesis now be
omes some re
ursive
all to one of the three fun
tions about to be de�ned.fun
ve(Pnode(expr,term)) =let val ee =
ve(expr) inTHnode(eetott(ee),plus(eetohh(ee),
vt(term)))end |
ve(Tnode(term)) = THnode(
vt(term),EmptyH)and
vt(Mnode(term,fa
tor)) =let val tt =
vt(term) inFKnode(tttoff(tt),mult(tttokk(tt),
vf(fa
tor)))end |
vt(Fnode(fa
tor)) = FKnode(
vf(fa
tor),EmptyK)and
vf(Bnode(expr)) = BBnode(
ve(expr))|
vf(Inode(ident)) = IInode(ident);val ok2=(
ve(e1)=ee1);Noti
e that the let
onstru
tion provides for abbreviations used lo
ally.val
ve = fn : 'a expr -> 'a eeval
vt = fn : 'a term -> 'a ttval
vf = fn : 'a fa
tor -> 'a ffval ok2 = true : boolWe turn to the other dire
tion
orresponding to the proof of E 0 � E . The twoauxiliary sets H and K are represented by two additional indu
tive datatypes:datatype 'id auxh = PPPnode of 'id term * 'id auxh |EmptyAuxH;datatype 'id auxk = MMMnode of 'id fa
tor * 'id auxk |EmptyAuxK;datatype 'a auxh = EmptyAuxH | PPPnode of 'a term * 'a auxhdatatype 'a auxk = EmptyAuxK | MMMnode of 'a fa
tor * 'a auxkWe again need auxiliary fun
tions re
e
ting the lemmas� If e 2 E and e 0 2 E then e + e 0 2 E .� If t 2 T and h 2 H then th 2 E .� If t 2 T and t 0 2 T then t � t 0 2 T .� If f 2 F and k 2 K then fk 2 T .11

embedded into the proof. The operations on the derivations are given in theorder of those lemmas:fun pluse(expr,Pnode(expr',term)) = Pnode(pluse(expr,expr'),term) |pluse(expr,Tnode(term)) = Pnode(expr,term);fun
on
th(term,EmptyAuxH) = Tnode(term) |
on
th(term,PPPnode(term',auxh)) =pluse(Tnode(term),
on
th(term',auxh));fun multt(term,Mnode(term',fa
tor)) = Mnode(multt(term,term'),fa
tor) |multt(term,Fnode(fa
tor)) = Mnode(term,fa
tor);fun
on
fk(fa
tor,EmptyAuxK) = Fnode(fa
tor) |
on
fk(fa
tor,MMMnode(fa
tor',auxk)) =multt(Fnode(fa
tor),
on
fk(fa
tor',auxk));val pluse = fn : 'a expr * 'a expr -> 'a exprval
on
th = fn : 'a term * 'a auxh -> 'a exprval multt = fn : 'a term * 'a term -> 'a termval
on
fk = fn : 'a fa
tor * 'a auxk -> 'a termAs before, no intuition is needed to produ
e the transforming fun
tions fromthe proofs of (a) to (h). However, note that sin
e we only showed them for therules where the primed entities X 0 have been repla
ed by the X , the appli
ationsof the indu
tion hypotheses are hidden, but nevertheless the re
ursive
alls haveto be made as for the other dire
tion.fun
vee(THnode(tt,hh)) =
on
th(
vtt(tt),
vhh(hh))and
vhh(PPnode(tt,hh)) = PPPnode(
vtt(tt),
vhh(hh)) |
vhh(EmptyH) = EmptyAuxHand
vtt(FKnode(ff,kk)) =
on
fk(
vff(ff),
vkk(kk))and
vkk(MMnode(ff,kk)) = MMMnode(
vff(ff),
vkk(kk)) |
vkk(EmptyK) = EmptyAuxKand
vff(BBnode(ee)) = Bnode(
vee(ee)) |
vff(IInode(ident)) = Inode(ident);val ok3 = (
vee(ee1) = e1);val ok4 = (
vee(
ve(e2)) = e2);val ok5 = (
vee(
ve(e3)) = e3);val ok6 = (
vee(
ve(e4)) = e4); (* takes some time *)12

val
vee = fn : 'a ee -> 'a exprval
vhh = fn : 'a hh -> 'a auxhval
vtt = fn : 'a tt -> 'a termval
vkk = fn : 'a kk -> 'a auxkval
vff = fn : 'a ff -> 'a fa
torval ok3 = true : boolval ok4 = true : boolval ok5 = true : boolval ok6 = true : boolval it = () : unitNote that the last line of output stems from the exe
ution of the whole programloaded into SML by the
ommand use("expr.sml") where expr.sml is thename of the sour
e �le.3 Lambda Cal
ulusWe introdu
e �-
al
ulus in its simplest form: There is only �-abstra
tion andappli
ation, and no typing whatsoever. Nevertheless, in the motivating exam-ples, a ri
her signature will freely be used.3.1 MotivationImagine how in mathemati
al texts you will express that the fun
tion f is thesquaring fun
tion. The easiest way to do that is by saying that f(x) = x2 forall x. Others prefer to write f := (�)2, using the anonymous dot instead of thevariable name x. But how would we denote the two-pla
e fun
tion g whi
h formsthe sum of the squares of the arguments? We
ould write g(x; y) := x2 + y2with the variables x and y. Is g := (�)2 + (�)2 a

eptable? It does not indi
atewhi
h is the �rst and whi
h is the se
ond argument. Hen
e we prefer to havevariable names.If we want to speak about the sum of two squares, why should we �rstintrodu
e some name g for that, instead of dire
tly writing a mathemati
aldes
ription? In �-
al
ulus, we would write �x�y:x2 + y2.How would we express the �rst derivative �2g of g := �x�y:x2+y2 w. r. t. these
ond argument (often written �g�y)? It is again a fun
tion of two arguments:�2g := �x�y: lim!0 �h:g(x; y + h) - g(x; y)h :In order to use �-notation as mu
h as possible, we even have writtenlim!0 �h:g(x; y+ h) - g(x; y)hinstead of the more usual limh!0 g(x; y + h) - g(x; y)h :13

Sin
e the
onstru
tion does not depend on the
on
rete de�nition of g, wemay again do an abstra
tion and de�ne �2 as an operation whi
h takes a two-pla
e fun
tion g and returns �2g, i. e., we de�ne�2 := �g�x�y: lim!0 �h:g(x; y+ h) - g(x; y)h :Note that the limit need not exist for every g and that therefore, stri
tly speak-ing, �2 is not well-de�ned. So, do not take this example too serious. A mu
hmore important issue: We do not need to have the name �2 at hand in order tobe able to express our
on
ept of forming the derivative. We may simply saythat it is given by �g�x�y: lim!0 �h:g(x; y+ h) - g(x; y)h :Let us now
al
ulate �x:�2(�x�y:x2 + y2) x 2, i. e., the fun
tion taking anyargument x to the partial derivative of our previous g w. r. t. y, evaluated atthe point (x; 2). By expanding the abbreviation, we get�x:��g�x�y: lim!0 �h:g(x; y + h) - g(x; y)h �(�x�y:x2 + y2) x 2:Clearly, we now want to repla
e the formal parameters g; x; y of �2 by theexpressions �x�y:x2 + y2; x; 2, respe
tively. This yields�x: lim!0 �h: (�x�y:x2 + y2)(x; 2 + h) - (�x�y:x2 + y2)(x; 2)h :Again we repla
e the formal parameters x; y of g by the a
tual arguments. (Forthis example, we do not distinguish between two subsequent arguments and apair of arguments.) We get�x: lim!0 �h: (x2 + (2 + h)2) - (x2 + 22)h :It is now a matter of algebra to see that the numerator of the fra
tion hasthe same value as 4h + h2. And lim!0 �h:4 + h will
ertainly be 4 sin
e itis suÆ
ient for that to evaluate �h:4 + h at the argument 0, hen
e repla
ingthe formal parameter h by 0 in 4 + h, yielding 4 + 0 whi
h, by algebra, hasthe same value as 4. Hen
e, we have transformed �x:�2(�x�y:x2 + y2) x 2 into�x:4 whi
h does not allow any further simpli�
ation. So we may say that the
onstant fun
tion returning 4 on any input, is the result of our
al
ulation.In pure �-
al
ulus, we only model the bare bones of this example: Therewill be neither a referen
e to algebrai
 manipulations nor even to the
on
eptof a limit. So, there will be no squares, no sums, no fra
tions, no subtra
tions.There are even no pairs (no tuples). But we may freely �-abstra
t \formal"variables and may always apply one expression to another with the intuitionthat the �rst expression represents a fun
tion and the se
ond one an argumentto it. And the only me
hanism for \
al
ulation" will be the repla
ement offormal parameters by a
tual arguments.14

3.2 Pure Untyped Lambda Cal
ulusLet an in�nite set V of identi�ers be given. The identi�ers serve as names forvariables. We usually denote elements of V by x; y; z. The identi�ers them-selves do not matter and will never appear in the presentation. The possibilityof having di�erent sets V is not exploited. The most basi
 �-
al
ulus only mod-els fun
tionals (sin
e those fun
tions may take as well fun
tions as arguments,it is preferred to refer to them as fun
tionals). This is done by giving a sim-ple grammar for them|more pre
isely, by the following indu
tive de�nition ofterms:De�nition 1 (Terms) The set T of terms is indu
tively given by:� If x 2 V then x 2 T .� If x 2 V and r 2 T then �xr 2 T .� If r 2 T and s 2 T then (rs) 2 T .The intention is that �xr models the fun
tion x 7! r(x) in general mathemati
allanguage, where r(x) is just r with the dependen
y on x indi
ated (hen
e only ametasynta
ti
ally blown up notation for r). In mathemati
s one would perhapsprefer to write r(s) instead of the �-
al
ulus notation (rs) for an appli
ation ofr to s.By de�nition, terms are strings
onsisting of identi�ers in V , parenthesesand the greek letter �. Sin
e we do not aim at studying parsing issues, we willview terms as trees, i. e., we identify a term with its indu
tive generation bythe above de�nition. And as long as it is
lear whi
h tree is meant, we leaveout parentheses. We also assume that appli
ation asso
iates to the left and usethe dot notation: A dot hides a pair of parentheses, whi
h opens at the dot and
loses as far to the right as is synta
ti
ally possible.Examples 1 xx is (xx). xxx is ((xx)x). ! := �x:xx is �x(xx).
 := !! is(�x(xx)�x(xx)).Note that all of the examples are quite
ounterintuitive sin
e x is applied tox itself, hen
e x is on one hand viewed as a fun
tion and on the other as anargument to that fun
tion. By typing restri
tions to be introdu
ed later, thosebizarre terms will be ruled out. Nevertheless, the theorems on pure �-
al
ulusalways also hold for them.To give at least some intuition for
, think of fun
tions as predi
ates, i. e.,fun
tions with boolean range. Then fx means that f holds true of the argumentx. Moreover, �xr is the predi
ate whi
h holds true of x i� r(x) is true. In thisway, �-abstra
tion be
omes set
omprehension. In a set-theoreti
 notation, !would then
orrespond to M := fx j x 2 xg and
 to the assertion that M 2M.11Bertrand Russell used the set M := fx j x =2 xg and the assertion M 2M for his famousset-theoreti
 paradox. As a remedy he proposed typed systems. The
ure for unpleasantbehaviour of �-terms will also be types, i. e., the restri
tion to terms whi
h follow sometyping dis
ipline. 15

De�nition 2 (Free variables) De�ne the set FV(r) of variables o

urringfree in r by re
ursion on r:� FV(x) := fxg.� FV(�xr) := FV(r) n fxg.� FV(rs) := FV(r) [FV(s).Obviously, FV(r) is always a �nite subset of V . As long as a term has freevariables (a term without free variables is
losed), its intended meaning dependson the assignment of values for the free variables. Hen
e, it is important toknow the names of the variables. On the
ontrary, the variables o

urringin r whi
h are not free (the formal parameters or bound variables) are onlya means of pointing to the pla
es where to bind the a
tual argument to theformal parameter. Hen
e, there is no di�eren
e at all between �xx and �yy.More generally, we will never make a distin
tion between terms di�ering onlyin the names of their bound variables as long as the internal referen
es arethe same.2 So for us, (�x:xy)x � (�z:zy)x where � denotes synta
ti
 equality.Surely, (�z:zy)x 6� (�y:yy)x.A word of
aution: In the passage from �xr to r, x may be
ome a freevariable, and
onsequently its name matters. Hen
e in arguments by indu
tionon terms, the
ase of an abstra
tion typi
ally reads as follows: \Case �xr. Byrenaming of the bound variable x, we may assume that x does not appear inthe set M [given beforehand℄. By indu
tion hypothesis for r, . . . ". This meansthat although an arbitrary �xr has to be studied, we feel free to rename x in it.We even assume this has already been done and led to the
hoi
e x. Then we�x the variable name and break up �xr to yield r with possible free o

urren
esof x. We may now apply the indu
tion hypothesis to r or rename other boundvariables in r, et
.3De�nition 3 (Substitution) De�ne the result r[x := s℄ of repla
ing everyfree o

urren
e of the variable x in r by the term s re
ursively as follows:� x[x := s℄ := s� y[x := s℄ := y for y 6= x.� (�yr)[x := s℄ := �y:r[x := s℄ where we may assume by renaming of thebound variable y that y =2 fxg [FV(s).� (rt)[x := s℄ := r[x := s℄t[x := s℄.2In the literature, this will often be
alled a variable
onvention or that terms are
onsid-ered up to renaming of bound variables or modulo �-equivalen
e. A mathemati
ally soundjusti�
ation of this identi�
ation pro
ess is not as trivial as one might expe
t it to be. More-over, for any operation on terms su
h as substitution de�ned below, the independen
e of the
hosen representative of the term has to be
he
ked.3In a rigorous treatment, indu
tion on the term stru
ture would not even be available.Instead, one would have to argue by indu
tion on the height of a term sin
e the height is thesame for �-equivalent terms. 16

Note in the
ase of an abstra
tion that y = x would forbid any repla
ement sin
ethen x would not be free in �xr. If we allowed y 2 FV(s), this free variableof s would be
aptured by the outer �-abstra
tion although there has been nofun
tional dependen
y beforehand. This would be
ounterintuitive and alsomake substitution in
ompatible with renaming of bound variables.Lemma 2 r[x := s℄[y := t℄ = r[y := t℄[x := s[y := t℄℄ for x =2 fyg [FV(t).Proof Indu
tion on r. �With the notion of substitution at hand, we are now able to de�ne whi
hterms are
onsidered to be
omputationally equal if our
omputations are re-stri
ted to the repla
ement of formal parameters by arguments, i. e., when re-pla
ing (�xr)s by r[x := s℄ in any part of the expressions.De�nition 4 (�-equality) Let =� be the
ongruen
e relation generatedfrom (�xr)s =� r[x := s℄, i. e., =� is de�ned indu
tively by:(�) (�xr)s =� r[x := s℄ (outer �-equality).(�) r =� r 0) �xr =� �xr 0 (�-equality under an abstra
tion).(a) r =� r 0 ^ s =� s 0) rs =� r 0s 0 (appli
ation).(r) r =� r (re
exivity).(t) r =� s^ s =� t) r =� t (transitivity).(s) r =� s) s =� r (symmetry).(�)4 and (a) are the rules of
ompatibility with the term formation rules,the rules (r), (t) and (s) express that =� is an equivalen
e relation.Clearly, it would suÆ
e to restri
t the re
exivity rule (r) to x =� x sin
e (�)and (a) are present in the system. Note that the names � and � are standardnotation.Example 2
 = (�x:xx)! =� (xx)[x := !℄ = !! =
 by rule (�). Thisdoes not sound interesting sin
e re
exivity would also prove
 =�
.Example 3 (Chur
h numerals) De�ne n := �f�x: f(: : : (f| {z }n times x) : : :). The termn is
alled the n-th Chur
h numeral. It will be
onvenient to introdu
e theabbreviation rns := r(: : : (r| {z }n times s) : : :) su
h that n = �f�x:fnx. The
ompositionof terms is de�ned as r Æ s := �x:r(sx) (for some x =2 FV(r) [FV(s)). Thenfor every natural numbers m and n and terms r we have that (mr)Æ(nr) =�m + nr. Thus addition is represented within pure �-
al
ulus. The proof isonly sket
hed: By
hoosing the names of the bound variables appropriately,4The names � and � are standard notation.17

the left-hand side be
omes �z:�(�f�x:fmx)r���(�g�y:gny)r�z�. By applying(�) twi
e,
ompatibility several times, and asso
iativity on
e, we get the�-equal term �z:(�x:rmx)�(�y:rny)z� =� �z:(�x:rmx)(rnz) =� �z:rm(rnz) =�z:rm+nz =� (�f�z:fm+nz)r. Why is this a proof sket
h? Be
ause we ta
itlyuse several properties whi
h need to be proved by indu
tion on naturalnumbers.Exer
ise 1 De�ne K := �x�yx and S := �x�y�z:xz(yz) with x; y; z di�erent.(Re
all that xz(yz) = ((xz)(yz)).) Produ
e some term t su
h that SKK =� tand t has no subterm of the form (�xr)s (hen
e t will later be
alled �-normal).Exer
ise 2 Show for every m and n that m Æ n =� m � n and for m 6= 0and every n: m n =� nm. Hen
e, also multipli
ation and exponentiationare represented within pure �-
al
ulus.5Exer
ise 3 (Prede
essor) (diÆ
ult) De�ne some
losed term P represent-ing the prede
essor fun
tion: For every n � 1, Pn =� n - 1 and P0 =� 0.Show that P meets its spe
i�
ation.One possible solution6 is as follows: Numeral n applies its �rst argu-ment n times to its se
ond argument. Hen
e, iteration is already presentin the system. Full primitive re
ursion may be derived from iteration bymeans of pairing. Pairs may be de�ned very easily (a term hr; si and terms�1r and �2r for any terms r and s su
h that �1hr; si =� r and �2hr; si =� s).Problem 1 How
an we argue that �x�yx 6=� �x�yy? Clearly, we wantthem to be di�erent sin
e they represent pro
edures taking two argumentsand returning the �rst and the se
ond argument, respe
tively.7 But howdo we know that we
annot use (�) together with (s) in order to produ
eterms (�xr)s out of r[x := s℄ in
ourse of the hypotheti
al derivation of�x�yx =� �x�yy?By leaving out the rules of equivalen
e relations, and by adjusting the ap-pli
ation rule properly, we arrive at the de�nition of �-redu
tion.De�nition 5 (�-redu
tion) Indu
tively de�ne the relation !� as follows:(�) (�xr)s!� r[x := s℄ (outer �-redu
tion).(�) r!� r 0) �xr!� �xr 0 (�-redu
tion under an abstra
tion).(r) r!� r 0) rs!� r 0s (right appli
ation).(l) r!� r 0) sr!� sr 0 (left appli
ation).5In fa
t, every partial re
ursive fun
tion
an be modeled within �-
al
ulus by taking theChur
h numerals as numbers.6There are mu
h easier solutions and mu
h more bizarre ones.7If they were �-equal, all the terms would be �-equal.18

If r!� s we say that r redu
es by one �-redu
tion step to s.Example 4
 = (�x:xx)!!� (xx)[x := !℄ = !! =
 by rule (�). This isinteresting sin
e re
exivity has been ex
luded by passing from =� to !�.In fa
t, this example is a major nuisan
e whi
h will later be removed bytyping restri
tions.Lemma 3 r!� r 0) FV(r 0) � FV(r).Proof Indu
tion on !�. �For every binary relation !, the transitive re
exive
losure of ! (i.,e.,the least transitive and re
exive relation
ontaining !) is denoted by !�.Equivalently, r !� s i� there are n 2 N0 and r0; r1; : : : ; rn su
h that r = r0,8i 2 f1; : : : ; ng:ri-1 ! ri, and rn = s.Corollary 4 r!�� r 0) FV(r 0) � FV(r). �It is easy to see that !�� has all the de�ning properties of =� ex
ept symme-try. But the absen
e of symmetry makes life mu
h easier as will be the themeof the next se
tion. Problem 1 will be solved.4 Con
uen
eAlthough �-
al
ulus even enjoys
on
uen
e, a proof of lo
al
on
uen
e is shown�rst.De�nition 6 (Lo
al
on
uen
e) A binary relation ! �M�M is lo
ally
on
uent i�8r 2M8r 0 2M8r 00 2M: r! r 0 ^ r! r 00) 9t 2M: r 0 !� t^ r 00 !� t:r
wwpppppppppppppp

''OOOOOOOOOOOOOr 0 �
&&N

N
N

N
N

N
N lo
al
on
uen
e r 00�

wwp
p

p
p

p
p

ptLemma 5 !� is lo
ally
on
uent.Proof Let r!� r 0 and r!� r 00. By indu
tion on r show that there is a term tsu
h that r 0 !�� t and r 00 !�� t. We distinguish sixteen
ases a

ording to thefour
ases in the generation of r!� r 0 and r!� r 00, respe
tively. This will beindi
ated by a pair of names of rules taken from the de�nition of �-redu
tion.
19

�=�. The situation is trivial: (�xr)s�
yyssssssssss �

%%K
KKKKKKKKKr[x := s℄

KKKKKKKKKK

KKKKKKKKKK
r[x := s℄

ssssssssss

ssssssssssr[x := s℄�=�. We have �xr�
||xx

xx
xx

xx �
##F

FFFFFFF�xr 0 �xr 00 due to r�
����

��
��

� �

@@
@@

@@
@@r 0 r 00 .By indu
tion hypothesis, we get a term t with r 0 � �

��
>>

>>
>>

> r 00��
����

��
��

��t .Therefore, also �xr 0 � �
""F

FF
FF

FF
F �xr 00��{{xxxxx

xxx�xt .r/r and l/l. Similarly.r/l. We have rs�
}}{{

{{
{{

{{ �
!!C

CC
CC

CC
Cr 0s rs 0 with r!� r 0 and s!� s 0.Obviously, r 0s � ""D

DD
DD

DD
D rs 0�}}zzzzzzzzr 0s 0 .

l/r. Symmetri
 to the pre
eding
ase.r/�. We have (�xr)s�
||zz

zz
zz

zz
z �

%%J
JJJJJJJJts r[x := s℄ with �xr!� t.Hen
e, t = �xr 0 with r !� r 0. Sin
e this implies r[x := s℄ !� r 0[x := s℄(see the substitutivity lemma below),we arrive at ts r[x := s℄

�
����

��
��

��
��

��
��

��
�(�xr 0)s �

%%K
KKKKKKKKK r 0[x := s℄

.
20

�/r. Symmetri
 to the pre
eding
ase.l/�. We have (�xr)s�
zzuuuuuuuuu �

%%J
JJJJJJJJ(�xr)s 0 r[x := s℄ with s!� s 0.By the
ompatibility lemma below, this implies r[x := s℄ !�� r[x := s 0℄(with as many steps as free o

urren
es of x in r).Hen
e, (�xr)s 0 �

%%K
KKKKKKKKK

r[x := s℄��
yyrrrrrrrrrrr[x := s 0℄ .Noti
e that it is essential to put !�� instead of !� in this diagram.r/�. Symmetri
 to the pre
eding
ase.� with other rules. Those six
ases are impossible sin
e the other rules needappli
ation terms. �Two properties of !� have been used in this proof whi
h are now statedmore prominently:Lemma 6 (Substitutivity) If r!� r 0 then r[x := s℄!� r 0[x := s℄.Proof Indu
tion on !�. �Lemma 7 (Compatibility) If s !� s 0 then r[x := s℄ !�� r[x := s 0℄, andr[x := s℄!� r[x := s 0℄ if x o

urs exa
tly on
e free in r.Proof Prove by indu
tion on r that r[x := s℄ !�� r[x := s 0℄ with as many�-redu
tion steps as the number of free o

urren
es of x in r. �De�nition 7 (Con
uen
e) A binary relation ! �M�M is
on
uent i�8r 2M8r 0 2M8r 00 2M: r!� r 0 ^ r!� r 00) 9t 2M: r 0 !� t^ r 00 !� t:r�

yysssssssssss �
%%K

KKKKKKKKKKr 0 �
%%J

J
J

J
J

J
on
uen
e r 00�
yys

s
s

s
s

stProblem 2 Can we get
on
uen
e of ! out of its lo
al
on
uen
e? Adire
t proof fails:
21

//

��

��

��

��

//

��

//

��

//

��

��

��

//

��

//

��

//

��

// //

��

��

// // //

��

// //

��

// // //

// //This
ould go on with ever in
reasing
omplexity. Moreover, there is abinary relation ! whi
h is lo
ally
on
uent and not
on
uent: It is givenby the following graph on four items: oo ""bb // .Later we will see a
ondition for deriving
on
uen
e from lo
al
on
uen
e.Theorem 1 !� is
on
uent.The proof will o

upy the rest of this se
tion.De�nition 8 (Diamond Property) A binary relation ! �M�M has thediamond property i�8r 2M8r 0 2M8r 00 2M: r! r 0 ^ r! r 00) 9t 2M: r 0 ! t^ r 00 ! t:r
wwooooooooooooooo

''PPPPPPPPPPPPPPr 0
''O

O
O

O
O

O
O

O diamond property r 00
wwo

o
o

o
o

o
o

otNoti
e that
on
uen
e is a derived
on
ept: ! is
on
uent i� !� has thediamond property. Also note that the
ase l/� of the proof of lo
al
on
uen
eimmediately lets us �nd a
ounterexample to the diamond property for !�,e. g., by starting with (�x:yxx)((�zr)s).The idea to prove
on
uen
e of some ! is as follows: Find a binary relation� (to be read as parallel redu
tion) su
h that ! �� �!� and� has the di-amond property. Con
uen
e of ! follows easily: Assume r�
����

��
��

� �

@@
@@

@@
@@r 0 r 00 ,

22

i. e., r
����

��
�

��
??

??
?

����
��

�

 A
AA

AAr 0 r 00
.

Sin
e ! ��, we have r
������
��

�
�� ��
??

??
?

������
��

�
 A

AA
AAr 0 r 00

.
Multiple uses of the diamond property for � give:r

������
��

�
�� ��
??

??
?

�� ��
??

??
?

������
��

�

������
��

�

�� ��
==

==
=

������
��

�
 @

@@
@@r 0

�� ��
??

??
?

������
��

�

�� ��
==

==
= r 00

~~~~~~
~~

~

������
��

�
�� ��
??

??
?

�� ��
>>

>>
>

������
��

�tHen
e, by � �!�, r 0 !� : : :!� t and r 00 !� : : :!� t. Sin
e !� is transitiveby de�nition, we �nally get r 0 !� t and r 00 !� t. (Of 
ourse, this proof withdots 
ould be made more pre
ise by some indu
tive argument.)How do we de�ne su
h a notion�� for !�? Re
onsider the 
ru
ial 
ase l/�in the proof of lo
al 
on
uen
e. If we want to satisfy!� ��� and the diamondproperty for ��, we have to solve (�xr)s�
zzuuuuuuuuu �

%%J
JJJJJJJJ(�xr)s 0 � %% %%J

JJJ
JJJ

JJ
JJ

r[x := s℄�yyyysssssssssss?
.

(Re
all that s!� s 0 is assumed in l/�.) Clearly, we want to have r[x := s 0℄ asthe 
ommon redu
t. Therefore, our �� must ful�lls!� s 0 ) r[x := s℄�� r[x := s 0℄:This intuitively means that in r[x := s℄�� r[x := s 0℄, the �-redu
tion step froms to s 0 has to be 
arried out in parallel for ea
h free o

urren
e of x in r. We23



will now try to �nd out whi
h �-redu
tions on a term 
an be performed in onepass through it, and will later de�ne �� su
h that r �� s i� s is the resultwhen performing �-redu
tions on r in one pass through r. First we de�ne theoptimal result r� of su
h an a
tion on r.De�nition 9 (Complete superdevelopment) By re
ursion on terms r de-�ne the term r� as follows:x� := x;(�xr)� := �xr�;(rs)� := � t[x := s�℄ if r� = �xt,r�s� otherwise.In 
ase of a variable, there is nothing to do. Everything we 
an do with anabstra
tion �xr, takes pla
e in its kernel r. Con
erning an appli
ation rs, we�rst look what 
an be done with r and s. If the result r� happens to be anabstra
tion, we even 
arry out the outer �-redu
tion step (�xt)s� !� t[x := s�℄,otherwise we simply apply r� to s�. (Further possibilities for �-redu
tion steps
annot be grasped uniformly by one pass through the term.)Examples 5 Consider r := (�x�y:xyy)st. In order to 
al
ulate r� we needto know ((�x�y:xyy)s)� whi
h hin turn 
alls for (�x�y:xyy)�. (�x�y:xyy)� =�x�y:xyy is plain. Therefore, ((�x�y:xyy)s)� = (�y:xyy)[x := s�℄ = �y:s�yy.Sin
e we may assume that y =2 FV(s), we �nally get r� = (s�yy)[y := t�℄ =s�t�t�. We see that the 
omplete superdevelopment is 
apable of repla
inga list of formal parameters (here x and y) by the a
tual arguments (herethe results s� and t�).The 
omplete superdevelopment may also eliminate intervening iden-tities, e. g., ((�xx)(�yr)s)� = r�[y := s�℄. Noti
e that (�xx)(�yr)s has hid-den parentheses, as shown in ((�xx)(�yr))s, preventing the �-redu
tion of(�yr)s. Nevertheless, (�xx)(�yr)s and (�yr)s have the same 
omplete su-perdevelopment.Finally, 
omplete superdevelopments 
annot remove every possibility for�-redu
tion, e. g., for x =2 FV(s), we get ((�x:xs)(�yr))� = (�yr�)s� (use thatFV(s�) � FV(s) shown below) whi
h 
an further be �-redu
ed to r�[y := s�℄(whi
h of 
ourse may again be �-redu
ible depending on r and s).Lemma 8 r!� r�.Proof Indu
tion on r. �As a 
orollary, we get FV(r�) � FV(r).Now, we want to see how �� should be de�ned to ensure that r �� r�:Sin
e x� = x, we have to require x �� x. Con
erning (�xr)� = �xr�, we willalready know that r�� r� and have to show that �xr�� �xr�. This suggeststo require, more generally, r �� r 0 ) �xr �� �xr 0. Similarly|we now treatthe appli
ation|in 
ase r� = �xt, we will already know that r �� �xt ands �� s� and have to show that rs �� t[x := s�℄. This suggest to require24



r �� �xt^ s �� s 0 ) rs �� t[x := s 0℄. Finally, if we already know r �� r�and s�� s�, we want to 
on
lude rs �� r�s�, if r� fails to be an abstra
tion.This suggests to require r �� r 0 ^ s �� s 0 ) rs �� r 0s 0, whi
h seems morereasonable if we also allow r 0 to be an abstra
tion. These four requirements willbe the de�nition of ��.De�nition 10 (Parallel �-redu
tion) De�ne the binary relation �� in-du
tively as follows:(�) r�� �xt^ s�� s 0 ) rs�� t[x := s 0℄.(�) r�� r 0 ) �xr�� �xr 0.(a) r�� r 0 ^ s�� s 0 ) rs�� r 0s 0.(v) x�� x.Noti
e that for given r, there may be several terms r 0 su
h that r �� r 0, e. g.,in 
ase r �� �xt and s �� s 0, we have that rs �� t[x := s 0℄ by (�) andrs �� (�xt)s 0 by (a). (Re
all that there are possibilities that those terms
oin
ide: t = xx and s 0 = !.)Lemma 9 r�� r�.Proof By indu
tion on r we verify that �� indeed has the property whi
h ledus to the de�nition. �Lemma 10 �� is re
exive.Proof By indu
tion on r show r�� r. This does not need rule (�). �Corollary 11 !� ���.Proof By indu
tion on !�. Sin
e !� is the smallest set with its de�ningproperties, we simply have to show those properties for ��, i. e., we have toshow:(�) (�xr)s�� r[x := s℄.(�) r�� r 0 ) �xr�� �xr 0.(r) r�� r 0 ) rs�� r 0s.(l) r�� r 0 ) sr�� sr 0.This uses re
exivity of �� at least four times. �Lemma 12 �� �!��.Proof By indu
tion on ��. Sin
e �� is the smallest set with its de�ningproperties, we simply have to show those properties for !��, i. e., we have toshow: 25



(�) r!�� �xt^ s!�� s 0 ) rs!�� t[x := s 0℄.(�) r!�� r 0 ) �xr!�� �xr 0.(a) r!�� r 0 ^ s!�� s 0 ) rs!�� r 0s 0.(v) x!�� x.They 
learly hold. �The only remaining task is to prove the diamond property for��. A 
ru
ial
ase (with r�� r 0 and s�� s 0) will be (�xr)s�
yyyyttttttttt �

%% %%J
JJJJJJJJ(�xr 0)s 0 � %% %%KKKKKKKKKKK
r[x := s℄�yyyysssssssssss?

.
Clearly, we want to have r 0[x := s 0℄ as the 
ommon redu
t. This 
alls for thefollowingLemma 13 r�� r 0 ^ s�� s 0 ) r[x := s℄�� r 0[x := s 0℄.Proof Indu
tion on r �� r 0. We only 
onsider the most te
hni
al 
ase (�):Assume that ru �� t[y := u 0℄ has been derived from r �� �yt and u �� u 0.By the indu
tive hypothesis, r[x := s℄ �� (�yt)[x := s 0℄ = �y:t[x := s 0℄ (sin
ewe may assume that y =2 fxg[FV(s 0)), and also u[x := s℄�� u 0[x := s 0℄. Hen
e,r[x := s℄u[x := s℄�� t[x := s 0℄[y := u 0[x := s 0℄℄ = t[y := u 0℄[x := s 0℄;by Lemma 2. Therefore, (ru)[x := s℄�� t[y := u 0℄[x := s 0℄, as required. �Note that this lemma 
omprises substitutivity and 
ompatibility (
f. Lemma 6and Lemma 7 for !�).Lemma 14 (Maximality) If r�� r 0 then r 0 �� r�.r�wwwwooooooooooooooor 0 � '' ''O

O
O

O
O

O
O maximality of (:)�r�Thus r� is the optimum what 
an be done by �-redu
tion in one pass, and ��gives all the possibilities one has in one pass (in
luding doing nothing sin
e��is re
exive), and if in the passage from r to r 0, the optimal way has not been
hosen (hen
e r 0 6= r�), r� 
an be rea
hed in another pass through r 0.Proof Indu
tion on r�� r 0. We only look at the interesting 
ases.26



(�). Case rs�� t[x := s 0℄ thanks to r�� �xt and s�� s 0. By indu
tionhypothesis, �xt�� r� and s 0 �� s�. By inspe
tion of the rules of ��, itis 
lear that �xt�� r� 
an only be derived by rule (�). Therefore, r� hasto be a �-abstra
tion r� = �xt 0 and t �� t 0. Hen
e, (rs)� = t 0[x := s�℄.By the pre
eding lemma, t[x := s 0℄�� t 0[x := s�℄.(a). By indu
tion hypothesis, r 0 �� r� and s 0 �� s�. We have to showthat r 0s 0 �� (rs)�. If r� = �xt then, by rule (�), r 0s 0 �� t[x := s�℄ =(rs)�. Otherwise, by rule (a), r 0s 0 �� r�s� = (rs)�. �Noti
e that Lemma 9 is merely the spe
ial 
ase with r 0 = r, hen
e its proof issuper
uous sin
e we did not use it to prove maximality.Corollary 15 �� has the diamond property.Proof Given r, we already know the term t whi
h for any r 0 and r 00 su
h thatr�� r 0 and r�� r 00 ful�lls r 0 �� t and r 00 �� t: It is r�. �To 
on
lude, we have found a binary relation �� with !� � �� � !��and the diamond property. Hen
e, !� is 
on
uent.Exer
ise 4 Show that !� has the Chur
h-Rosser property: For everyterms r and s, r =� s implies that there is some term t su
h that r !�� tand s!�� t.Exer
ise 5 Solve Problem 1.Exer
ise 6 (a sequel to Exer
ise 2) Show that for m 6= 0 and any n, wehave m n!�� nm.Exer
ise 7 A simple lemma says 8s9r:sr =� r. The idea: For given s, setr := (�x:s(xx))(�x:s(xx)) with x =2 FV(s). Verify that sr =� s. (Hen
e, r isa �xed point of s viewed as a fun
tion.)In the intended solution to Exer
ise 3, one needs some su

essor onChur
h numerals, hen
e some 
losed terms S su
h that 8n 2 N:Sn =� n+ 1.Show that S := �z�f�x:f(zfx) is a possible 
hoi
e.By the little lemma, there is a term r su
h that Sr =� r. The term r inthe proof is no Chur
h numeral, i. e., not of the form n with some n 2 N.Show that (this is no a

ident:) no Chur
h numeral is �xed point of S.5 Weak and Strong NormalizationDe�nition 11 Given a binary relation ! �M �M, an element r 2 M isin normal form i� there is no s 2M su
h that r! s.Lemma 16 (�-normal forms) The set nf of terms in normal form w. r. t.!� equals the set NF, de�ned by indu
tion as follows:� If ~r � NF then x~r 2 NF. 27



� If r 2 NF then �xr 2 NF.The notation with ve
tors deserves a short explanation: ~r denotes a �nite list ofterms. This is not part of the syntax of �-
al
ulus but a metasynta
ti
 devi
eto 
ommuni
ate terms. In fa
t, we have in�nitely many rules of the form:r1; : : : ; rn 2 NF) xr1 : : : rn 2 NF for every n 2 N0 .8Proof nf � NF is proved by indu
tion on terms: x 2 NF. Let rs be in nf,hen
e also r; s 2 nf sin
e a redu
tion in r or s gives rise to a redu
tion in rs.By indu
tion hypothesis r; s 2 NF. If r were of the form �xt, then 
ertainlyrs =2 nf. Hen
e, r = x~s for ~s � NF. We 
on
lude rs = x~ss 2 NF. Let �xr be innf. Hen
e, also r 2 nf. By indu
tion hypothesis, r 2 NF whi
h yields �xr 2 NF.NF � nf is proved by indu
tion on the de�nition of NF. Let x~r be in NFthanks to ~r � NF. By indu
tion hypothesis, ~r � nf, hen
e also x~r 2 nf sin
eany possible redu
tion of x~r has to happen in one of the ~r. Let �xr be in NFdue to r 2 NF. By indu
tion hypothesis, r 2 nf. Sin
e redu
tions on �xr 
anonly happen by help of the rule �, also �xr 2 nf. �Examples 6 ! = �x:xx 2 NF. 
 = !! =2 NF.De�nition 12 Given a binary relation ! �M �M, an element r 2 M isweakly normalizing i� there is an s 2M in normal form su
h that r!� s.Let wn be the set of terms whi
h are weakly normalizing w. r. t. !�.Examples 7 nf � wn. 
 =2 wn sin
e the only term t su
h that 
 !�� t is
 itself. (�x�y:y)
 2 wn sin
e its redu
t �yy is in nf.Exer
ise 8 Show that r 2 wn and r!�� r 0 imply r 0 2 wn.De�nition 13 Given a binary relation ! �M �M, an element r 2 M isstrongly normalizing i� there is no in�nite redu
tion sequen
e starting fromr, i. e., i� there are no r0; r1; : : : su
h that r0 = r and ri ! ri+1 for every i.This de�nition has a major drawba
k: It is formulated as a negative state-ment, namely the non-existen
e of an in�nite redu
tion sequen
e. This 
an beavoided and even the referen
e to in�nity be removed in the following indu
tive
hara
terization.De�nition 14 Given a binary relation ! �M �M, its a

essible part a

is indu
tively de�ned by:8r 2M:(8s 2M:r! s) s 2 a

) ) r 2 a

:In other words: An obje
t r 2 M quali�es for a

 if every one-step redu
t s(any obje
t s 2M su
h that r! s) already quali�ed for a

.Clearly, if r is in normal form, then there is nothing to 
he
k, and r entersa

 immediately.8The in�nity 
ould be avoided by introdu
ing the 
on
ept of neutral term simultaneouslywith NF: Variables are neutral, and if r is neutral and s 2 NF, then rs neutral. Moreover, allneutral terms are in NF. 28



Lemma 17 The set a

 is the set of strongly normalizing elements of M.Proof How 
an we prove that a

 only 
ontains strongly normalizing obje
ts?By indu
tion on the indu
tive de�nition of a

! Let r be in a

 thanks to s 2 a

for every s su
h that r ! s. Assume, we had an in�nite redu
tion sequen
estarting from r, i. e., some s-1; s0; s1; : : : su
h that r = s-1 and for all i � -1:si ! si+1. Setting s := s0, we have r ! s, and an in�nite redu
tion sequen
estarting from s. This 
ontradi
ts the indu
tion hypothesis whi
h tells us that sis already strongly normalizing (sin
e s has entered a

 before r entered it).We now show that an r 2Mna

 is not strongly normalizing by 
onstru
tingr0; r1; : : : su
h that r0 = r and for all i, ri ! ri+1 and ri 2M n a

. Set r0 := r.Assume that r0; : : : ; ri have already been 
onstru
ted. Sin
e ri =2 a

, it did notqualify for a

, hen
e there has to be some one-step redu
t ri+1 of ri whi
h alsodid not qualify for a

, i. e., some ri+1 2M su
h that ri ! ri+1 and ri+1 =2 a

.�Note that the se
ond part of the proof uses some form of the axiom of 
hoi
eand is not 
onstru
tively justi�ed.9De�ne sn := a

!� . Hen
e, sn is the set of �-terms whi
h do not have anin�nite sequen
e of �-redu
tions.Example 8 (�x�y:y)
 =2 sn sin
e we get a 
onstant in�nite redu
tion se-quen
e by �-redu
tions of 
.Exer
ise 9 Show that for a strongly normalizing binary relation !, i. e.,every obje
t is strongly normalizing w. r. t. !, lo
al 
on
uen
e implies 
on-
uen
e.Hint: By indu
tion on r being in the a

essible part of ! show thatevery diagram for 
on
uen
e originating in r may be 
losed.Lemma 18 (Chara
terization of the strongly normalizing terms) Theset sn equals the set SN, de�ned by indu
tion as follows:� If ~r � SN then x~r 2 SN.� If r 2 SN then �xr 2 SN.� If r[x := s℄~s 2 SN and s 2 SN then (�xr)s~s 2 SN.Proof The more important part is proving that SN � sn whi
h may also be
alled the soundness of SN w. r. t. strong normalization of !� (every elementof SN is indeed strongly normalizing). Clearly, this has to be done by indu
tionon the indu
tive de�nition of SN. We will pro�t from a deeper understandingof indu
tion: Proving by indu
tion on an indu
tively de�ned set I, that everyinhabitant of I has some property expressed by a set M, amounts to showingthat this set M has ea
h of the de�ning properties of I (where|of 
ourse|the9A 
onstru
tivist would simply say that the a

essible part is the notion of strong nor-malization and would probably never en
ounter any ne
essity for the ex
lusion of in�niteredu
tion sequen
es. 29



referen
e to I has to be repla
ed by M). Why is that so? The very idea of anindu
tive de�nition of I is that the rules des
ribing its de�nition give all thepossibilities. No element may enter I without the appli
ation of one of the rules.Hen
e, I be
omes the smallest set with those 
losure properties, and if M is anarbitrary set ful�lling the 
losure properties, then I � M, whi
h was our goalto prove.Therefore, it suÆ
es to prove� If ~r � sn then x~r 2 sn.� If r 2 sn then �xr 2 sn.� If r[x := s℄~s 2 sn and s 2 sn then (�xr)s~s 2 sn.We �rst give a proof whi
h does not argue by indu
tion on the a

essible partbut by the non-existen
e of in�nite redu
tion sequen
es. Imagine an in�niteredu
tion sequen
e starting from x~r. In every step there has to be a redu
tion inone of the~r. Sin
e there are only �nitely many terms in~r, there has to be an ri in~r whi
h fa
es in�nitely many redu
tion steps. Contradi
tion. Assume an in�niteredu
tion sequen
e with �rst term �xr. Sin
e the redu
tions 
an only takepla
e in r, we get an in�nite redu
tion sequen
e starting from r. Contradi
tion.Imagine an in�nite redu
tion sequen
e starting from (�xr)s~s. Sin
e r !� r 0implies r[x := s℄!� r 0[x := s℄, and 
onsequently r[x := s℄~s!� r 0[x := s℄~s, there
an neither be an in�nite redu
tion sequen
e starting from r nor from s nor fromany of the ~s. Hen
e, there has to be a redu
t of (�xr)s~s in the in�nite redu
tionsequen
e whi
h does no longer have the shape (�xr 0)s 0~s 0 with r!�� r 0, s!�� s 0,si !�� s 0i. Assume this were the last su

essive term of this shape. The nextterm then has to be r 0[x := s 0℄~s 0, still followed by an in�nite redu
tion sequen
e.From Lemma 6 and Lemma 7, we get r[x := s℄~s!�� r 0[x := s 0℄~s 0. Therefore, wealso get an in�nite redu
tion sequen
e starting with r[x := s℄~s. Contradi
tion.Now we redo the proof for the last 
lause and 
ompletely avoid Lemma 17:Show that (�xr)s~s 2 sn by main indu
tion on s 2 sn and side indu
tion onr[x := s℄~s 2 sn. Hen
e, prove t 2 sn for every t su
h that (�xr)s~s !� t. Thefollowing redu
tions are possible.(�xr)s~s!� (�xr 0)s~s. Then r[x := s℄~s !� r 0[x := s℄~s by substitutivity,hen
e by side indu
tion hypothesis (�xr 0)s~s 2 sn.(�xr)s~s!� (�xr)s 0~s. Then r[x := s℄~s !�� r[x := s 0℄~s by 
ompatibility,hen
e also r[x := s 0℄~s 2 sn. The main indu
tion hypothesis yields (�xr)s 0~s 2sn.(�xr)s~s!� (�xr)s~s 0. Then r[x := s℄~s!� r[x := s℄~s 0, hen
e by side indu
-tion hypothesis (�xr)s~s 0 2 sn.(�xr)s~s!� r[x := s℄~s 2 sn by assumption.In order to 
larify the intri
ate stru
ture of the argument we prove this on
eagain and spell out the nesting of indu
tions pre
isely. Main indu
tion on s 2 sn30



amounts to showing the de�ning property of sn for the setM := fs j 8r;~s:r[x := s℄~s 2 sn ) (�xr)s~s 2 sng:So assume that any one-step redu
t of s is in M. For s 2M we do side indu
tionon r[x := s℄~s 2 sn, i.e., we show the de�ning property of sn for the setN := ft 0 j t 0 2 sn^ 8r;~s:t 0 = r[x := s℄~s) (�xr)s~s 2 sng:So assume t 0 is a term and ea
h immediate redu
t is in N. We have to showt 0 2 N. t 0 2 sn follows from the de�nition of sn, sin
e N � sn. If t 0 has theform r[x := s℄~s we have to show (�xr)s~s 2 sn, so we prove t 2 sn for everyone-step redu
t t. Hen
eforward, ea
h 
lause of the proof in the above proof
an be re
ast using the pending assumptions.For the other dire
tion sn � SN (also 
alled 
ompleteness of SN), we doindu
tion on sn. Hen
e, we have to show 8r:(8r 0:r!� r 0 ) r 0 2 SN)) r 2 SN.This is done by indu
tion on the term r. For this to work, note that everyterm has exa
tly one of the following shapes (to be proved by indu
tion onterms): x~r; �xr; (�xr)s~s. And be
ause we do indu
tion on terms, we may usethe indu
tion hypothesis for ri in the 
ase x~r, for r in the 
ase �xr (no surprise!)and for s in the 
ase (�xr)s~s. The rest is routine veri�
ation. (Another proofwould �rst show that strongly normalizing terms are also strongly normalizingwhen the binary relation !� is extended by . de�ned by r . s i� s is a subtermof r. Then the result follows by indu
tion on a

!�[ ..) �Exer
ise 10 (another proof with indu
tion on natural numbers) Let sn(k)be the set of terms where all �-redu
tion sequen
es have at most length k.We start 
ounting su
h that sn(0) is the set of �-normal terms. Show thatSN � Sk2N sn(k). This shall be done 
onstru
tively. Clearly by indu
tion,but as follows: De�ne n-pla
e fun
tions fn with n 2 N, a one-pla
e fun
tiong and a two-pla
e fun
tion h su
h that� If ri 2 sn(ki) for i 2 f1; : : : ; ng then x~r 2 sn(fn(k1; : : : ; kn)).� If r 2 sn(k) then �xr 2 sn(g(k)).� If r[x := s℄~s 2 sn(k) and s 2 sn(`) then (�xr)s~s 2 sn(h(k; `)).Prove these properties.As a �nal remark: SN is syntax-dire
ted in the sense that from the shape ofevery term r it 
an be read o� whi
h single rule of SN 
ould prove that r belongsto SN. This may be exploited for the following naive normalization algorithmworking for every term r 2 SN and de�ned by re
ursion on r:nf(x~r) := x nf(r1) : : : nf(rn)nf(�xr) := �x nf(r)nf((�xr)s~s) := nf(r[x := s℄~s)Clearly, we do not make use of s 2 SN in the last 
lause. Therefore, the algo-rithm would also work if this requirement were dropped in the de�nition of SN.The following exer
ise shows that one even gets an indu
tive 
hara
terizationof the weakly normalizing terms wn by this modi�
ation.31



Exer
ise 11 Indu
tively de�ne the set WN:� If ~r �WN then x~r 2 WN.� If r 2WN then �xr 2 WN.� If r[x := s℄~s 2WN then (�xr)s~s 2WN.As mentioned above, the only di�eren
e with the de�nition of SN is theomission of \s 2 SN" in the last 
lause.De�ne the binary relation  on terms indu
tively (the ve
tor notationis understood elementwise, impli
itly assuming that both ve
tors are of thesame length)� ~r ~r 0 ) x~r x~r 0� r r 0 ^ ~s ~s 0 ) (�xr)~s (�xr 0)~s 0� r[x := s℄~s t) (�xr)s~s t is re
exive (3rd rule is not needed).Show Lemma 1: r r 0 ^ s s 0 ) rs r 0s 0.Hint: Indu
tion on the derivation of r r 0.Show Lemma 2: !�� �!��.Hint: For every in
lusion do indu
tion on the derivation of the relationto be proved smaller than the other.Show Lemma 3: r r 0 ^ s s 0 ) r[x := s℄ r 0[x := s 0℄.Hint: Indu
tion on the derivation of r r 0.Show Lemma 4: r r 0 !� r 00 ) r r 00.Hint: Indu
tion on the derivation of r r 0 and analysis whi
h possibil-ities arise for r 0 !� r 00. This is the major work of this exer
ise and needsLemma 1 and Lemma 3.Show the Corollary: r!�� r 0 ) r r 0.Remark: Thus we have learnt !��= , hen
e a new indu
tion prin
iplefor !��, namely indu
tion on the derivation of  . Up to now we only hadthe opportunity to argue by indu
tion on the number of steps in r!�� r 0.De�ne  - by omitting ~s from the se
ond 
lause of the de�nition of  (hen
e  -� ). The indu
tive de�nition reads:� ~r - ~r 0 ) x~r - x~r 0� r - r 0 ) �xr - �xr 0� r[x := s℄~s - t) (�xr)s~s - tShow Lemma 5: r - r 0 ) r 2WN^ r 0 2 NF.Hint: Indu
tion on the derivation of r - r 0.Show Lemma 6: r 2WN) 9r 0:r - r 0.Show Lemma 7: r r 0 2 NF) r - r 0.Hint: Indu
tion on  . (We even see that the derivation of r  r 0only uses rules whi
h are also present in  -, hen
e there is no need for atransformation of the derivation.) 32



Theorem WN is the set wn of weakly normalizing terms.Proof: "`WN � wn"' By L. 6 we have r  - r 0 for some r 0. By L. 5,r 0 2 NF. Sin
e  -�!��, we 
on
lude r 2 wn."`wn �WN"' Let r!�� r 0 2 NF. From the Corollary we get r r 0 2 NF.L. 7 shows r - r 0, and �nally, by L. 5, r 2 WN.Final question: Whi
h of the two parts of the statement needs the wittyapproa
h taken in this exer
ise? (The Corollary is 
alled the Standardiza-tion Theorem, its proof followed [Loa98℄.)6 Simple and Interse
tion TypesWe have seen that there are terms whi
h are not strongly normalizing and eventerms whi
h fail to be weakly normalizing. The idea was to use the unintuitiveterm ! = �x:xx and apply it to itself. The �rst examples in se
tion 3.1 dealingwith derivatives of fun
tions on the reals were modeled without using the in-formation on the domains and ranges of the fun
tions at hand. E. g., we neverexpressed that we 
onsidered the squaring fun
tionf : � R ! Rx 7! x2This more spe
i�
 information may be expressed by �x:x2 : R ! R, meaningthat �x:x2 is 
onsidered as a fun
tion from the reals to the reals. That our�x:x2 belongs to the fun
tion spa
e R ! R is 
alled type information. If weagain ignore the fa
t that limits do not always exist, we might type lim!0 with(R ! R) ! R, re
e
ting that lim!0 takes a fun
tion from R to R and returns areal. What would be the type of �2? Again by ignoring unde�nedness problems,we would give it the type (R ! R ! R) ! R ! R ! R: The �rst argument isa two-pla
e real-valued fun
tion on R, the se
ond and third arguments are realsagain, and the result is again in R.Our semanti
 intuition is a world of fun
tionals, i. e., fun
tions taking fun
-tions and even fun
tionals as arguments. In that simply-typed world, there isno pla
e for ! = �x:xx. Sin
e ! is already in normal form, it is very well-behaved w. r. t. �-redu
tion. So, in some sense, we have to give up too mu
hwhen restri
ting to the simply-typed world.If we loosen the typing 
on
ept to in
lude interse
tion types invented in[CDC78℄, we also 
over !: Simply allow interse
tions of already formed types.If some x \lives" in N ! N as well as in N, there is no hesitation to assert thatxx \lives" in N. Hen
e, we would type ! with ((N ! N) \ N) ! N. Are thereobje
ts whi
h 
an been seen as numbers and as number-theoreti
 fun
tions?Not in the set-theoreti
 model we were appealing to, but in re
ursion-theoreti
models (where re
ursive fun
tions are 
oded by numbers). But this is not thepoint. We only need the soundness of the impli
ations x : (N ! N) \ N ) x :N ! N ^ x : N and x : N ! N ^ x : N ) xx : N to 
on
lude a 
orre
t type for !.33



6.1 Simply-Typed Lambda Cal
ulusAssume a set VT of identi�ers.10 These serve as names for atomi
 types. Theirgeneri
 name will be �. Typi
al examples would be nat and real, representing Nand R by mere syntax.De�nition 15 (Simple types) The set Ts of simple types is indu
tivelygiven by:� If � 2 VT then � 2 Ts.� If � 2 Ts and � 2 Ts then (�! �) 2 Ts.Hen
e, the simple types are nothing but strings of symbols built up from thegiven symbols in VT by help of the binary !, synta
ti
ally representing the
onstru
tion of fun
tion spa
es. As for the terms, we avoid parentheses asmu
h as possible, and therefore assume ! to be right-asso
iative (appli
ationwas meant to be left-asso
iative).Examples 9 � ! � is (� ! �). nat ! nat ! nat is (nat ! (nat ! nat)).The se
ond example represents the spa
e of number-theoreti
 fun
tions oftwo arguments and explains why ! has been de
lared right-asso
iative.More 
ompli
ated things need parentheses: (nat ! nat) ! nat representsthe fun
tionals taking number-theoreti
 fun
tions and returning values inN. Here, we only suppressed the outer parentheses.As a further abbreviation, set �1; : : : ; �n ! � := �1 ! : : : ! �n ! � and alsouse this with ~� := �1; : : : ; �n, hen
e ~� ! � is a well-de�ned type. (For n = 0we set ;! � := �.) By indu
tion on types, it is easy to verify that every typeuniquely de
omposes into ~�! � for some � 2 VT and arbitrary types ~�.De�nition 16 (Simple typing) The relation � ` r : � (term r has type �in 
ontext �) is indu
tively de�ned by the following rules:�; x : � ` x : � (V) �; x : � ` r : �� ` �xr : �! � (!I) � ` r : �! � � ` s : �� ` rs : � (!E)From these 
lauses, it is 
lear that only �nite lists of variable names withtypes (ea
h pair separated by a 
olon) may o

ur on the left-hand sideof `. We moreover restri
t those 
ontexts to lists with pairwise disjointvariable names. Hen
e, by writing �; x : �, it is impli
it that x does noto

ur in �, written x =2 �. We also synta
ti
ally identify 
ontexts whi
h arepermutations of ea
h other. This amounts to using the following ex
hangerule without in
luding it into the typing system: If � is a permutation ofthe pairs in � and � ` r : � then � ` r : � (Ex
hange 1).10Generally, we assume that VT and V are disjoint sets, and even that terms and types arealways disjoint|in 
ontrast to the systems of dependent types not 
overed by this 
ourse.
34



Note that our notation always suggests that we have lists on the left-hand sideof `. In fa
t, we 
onsider the 
ontexts to be sets of variable de
larations withoutin
onsisten
ies arising from multiple de
larations for some variable. The empty
ontext will be denoted by ;, hen
e ` r : � and ; ` r : � mean the same assertion.Some 
omments on the rules: Rule (V) is nothing but lookup in the 
ontext,rule (!I), the !-introdu
tion rule, follows our intuition: If r gets type � underthe assumption that the possibly free variable x is of type �, then the abstra
tion�xr gets the fun
tion type � ! �. The !-elimination rule (!E) requires thatthe argument s to r of type � ! � has to have the domain type �, and statesthat the result of the appli
ation has the range type �.Lemma 19 There are no � and � su
h that � ` ! : �.Proof If there were � and �, then the rule (!I) would have been appliedlast. Hen
e, we would have � = �1 ! �2 and �; x : �1 ` xx : �2. This
an only be derived by help of (!E). Hen
e, there is a type � su
h that�; x : �1 ` x : � ! �2 and �; x : �1 ` x : �. These 
an only be found by applying(V), hen
e � ! �2 = �1 = �. Contradi
tion (the equality is the equality ofstrings). �Exer
ise 12 Let � be any type. Show that for the n-th Cur
h numeral n, wehave ` n : (�! �) ! �! �. Whi
h types are possible for mÆn := �x:m(nx)and m n in the empty 
ontext?Exer
ise 13 Show that every term in NF re
eiving type (� ! �) ! � ! �(a

ording to our 
onvention, � is an atomi
 type) in the empty 
ontextis either a Chur
h numeral or �ff. (What is the di�eren
e between 1 and�ff?)Exer
ise 14 Show that for typable terms in normal form we 
an alwaysre
onstru
t the types � whi
h have been used in the abstra
tion rule, i. e.,in the rule �; x : � ` r : � ) � ` �xr : � ! �. Show by example that this isnot the 
ase for arbitrary typable terms.Exer
ise 15 We want to prove weak normalization of simply-typed termswith nearly no overhead. Therefore we abandon the typing assignmentsand simply assume that every term we 
onsider is simply-typed. Morepre
isely, we indu
tively de�ne the simply-typed terms with their types asfollows:� If x is a variable and � is a type, then x� is a term of type �.� If x is a variable, � is a type and r is a term of type � then �x�r is aterm of type �! �.� If r is a term of type � ! � and s is a term of type � then rs is aterm of type �. 35



r is a term of type � will be expressed by r : � or r�, e. g., �f�!��x�:f(f(fx)) :(� ! �) ! � ! �. For simpli�
ation of notation, the types of the boundvariables are not written if there is no ambiguity. Of 
ourse, e. g., �x��x�:xis ambiguous for � 6= � and therefore illegal. But even after disambiguation,those terms should not be used in expli
it 
onsiderations.The set NF now has to obey the additional proviso of well-formednessof x~r. This will not be made expli
it.De�ne r # :, 9t 2 NF:r !�� t. In prin
iple fr j r #g equals wn, but wnis made up of untyped terms.(a) Show the following lemma: If r 2 NF and s� 2 NF, then (i) rs # ifrs is a typed term, and (i) r[x� := s℄ #.Hint: Main indu
tion on the type �, side indu
tion on r 2 NF. Asomewhat more involved proof �rst shows only (ii) (and uses r�!� 2 NF)rx� # to be proved beforehand) and infers (i).(b) Show that every typed term r satis�es r #.6.2 Lambda Cal
ulus with Interse
tion TypesDe�nition 17 (Interse
tion types) The set Ti of interse
tion types is in-du
tively given by:� If � 2 VT then � 2 Ti.� If � 2 Ti and � 2 Ti then (�! �) 2 Ti.� If � 2 Ti and � 2 Ti then (� \ �) 2 Ti.Sin
e we have more types, i. e., Ts � Ti, we also have additional rules fortyping. Nevertheless, we will use the same symbol ` for both simple typing andinterse
tion typing.De�nition 18 (Interse
tion typing) The relation � ` r : � (term r hastype � in 
ontext �) is indu
tively de�ned by the following rules:�; x : � ` x : � (V) �; x : � ` r : �� ` �xr : �! � (!I) � ` r : �! � � ` s : �� ` rs : � (!E)� ` r : � � ` r : �� ` r : � \ � (\I) � ` r : �1 \ �2 i 2 f1; 2g� ` r : �i (\E)The 
onventions 
on
erning 
ontexts are as for simple typing.Note that the rules of \-introdu
tion (\I) and \-elimination (\E) 
apture theintuition that the interse
tion type 
onstru
t models interse
tion.Examples 10 x : (� ! �) \ � ` x : � ! � and x : (� ! �) \ � ` x : �, hen
ex : (� ! �) \ � ` xx : � and �nally ` ! : ((� ! �) \ �) ! �. In Lemma 24,we will see that for no � and �, � ` 
 : � holds, i. e., 
 is not typable withinterse
tion types.Lemma 20 (Derived rules) 36



� If � ` r : � then �; x : � ` r : � (Weakening 1).� If �; x : � ` r : � then �; x : � \ � ` r : � (Weakening 2).� If �; x : � ` r : � and x =2 FV(r) then � ` r : � (Strengthening).� If �; x : � \ � ` r : � then �; x : � \ � ` r : � (Ex
hange 2).� If �; x : (�1\�2)\�3 ` r : � then �; x : �1\ (�2\�3) ` r : � (Ex
hange 3).Proof By rule indu
tion on `. �Lemma 21 (Substitution)(a) If �; x : � ` r : � and � ` s : � then � ` r[x := s℄ : �.(b) If � ` r[x := s℄ : �, x =2 FV(s)[ � and (x =2 FV(r)) � ` s : �0) then thereis a type � su
h that �; x : � ` r : � and � ` s : �.Proof (a) has a 
ompletely straightforward proof by indu
tion on the derivationof �; x : � ` r : � and does not reveal anything spe
i�
 to interse
tion types. (b)is typi
al of interse
tion types (
ompare with Proposition 3 in [Kri93, p. 51℄whi
h is unfortunately too weak sin
e it always requires � ` s : �0 for some type�0) and is proved by indu
tion on the derivation of � ` r[x := s℄ : �. The 
aser = x is trivial. Let now r 6= x.(V) Let � ` r[x := s℄ = y : � due to y : � 2 �. Sin
e r 6= x, r = y 6= x.Therefore, x =2 FV(r), and we set � := �0 and apply rule (V).(!I) Let � ` r[x := s℄ = �yt : � = �1 ! �2 due to �; y : �1 ` t : �2. Sin
er 6= x, r = �yr0 and t = r0[x := s℄. We may assume that y =2 fxg [ FV(s).Sin
e x =2 FV(r0) implies x =2 FV(r) implies � ` s : �0 implies �; y : �1 `s : �0, we may apply the indu
tion hypothesis and get a type � su
h that�; y : �1; x : � ` r0 : �2 and �; y : �1 ` s : �. Strengthening yields � ` s : �.Finally, �; x : � ` �yr0 : �1 ! �2.(!E) Let � ` r[x := s℄ = t1t2 : � be derived from � ` t1 : � ! � and� ` t2 : �. Sin
e r 6= x, r = r1r2 and ti = ri[x := s℄ (i = 1; 2). Ifx 2 FV(r) then x 2 FV(r1) or x 2 FV(r2). In both 
ases the indu
tionhypothesis provides a type �0 su
h that � ` s : �0. Hen
e, from theassumption of (b) we always have some �0 with � ` s : �0. By indu
tionhypothesis, there are types �1 and �2 su
h that �; x : �1 ` r1 : � ! �,� ` s : �1, �; x : �2 ` r2 : � and � ` s : �2. By Weakening 2 and Ex
hange2, we get �; x : �1 \ �2 ` r1 : � ! � and �; x : �1 \ �2 ` r2 : �, hen
e�; x : �1 \ �2 ` r1r2 : �. Finally, � ` s : �1 \ �2.(\I) Interse
t the two types given by the indu
tion hypothesis as in thepre
eding 
ase.(\E) Trivial from the indu
tion hypothesis. �37



The next lemma will always be needed if a given type assignment is analyzed.For its statement we need the 
on
epts of prime types and prime fa
tors [Kri93,p. 50℄: A prime type is a type whi
h is not of the form � \ �. Let P be the setof prime types. Every type 
an be written in the form �1 \ : : :\ �n with n � 1and �i 2 P for i 2 f1; : : : ; ng. Note that we do not 
are about parentheses sin
ethey do not 
hange typability (neither in 
ontexts due to Ex
hange 3 nor in thederived type due to (\I) and (\E)). The �i are 
alled prime fa
tors of �. Wenow present Lemma 1 from [Kri93, p. 50℄. In the sequel the notation \~� will beused for �1 \ : : :\ �n with the impli
it assumption that the �i are prime types.� 2 ~� 
learly means that � = �i for some i.Lemma 22 (Inversion) Let � ` r : � with � 2 P.1. If r = x then x : \~� 2 � with � 2 ~�.2. If r = �xt then � = �1 ! �2 and �; x : �1 ` t : �2.113. If r = ts then � ` t : �! \~� and � ` s : � for some types � and ~� su
hthat � 2 ~�.Proof Consider in the derivation of � ` r : � an uppermost o

urren
e of some� ` r : \~� with � 2 ~�. The rule by whi
h this is a
hieved 
annot be (\I) or (\E)sin
e they would require an earlier o

urren
e of the des
ribed form. Therefore,in the �rst, se
ond and third 
ase, the rule is (V), (!I) and (!E), respe
tively.�Lemma 23 (Subje
t Redu
tion) If � ` r : � and r!� r 0 then � ` r 0 : �.Proof By indu
tion on � ` r : �. Only the 
ase (!E) is non-trivial: We have� ` rs : � due to � ` r : �! � and � ` s : �, and rs!� t. Show that � ` t : �.� If t = r 0s 0 by one redu
tion step altogether from r to r 0 and s to s 0 thenwe are done by the indu
tion hypothesis.� In the 
ase of an outer �-redu
tion r = �xr0 and t = r0[x := s℄. By thepre
eding lemma, �; x : � ` r0 : �. By Lemma 21(a), � ` r0[x := s℄ : �. �As a further appli
ation of Inversion, we show that 
 is not typable.Lemma 24 Let ~� � P. The following is impossible:� ` ! : \~�! � and � ` ! : \~�:Proof Indu
tion on the number of di�erent types in ~�. Assume both typings.By Inversion, �; x : \~� ` xx : �. � = \~�. Therefore, �; x : \~� ` xx : �1 (the �rstelement of ~�). Again by Inversion, �; x : \~� ` x : � ! \~� and �; x : \~� ` x : �with �1 2 ~�. � de
omposes into prime fa
tors as � = �1 \ : : : \ �n, hen
e forevery k 2 f1; : : : ; ng: �; x : \~� ` x : �k. Again by Inversion, �k 2 ~� for everyk 2 f1; : : : ; ng. Therefore, � = \~� 0 for some �nite list ~� 0 
omposed only of11We may assume that x =2 �. 38



elements of ~�. On
e more by Inversion, applied to �; x : \~� ` x : \~� 0 ! \~�,there is a �j in ~� su
h that �j = \~� 0 ! \~�. Hen
e �j =2 ~� 0, and 
onsequently~� 0 has fewer di�erent types than ~�. From � ` ! : \~� we now immediately get� ` ! : \~� 0 ! \~� and � ` ! : \~� 0. Contradi
tion by indu
tion hypothesis. �Corollary 25 � 6` 
 : �.Proof If � ` 
 : � then also for some � 2 P . By Inversion, there is ~� and �su
h that � 2 ~� and � ` ! : �! \~� and � ` ! : �. Sin
e � = \~� with ~� � P ,the previous lemma applies. �Exer
ise 16 Produ
e a weakly normalizing term whi
h 
annot be typedwith interse
tion types.6.3 Strong Normalization of Typable TermsThe following proof is in the spirit of [JM99℄ whi
h dealt with permutative
onversions instead of interse
tion types.Lemma 26 If r 2 SN and x =2 FV(r) then rx 2 SN.Proof Indu
tion on SN. �Note that x =2 FV(r) is a super
uous assumption. Nevertheless, we do not needa stronger statement, and therefore only 
onsider what 
an be proved so easily.Lemma 27 If r; s 2 SN and � ` s : � and �; x : � ` r : � then r[x := s℄ 2 SN.Proof We �rst de�ne a measure h(�) 2 N0 for every type � by re
ursion on �as follows: h(�) := 0h(�! �) := 1 + max(h(�); h(�))h(� \ �) := max(h(�); h(�))The proof is by main indu
tion on h(�), side indu
tion on r 2 SN and 
asedistin
tion a

ording to r 2 SN. (Observe that we also have � ` r[x := s℄ : � byLemma 21(a).)Case y~r. This has been derived from~r � SN. By multiple Inversion, we get�; x : � ` ~r : ~� for suitable ~�. By side indu
tion hypothesis, ~r[x := s℄ � SN.Therefore, y~r[x := s℄ 2 SN. This �nishes with the 
ase y 6= x. So assumey = x. If ~r is empty, the 
laim is trivial. Otherwise, ~r = t;~t, hen
e�; x : � ` xt~t : �. xt~t = (z~t)[z := xt℄ for some \new" variable z. ByLemma 21(b), there is a type � su
h that �; x : �; z : � ` z~t : � and�; x : � ` xt : �. � = \~�. Consider the element �k of ~�. �; x : � ` xt : �k.By Inversion, there is a type � 0k and types ~�k with �k 2 ~�k su
h that�; x : � ` x : � 0k ! \~�k and �; x : � ` t : � 0k. With � = \~� and Inversion,we get � 0k ! \~�k 2 ~�. Therefore, h(�k) � h(\~�k) < h(� 0k ! \~�k) � h(�).Sin
e this holds for every k, also h(�) < h(�). We 
ontinue with k := 1,39



� 0 := � 01 and ~� := ~�1. Clearly, � ` s : � 0 ! \~�. By the previous lemma,sz 0 2 SN with a \new" variable z 0. By Weakening 1, �; z 0 : � 0 ` sz 0 : \~�.By Lemma 21(a): � ` t[x := s℄ : � 0. Sin
e h(� 0) < h(� 0 ! \~�) � h(�) wemay apply the main indu
tion hypothesis for type � 0 and get st[x := s℄ 2SN. By Lemma 21(a), �; z : � ` z~t[x := s℄ : � and � ` st[x := s℄ : �. Clearly,z~t[x := s℄ 2 SN. Hen
e, by the main indu
tion hypothesis for type �, we�nally get (x~r)[x := s℄ = st[x := s℄~t[x := s℄ 2 SN.Case �yr. This 
omes from r 2 SN. We have �; x : � ` �yr : �. Show(�yr)[x := s℄ 2 SN. We may assume that y =2 fxg [ FV(s). Therefore(�yr)[x := s℄ = �y:r[x := s℄, and it suÆ
es to show r[x := s℄ 2 SN. � = \~�and �; x : � ` �yr : �1 (the �rst element of ~�). By Inversion, �1 = �! � 0and �; x : �; y : � ` r : � 0. By Weakening 1, �; y : � ` s : �. The sideindu
tion hypothesis yields r[x := s℄ 2 SN.Case (�yr)s~s. This is derived from r[y := t℄~t 2 SN and t 2 SN. Wehave �; x : � ` (�yr)t~t : � and have to show that (we assume that y =2fxg [ FV(s)) ((�yr)t~t)[x := s℄ = (�y:r[x := s℄)t[x := s℄~t[x := s℄ 2 SN. Forthis we need (r[x := s℄)[y := t[x := s℄℄~t[x := s℄ 2 SN and t[x := s℄ 2 SN.By multiple Inversion, we get �; x : � ` t : � for some type �. Theside indu
tion hypothesis yields t[x := s℄ 2 SN. By Subje
t Redu
tion,�; x : � ` r[y := t℄~t : �. Hen
e, again by side indu
tion hypothesis,(r[y := t℄~t)[x := s℄ 2 SN. We are done by Lemma 2 whi
h tells us that(r[y := t℄~t)[x := s℄ = (r[x := s℄)[y := t[x := s℄℄~t[x := s℄. �Corollary 28 (Main Theorem) If � ` r : � then r 2 SN.Proof By indu
tion on `. In the 
ase (!E) use the indu
tion hypothesis,rs = (rx)[x := s℄ and the pre
eding two lemmas. �Sin
e SN is the set of strongly normalizing terms (here we only need sound-ness of SN), every typable term is strongly normalizing. Sin
e typability withsimple types is more restri
tive than that with interse
tion types, simple typa-bility also implies strong normalization.Note also that Corollary 25 is a trivial 
onsequen
e of our normalizationresult.Exer
ise 17 Let � and � be di�erent atomi
 types. Show that6` r : ((�! �) ! �)! �for every term r.Hint: It is advisable to solve the problem �rst for simple types. This
ase is well-known as the underivability of the Peir
e formula in minimallogi
.
40



6.4 Typability of Strongly Normalizing TermsLet us write �+� for the 
ontext where the requirements on the variables in �and � are added. More formally, if � = ~x : ~�;~y : ~� and � = ~x : ~� 0;~z : ~� with ~x,~y and ~z pairwise disjoint and ~x of length n, then�+ � := x1 : �1 \ � 01; : : : ; xn : �n \ � 0n;~y : ~�;~z : ~�:From Weakening 1 and Weakening 2, it follows that � ` r : � implies �+� ` r : �.We will also form �1+: : :+�n in a similar way without 
aring about parentheses.Theorem 2 (Completeness) If r 2 SN then there are � and � su
h that� ` r : �.Proof Indu
tion on r 2 SN.x~r. By indu
tion hypothesis, �i ` ri : �i for every i. Therefore�1+ : : :+ �n+ x : (�1 ! : : :! �n ! �) ` x~r : �for any type �.�xr. Let �xr 2 SN due to r 2 SN. By indu
tion hypothesis, � ` r : �.Possibly by Weakening 1, we may assume that � = �; x : �. This yields� ` �xr : �! �.(�xr)s~s. Assume (�xr)s~s 2 SN has been derived from r[x := s℄~s 2 SN ands 2 SN. By indu
tion hypothesis, � ` r[x := s℄~s : � and � 0 ` s : �.Setting � := � + � 0, we get � ` r[x := s℄~s : � and � ` s : �. Writingr[x := s℄~s = (y~s)[y := r[x := s℄℄ and applying Lemma 21(b), we �nd a type� su
h that � ` y~s : � and � ` r[x := s℄ : �. Again by Lemma 21(b), thereis a type � 0 su
h that �; x : � 0 ` r : � and � ` s : � 0. Hen
e, � ` (�xr)s : �and by Lemma 21(a), � ` (�xr)s~s : �. �Remark: One 
an also 
hara
terize the weakly normalizing terms via in-terse
tion types. For this, one has to add an atomi
 type (typi
ally 
alled 
)whi
h is inhabited by every term (hen
e the typing rules have to be extended bythis simple rule). Then the weakly normalizing terms are exa
tly those whi
hare typable in the extended system with a type and a 
ontext where in both ofthem the spe
ial atomi
 type does not o

ur. (However, it may appear in thetyping derivation!)7 Parametri
 PolymorphismAlthough the situation with interse
tion types is quite satisfying sin
e the as-so
iated typing system exa
tly 
aptures the strongly normalizing terms, thereis interest for other typing systems whi
h type only strongly normalizing termsbut fail to type all of them. 41



Exer
ise 18 In [Urz96℄ it is shown that (�f�x:f(fx))(�f�x:f(fx))(�x�y:x) isnot typable in the system of universal types presented below. Show that itis strongly normalizing.Why is there an interest? By interse
tion typing, one 
an model that a termhas �nitely many types in parallel. But very often, terms have in�nitely manytypes all being instan
es of some pattern. The easiest example is the identity�xx whi
h may re
eive any type of the form �! � in the empty 
ontext. It is anatural idea to allow universal quanti�
ation over type identi�ers (the elementsof VT). In this example, we would assume � 2 VT and give the type 8�:�! �to �xx (in the empty 
ontext). And we may instantiate this for any type �instead of � to get ` �xx : � ! �. The universal quanti�er thus expressesthe parametri
 polymorphism of the identity: For every type � (whi
h is theparameter) the identity a
ts as an element of the fun
tion spa
e � ! �, hen
ebelongs in some sense to many di�erent spa
es, but in a uniform fashion, namelyin spa
es des
ribed uniformly by a type expression depending on the parameter�. In the following, this intuition will be made pre
ise. And sin
e we want tostudy the idea of parametri
 polymorphism in isolation, we abandon the ad ho
polymorphism stemming from interse
tion typing.De�nition 19 (Universal types) The set Tu of universal types is indu
-tively given by (we will always assume that VT is an in�nite set):� If � 2 VT then � 2 Tu.� If � 2 Tu and � 2 Tu then (�! �) 2 Tu.� If � 2 VT and � 2 Tu then 8�� 2 Tu.Note that the usual name for type identi�ers is now 
hanged from � to � (� and
 will also be used) whi
h emphasizes their variable nature.De�nition 20 (Free type variables) De�ne the set FV(�) of type vari-ables o

urring free in � by re
ursion on �:� FV(�) := f�g.� FV(�! �) := FV(�) [ FV(�).� FV(8��) := FV(�) n f�g.As is indi
ated by the pre
eding de�nition, the universal quanti�er 8 is
onsidered as a binder like the � in terms. We will follow the same 
onventions
on
erning the irrelevan
e of the given variable name, e. g., we synta
ti
allyidentify the types 8�:� ! � and 8�:� ! � and also use (like in the previousexamples) the dot notation for \invisible parentheses".De�nition 21 (Type substitution) De�ne the result �[� := �℄ of repla
-ing every free o

urren
e of the variable � in � by the type � re
ursively asfollows: 42



� �[� := �℄ := �.� �[� := �℄ := � for � 6= �.� (�! �)[� := �℄ := �[� := �℄ ! �[� := �℄.� (8��)[� := �℄ := 8�:�[� := �℄ where we may assume by renaming ofthe bound type variable � that � =2 f�g [ FV(�).Lemma 29 If � =2 FV(�) then �[� := �℄ = �.Proof Indu
tion on �. �Lemma 30 FV(�[� := �℄) � FV(8��) [ FV(�).Proof Indu
tion on �. �Let us des
ribe the typing system known under the name \system F inCurry-style [Bar93℄", and overload the symbol ` on
e more.De�nition 22 (Universal typing) The relation � ` r : � (term r has type� in 
ontext �) is indu
tively de�ned by the following rules:�; x : � ` x : � (V) �; x : � ` r : �� ` �xr : �! � (!I) � ` r : �! � � ` s : �� ` rs : � (!E)� ` r : � � =2 FV(�)� ` r : 8�� (8I) � ` r : 8�� � 2 Tu� ` r : �[� := �℄ (8E)The 
onventions 
on
erning 
ontexts are as before, and sin
e 
ontexts arelists of de
larations for term variables, � =2 FV(�) shall mean that � =2FV(�) for � being one of the assigned types in �.The rule (8I) of 8-introdu
tion has the proviso 
alled \eigenvariable 
ondition"that nothing depending on � may have been assumed on the free variables inr. Otherwise, we would derive x : � ` x : 8��, then x : � ` x : � for anytype �, and �nally ` �xx : � ! � for any � whi
h we never had in mind. The8-elimination rule (8E) expresses that every instan
e of � (with � repla
ed byany type �) is also a type of r if it re
eived the type 8��. Note that the type� may again involve universal quanti�ers, e. g., we have that` �xx : (8�:�! �) ! (8�:�! �)and hen
e ` �xx : 8�:(8�:�! �) ! (8�:� ! �). We may also type !: E. g.,` ! : 8��! 8��.We again have Ex
hange 1 (p. 34) as part of our understanding of 
ontexts.It is quite easy to establish Weakening 1, Strengthening (see Lemma 20) andLemma 21(a). Subje
t Redu
tion (see Lemma 23) also holds but requires amore intri
ate Inversion Lemma (see e. g. [Bar93, p. 174℄).Exer
ise 19 [Bar93, p. 165℄ Show that our favourite example term ! re-
eives the types 8�:8�� ! �, 8�:8�� ! � ! � and 8�� ! 8�� in theempty 
ontext. 43



7.1 Strong Normalization of Typable TermsWe again want to establish strong normalization, i. e., that whenever � ` r : �then r 2 SN. For proof-theoreti
 reasons whi
h require the strength of themetatheory ex
eeding that of se
ond-order arithmeti
12, our dire
t proof for in-terse
tion typing in se
tion 6.3 that SN is 
losed under typed substitution 
an-not work. Therefore, the powerful and versatile 
andidate method (also 
alled
omputability predi
ates method) is introdu
ed by whi
h a stronger statementthan r 2 SN for every typable term r is proved. For this we need the 
on
eptof saturated sets whi
h are subsets of SN with good 
losure properties. Firstwe de�ne them, then explain the method, and �nally apply the method to oursetting.7.1.1 Saturated SetsThe following 
on
ept was �rst used by Tait [Tai75℄.De�nition 23 (Saturated set) A set M of terms is saturated if the fol-lowing 
onditions are met:1. If r 2M then r 2 SN.2. If ~r � SN then x~r 2 M.3. If r[x := s℄~s 2M and s 2 SN then (�xr)s~s 2M.This de�nition is nearly the same as that in [Bar93, p. 177℄.13 Let SAT be theset of saturated sets. Trivially, SN 2 SAT.The transformation of the de�nition of SN into that of saturatedness iswell motivated by typing 
onsiderations: It would be possible to relativize thede�nition to �-saturatedness for a type � by restri
ting to terms of type � (ina given 
ontext) only. For this to work it is essential to have no requirementin the rules that a term of a di�erent type shall be in M in order to 
on
ludethat some term belongs to M. Therefore we omit the rule whi
h 
hanges thetype (hen
e leave out the abstra
tion rule), and in the other rules repla
e everyo

urren
e of SN by M in the 
on
lusion and for the terms in the premissesre
eiving the same type. In general, the other terms do not get the same typeand therefore 
an only be required to belong to SN.The 
andidate method goes as follows: By means of saturated sets we de-�ne (by re
ursion on types) predi
ates of strong 
omputability with respe
tto an assignment of saturated sets for type variables (a 
andidate assignment)and �nally show (by indu
tion on typings) that every typable term is strongly
omputable under substitution. Hen
e every typable term is 
ontained in asaturated set (the 
omputability predi
ate) whi
h only 
onsists of strongly nor-malizing terms (due to SN � sn).12a 
onsequen
e of G�odel's se
ond in
ompleteness theorem, see 
hapter 15 in [GLT89℄13Note, however, that in our de�nition SN stands for the syntax-dire
ted de�nition, whereas[Bar93℄ 
onsiders strong normalization whi
h is intensionally di�erent (and extensionally thesame). 44



This all works if there are 
onstru
tions for saturated sets 
orrespondingto the type 
onstru
ts of the system for whi
h the introdu
tion rules and theelimination rules are sound. (This is presented at length in [Mat98℄.)7.1.2 Cal
ulating with Saturated SetsIt is always possible to produ
e a saturated set from any set M of terms by thesaturated 
losure 
l(M), de�ned by indu
tion as follows:� If r 2M \ SN then r 2 
l(M).� If ~r � SN then x~r 2 
l(M).� If r[x := s℄~s 2 
l(M) and s 2 SN then (�xr)s~s 2 
l(M).Sin
e 
l(M) � SN (proved by indu
tion on the de�nition), it is the least satu-rated set 
ontaining M \ SN. In the remainder of the normalization proof, letM and N denote saturated sets.We want to 
onstru
t a saturated set M ! N whi
h will later serve tode�ne strong 
omputability for fun
tion types. De�neSx(M;N ) := fr j 8s 2 M r[x := s℄ 2 N g;I(M;N ) := f�xr j x 2 V and r 2 Sx(M;N )g andE(M;N ) := fr j 8s 2M; rs 2 N g:We get the introdu
tion-based de�nition M !I N and the elimination-basedde�nition M!E N of saturated sets:M!I N := 
l(I(M;N )) and M!E N := 
l(E(M;N )).Lemma 31 I(M;N ) � SN, E(M;N ) \ SN 2 SAT, and I(M;N ) � E(M;N ).Proof(1) Let r 2 Sx(M;N ). Then for s := x 2 M, we get r = r[x := s℄ 2 N � SN,hen
e also �xr 2 SN.(2) Che
k the 
onditions of saturatedness for E(M;N ) \ SN:1. Trivial.2. Let ~r � SN and s 2M. Sin
e s 2 SN and N 2 SAT, x~rs 2 N .3. Simply append s and use saturatedness of N .(3) Let r 2 Sx(M;N ) and s 2 M. Show that (�xr)s 2 N . Sin
e N 2 SAT,it suÆ
es to show r[x := s℄ 2 N and s 2 SN whi
h follow by de�nition ofSx(M;N ) and M� SN. �From the lemma, we get I(M;N ) �M!I N , M!E N = E(M;N )\SN and,due to monotoni
ity of 
l, M!I N �M!E N .De�ne M ! N := M !X N with X 2 fI; Eg. We never use any propertydepending on this 
hoi
e but only the following three properties whi
h are validfor both 
hoi
es and follow immediately from the pre
eding remarks:45



(SAT) M! N 2 SAT.(!I) If r 2 Sx(M;N ) then �xr 2 M! N .(!E) r 2 M! N ^ s 2 M) rs 2 N :Exer
ise 20 Show that M !I N 6= M !E N is possible by 
onsideringM := SN and N := 
l(f(�xx)t j t 2 SNg).Hint: Study how abstra
tions may enter the saturated 
losure and applythis to the identity.7.1.3 Strong ComputabilityIn order to spe
ify strong 
omputability for universally quanti�ed types 8��,we have to de�ne strong 
omputability for the type �, but have to providean arbitrary 
andidate for the strong 
omputability of its argument �. Our
andidates are the saturated sets, and the 
andidate assignments provide therelativization needed to put the proof through.De�nition 24 (Candidate assignment) Any �nite set of pairs (written� :M), 
onsisting of a type variable and a saturated set, su
h that no typevariable o

urs twi
e.Candidate assigments are the 
ounterpart to 
ontexts. We will again use theletter � to denote a 
andidate assignment and write �; � : M for the extended
andidate assignment (with the impli
it proviso that � does not o

ur in �).De�nition 25 (Strong 
omputability) De�ne the saturated set SC�[�℄ ofstrongly 
omputable terms w. r. t. type � and the 
andidate assigment � byre
ursion on �:� SC�[�℄ := � M if � :M2 �,SN otherwise.� SC�!�[�℄ := SC�[�℄! SC�[�℄.� SC8��[�℄ := TM2SAT SC�[�; � : M℄ (with set-theoreti
 interse
tion that
learly does not lead outside SAT; note that we may assume that �does not o

ur in �).The de�nition of SC�!�[�℄ is a variant of the 
omputability predi
ate de�nitionin the famous [Tai67℄, its relativization to a 
andidate assignment and the biginterse
tion in the de�nition of SC8��[�℄ have been invented in [Gir72℄ andonly today seem to be the straightforward extension of Tait's ideas. It hasto be stressed that exa
tly this big interse
tion shows the impredi
ativity ofthe system of universal types: We need the interse
tion over any saturated setM in order to de�ne a spe
i�
 saturated set, namely SC8��[�℄. This de�nition
annot be dealt with by se
ond-order arithmeti
, and, as remarked above, strongnormalization also 
annot be established by other means taken from se
ond-order arithmeti
. Finally note that we 
ould easily reprove strong normalizationfor the system of interse
tion types by setting SC�\� := SC� \ SC� and byabandoning the notion of 
andidate assignment altogether.46



Lemma 32 (Coin
iden
e) If � =2 FV(�) then SC�[�; � :M℄ = SC�[�℄.Proof Indu
tion on �.14 �Lemma 33 (Substitution) SC�[�:=�℄[�℄ = SC�[�; � : SC�[�℄℄.Proof Indu
tion on �, using the previous lemma. �We want to show that every typable term is strongly normalizing. By usingthe indu
tive 
hara
terization, we only need to show that they are in SN. Sin
esaturated sets are 
ontained in SN, it suÆ
es to show that r 2 SC�[;℄ wheneverr gets type �. This is a
hieved by applying the following lemma to the identitysubstitution. Unfortunately, we �rst have to extend the notion of substitutionr[x := s℄ to the simultaneous substitution r[~x := ~s℄ of all o

urren
es of xiby si (for every i, with di�erent variables xi) in r whi
h may be de�ned byre
ursion on r like ordinary substitution. We will also use the notation ~x : ~� forx1 : �1; : : : ; xn : �n and ~s 2 SC~�[�℄ for s1 2 SC�1 [�℄; : : : ; sn 2 SC�n [�℄.Lemma 34 If ~x : ~� ` r : � and ~s 2 SC~�[�℄ then r[~x := ~s℄ 2 SC�[�℄.Proof By indu
tion on ~x : ~� ` r : � simultaneously for every 
andidate assign-ment �.(V) r : � = xi : �i. Obvious.(!I) Let ~x : ~� ` �xr : � ! � thanks to ~x : ~�; x : � ` r : �. We haveto show that (�xr)[~x := ~s℄ 2 SC�[�℄ ! SC�[�℄. We may assume thatx =2 ~x [ FV(~s), and hen
e (�xr)[~x := ~s℄ = �x:r[~x := ~s℄. It suÆ
es toshow that r[~x := ~s℄ 2 Sx(SC�[�℄; SC�[�℄). So assume s 2 SC�[�℄ and showr[~x := ~s℄[x := s℄ 2 SC�[�℄. This follows from the indu
tion hypothesissin
e r[~x := ~s℄[x := s℄ = r[~x; x := ~s; s℄ by our assumption.(!E) This is an immediate 
onsequen
e of the indu
tion hypothesis andthe rule (!E) for saturated sets.(8I) Let ~x : ~� ` r : 8�� thanks to ~x : ~� ` r : � and � =2 FV(~�). Let M 2SAT. We have to show that r[~x := ~s℄ 2 SC�[�; � : M℄. Sin
e � =2 FV(~�),we may apply the Coin
iden
e Lemma and get ~s 2 SC~�[�; � :M℄. Hen
e,we are done by the indu
tion hypothesis.(8E) Let ~x : ~� ` r : �[� := �℄ thanks to ~x : ~� ` r : 8��. By indu
tionhypothesis, r[~x := ~s℄ 2 SC8��[�℄. Set M := SC�[�℄. Then r[~x := ~s℄ 2SC�[�; � :M℄ = SC�[�:=�℄[�℄ by the Substitution Lemma. �By setting si := xi 2 SC�i [;℄ for � = ~x : ~�, and by using SC�[;℄ � SN, we getthe followingTheorem 3 (Strong normalization) If � ` r : � then r 2 SN. �14Clearly, our 
hoi
e whether M ! N equals M !I N or M !E N has to be made
onsistently. To be on the safe side, we assume that it has been made on
e and for all.47



Note that by help of the intera
tive theorem-proving environment LEGOa variant to this proof has been produ
ed [Alt93℄ whi
h demonstrates the 
a-pability of those systems to deal with essentially 
ompli
ated mathemati
altheorems.Exer
ise 21 Show that there is no term r su
h that ` r : 8��.7.2 Unde
idability of Type Che
kingThe problem of type 
he
king is to �nd out whether � ` r : � holds for given�, r and �. The problem of typability is to �nd out if there is a type � forgiven � and r, su
h that � ` r : �. For both of these problems it was an openquestion whether they may be solved algorithmi
ally [Bar93, p. 183℄. It wasgenerally believed that they are both unde
idable. Nevertheless, the result wasan a
hievement mu
h applauded at the 1994 LICS15 
onferen
e.Theorem 4 ([Wel94℄) Type 
he
king and typability are unde
idable for thesystem of universal types.Proof See the 46 pages paper [Wel99℄ whi
h rests on the unde
idability ofsemi-uni�
ation. �Therefore, in the sequel we will study a variant of the pure 
al
ulus with uni-versal typing to be 
alled system F. It has type information inside the termsystem making type 
he
king de
idable again.7.3 An Expli
it System of Parametri
 PolymorphismThis time, we do not alter the type system but the term system.De�nition 26 (Terms of system F) The set TF of terms is indu
tively givenby: � If x 2 V then x 2 TF.� If x 2 V, � 2 Tu and r 2 TF then �x�r 2 TF.� If r 2 TF and s 2 TF then (rs) 2 TF.� If r 2 TF and � 2 VT then ��r 2 TF.� If r 2 TF and � 2 Tu then (r�) 2 TF.The idea is to add type information to the terms. �x�r is �xr but with anindi
ation whi
h was the type in the extended 
ontext for the typing of r (seethe typing rules below). ��r is r but with its polymorphism in the parameter� made expli
it. (r�) is r but with a de
laration that it is used with type �.Again parentheses are omitted as mu
h as possible (with appli
ations asso-
iating to the left).15Annual IEEE Symposium on Logi
 in Computer S
ien
e48



De�nition 27 (Free variables) De�ne the set FV(r) of variables o

ur-ring free in r by re
ursion on r:� FV(x) := fxg.� FV(�x�r) := FV(r) n fxg.� FV(rs) := FV(r) [ FV(s).� FV(��r) := FV(r).� FV(r�) := FV(r).As before, �x� binds the free o

urren
es of x in r, and we synta
ti
ally identifyterms whi
h only di�er in the names of their bound variables.Sin
e types may form parts of a term, we now have an additional 
on
ept offree type variables of a term:De�nition 28 (Free type variables of a term) De�ne the set FTV(r) oftype variables o

urring free in r by re
ursion on r:� FTV(x) := ;.� FTV(�x�r) := FV(�) [ FTV(r).� FTV(rs) := FTV(r) [ FTV(s).� FTV(��r) := FTV(r) n f�g.� FTV(r�) := FTV(r) [ FV(�).Clearly, �� binds the free o

urren
es of � in r. We also identify terms whi
hdi�er only in the names of their bound type variables.It is straightforward to rede�ne substitution of terms for term variables interms:De�nition 29 (Substitution) De�ne the result r[x := s℄ of repla
ing everyfree o

urren
e of the variable x in r by the term s re
ursively as follows:� x[x := s℄ := s� y[x := s℄ := y for y 6= x.� (�y�r)[x := s℄ := �y�:r[x := s℄ where we may assume as usual thaty =2 fxg [ FV(s).� (rt)[x := s℄ := r[x := s℄t[x := s℄.� (��r)[x := s℄ := ��:r[x := s℄ where we assume that � =2 FTV(s).� (r�)[x := s℄ := r[x := s℄�.But we also have substitution of types for type variables in terms:49



De�nition 30 (Type substitution) De�ne the result r[� := �℄ of repla
ingevery free o

urren
e of the type variable � in r by the type � re
ursivelyas follows:� x[� := �℄ := x.� (�y�r)[� := �℄ := �y�[�:=�℄:r[� := �℄.� (rt)[� := �℄ := r[� := �℄t[� := �℄.� (��r)[� := �℄ := ��:r[� := �℄ where we assume that � =2 f�g [ FV(�).� (r�)[� := �℄ := r[� := �℄�[� := �℄.Lemma 35 If x =2 FV(r) then r[x := s℄ = r. If � =2 FTV(r) then r[� := �℄ = r.Proof Indu
tion on r. �The ri
her term syntax allows a new redu
tion in the spirit of �-redu
tion,namely (��r)� ! r[� := �℄ whi
h perfe
tly �ts with our intuition of �-abstra
tion and type appli
ation. For 
oding purposes, this is yet not enough (aswill be 
lear later). Therefore, we also in
lude the following �-redu
tion rules:�x�:rx ! r if x =2 FV(r), and ��:r� ! r if � =2 FTV(r). Clearly, we 
ouldhave added the �rst rule (without the type supers
ript) to the pure untyped�-
al
ulus. Unfortunately, the addition of �x:rx!� r for x =2 FV(r) would havedestroyed Subje
t Redu
tion: Take three di�erent type variables �;�; 
 andapply rule (!I) to z : �! 8
�; x : � ` zx : � or to z : �! �; x : � ` zx : 8
�.Note that neither z : �! 8
� ` z : �! � nor z : �! � ` z : �! 8
� holds.De�nition 31 (��-redu
tion) Indu
tively de�ne the relation !�� as fol-lows:(�) (�x�r)s!�� r[x := s℄ (outer �-redu
tion).(�) �x�:rx!�� r if x =2 FV(r) (outer �-redu
tion).(�F) (��r)�!�� r[� := �℄ (outer type-�-redu
tion).(�F) ��:r�!�� r if � =2 FTV(r) (outer type-�-redu
tion).(�) r!�� r 0 ) �x�r!�� �x�r 0 (redu
tion under a �-abstra
tion).(�F) r!�� r 0 ) ��r!�� ��r 0 (redu
tion under a �-abstra
tion).(r) r!�� r 0 ) rs!�� r 0s (right appli
ation).(l) r!�� r 0 ) sr!�� sr 0 (left appli
ation).(t) r!�� r 0 ) r�!�� r 0� (type appli
ation).If r!�� s we say that r redu
es by one ��-redu
tion step to s.Lemma 36 If r!�� r 0 then FV(r 0) � FV(r) and FTV(r 0) � FTV(r).50



Proof Indu
tion on !��. For (�), one �rst has to prove FV(r[x := s℄) �(FV(r) n fxg) [ FV(s) and FTV(r[x := s℄) � FTV(r) [ FTV(s). For (�F), weneed FV(r[� := �℄) = FV(r) and FTV(r[� := �℄) � (FTV(r) n f�g) [ FV(�). �Lemma 6 and Lemma 7 also hold for the extended syntax. Moreover, we getsubstitutivity w. r. t. type substitution:Lemma 37 (Substitutivity and 
ompatibility)If r!�� r 0 then r[x := s℄!�� r 0[x := s℄ and r[� := �℄ !�� r 0[� := �℄.If s!�� s 0 then r[x := s℄ !��� r[x := s 0℄, and r[x := s℄ !�� r[x := s 0℄ ifx o

urs exa
tly on
e free in r.Proof Substitutivity is proved by indu
tion on r !�� r 0, 
ompatibility isproved by indu
tion on r. �Unfortunately, !�� is not lo
ally 
on
uent: Consider�x�:(�y�r)x��
wwnnnnnnnnnnnn ��

%%L
LLLLLLLLL�x�:r[y := x℄ �y�r�y�rwith � 6= � and x =2 FV(�yr). This problem will be over
ome by typing.De�nition 32 (Typing for system F) The relation � ` r : � (term r hastype � in 
ontext �) is indu
tively de�ned by the following rules:�; x : � ` x : � (V) �; x : � ` r : �� ` �x�r : �! � (!I) � ` r : �! � � ` s : �� ` rs : � (!E)� ` r : � � =2 FV(�)� ` ��r : 8�� (8I) � ` r : 8�� � 2 Tu� ` r� : �[� := �℄ (8E)The usual 
onventions 
on
erning 
ontexts apply.Note how we restored the property that we always know whi
h typing rule hasbeen applied last (like with simple typing and unlike interse
tion typing or evenuniversal typing).Lemma 38 If � ` r : � then FV(�) � FV(�)[ FTV(r).Proof Indu
tion on `. Note that in 
ase (!I) we need that the information onthe type of the abstra
ted variable is in
luded in the syntax: If � 2 FV(�! �)then � 2 FV(�) or � 2 FV(�). In the �rst 
ase, � 2 FTV(�x�r). In these
ond 
ase, the indu
tion hypothesis gives that � 2 FV(�)[FV(�)[FTV(r) =FV(�)[ FTV(�x�r). The 
ase (8E) uses Lemma 30. �51



Lemma 39 Every typable term, i. e., every term r su
h that there are �and � with � ` r : �, has exa
tly one of the following forms:x~S �x�r (�x�r)s~S ��r (��r)�~Swhere ~S shall denote a �nite list of terms and types (we will later also use~R for su
h a list).Proof It is 
lear that every term has exa
tly one of the following forms:x~S �x�r (�x�r)s~S (�x�r)�~S ��r (��r)s~S (��r)�~S:Typability rules out the fourth and sixth possibility (note that the typabilityof r~S implies that of r). �On
e again we have Ex
hange 1 (p. 34) as part of our understanding of
ontexts, and it is again quite easy to establish Weakening 1, Strengthening (seeLemma 20) and Lemma 21(a). Moreover, we have a version of Lemma 21(a)pertaining to type substitution:Lemma 40 If � ` r : � then �[� := �℄ ` r[� := �℄ : �[� := �℄.Proof �[� := �℄ 
learly denotes the 
ontext where all the types of the variablesare substituted. The proof is by indu
tion on `. �Lemma 41 (Subje
t redu
tion) If r!�� r 0 and � ` r : � then � ` r 0 : �.Proof Indu
tion on !��. We only 
onsider the initial 
ases.(�) Let � ` (�x�r)s : �. Then � ` �x�r : � ! � and � ` s : �. Hen
e�; x : � ` r : �, and by the analogue of Lemma 21(a), � ` r[x := s℄ : �.(�) Let � ` �x�:rx : � ! �. Hen
e, �; x : � ` rx : �, and therefore,�; x : � ` r : �! �. By Strengthening, � ` r : �! �.(�F) Let � ` (��r)� : �. Then � ` ��r : 8�� and �[� := �℄ = �.Consequently, � ` r : � and � =2 FV(�). Hen
e �[� := �℄ = � and by thepre
eding lemma � ` r[� := �℄ : �[� := �℄ = �.(�F) Let � ` ��:r� : 8�� with � =2 FTV(r). Then � ` r� : � and � =2FV(�). Hen
e, � ` r : 8�� and �[� := �℄ = �. If � = �, then we are done.Otherwise, by Lemma 38, � =2 FV(�), hen
e 8�� = 8�� by renaming ofthe bound variable. �Note that the examples on page 50 are no longer 
riti
al: The �rst one yieldsz : � ! 8
� ` �x�:zx
 : � ! �, the se
ond z : � ! � ` �x��
:zx : �! 8
�.In both 
ases, we 
annot apply an outer �-redu
tion.Before studying 
on
uen
e and strong normalization of the typable terms,we 
onsider several examples showing the expressivity of system F.Examples 11 1. Set 0 := 8��. Then � ` r : 0 implies � ` r� : �.52



2. Set 1 := 8�:�! � and IN1 := ���x�x. Then ` IN1 : 1.3. Set � � � := 8�:(� ! � ! �) ! � for some � =2 FV(�) [ FV(�). Sethr; si�;� := ���z�!�!�:zrs for some z =2 FV(r) [ FV(s) and assumethat � =2 FTV(r) [ FTV(s). Hen
e, if � ` r : � and � ` s : � then � `hr; si�;� : � � �. Set rL�;� := r�(�x��y�:x) and rR�;� := r�(�x��y�:y).Hen
e, if � ` r : � � � then � ` rL�;� : � and � ` rR�;� : �. Moreover,hr; si�;�L�;� !��� r and hr; si�;�R�;� !��� s.4. Set � + � := 8�:(�! �)! (�! �)! � for some � =2 FV(�) [ FV(�).Set INL�;�r := ���x�!��y�!�:xr and INR�;�r := ���x�!��y�!�:yrfor some x; y =2 FV(r) (we assume that � =2 FTV(r)). Hen
e, if � `r : � then � ` INL�;�r : � + �, and if � ` r : � then � ` INR�;�r : � + �.Moreover, if � ` r : � + �, � ` s : � ! � and � ` t : � ! � then� ` r�st : � whi
h gives a 
onstru
t for 
ase distin
tion as follows:INL�;�r�st!��� sr and INR�;�r�st!��� tr.5. Set 9�� := 8�:(8�:� ! �) ! � for some � =2 f�g [ FV(�). SetC9��;�r := ���x8�:�!�:x�r for some x =2 FV(r) and � =2 FTV(r) [FV(�). Hen
e, if � ` r : �[� := �℄ then � ` C9��;�r : 9��. Also, if� ` r : 9�� and � ` s : 8�:� ! � with � =2 FV(�), then � ` r�s : �.Moreover, C9��;�r�s!��� s�r.6. Set nat := 8�:(� ! �) ! � ! �. Set 0 := ���x�!��y�y (thisshould not be 
onfused with the type 0 = 8��). Then ` 0 : nat. SetSr := ���x�!��y�:x(r�xy) for some x; y =2 FV(r) and � =2 FTV(r).Hen
e, if � ` r : nat then � ` Sr : nat. This gives ba
k iteration onnaturals as follows: If � ` r : nat, � ` s : � ! � and � ` t : � then� ` r�st : �. Moreover, 0�st !��� t and (Sr)�st !��� s(r�st), hen
e tis the initial term of the iteration, and s is the step term.Note that the examples with ex
eption of the last one may all be seen as intu-itionisti
 variants of 
lassi
al en
odings. If instead of the universally quanti�ed�, we only had the falsum ?, we 
ame to the following 
lassi
al identities (writ-ing :� for �! ?, ? for 0, > for 1, �^� for ��� and �_� for �+�): ? = ?,> = ?! ?, �^ � = :(�! :�), �_ � = :�! ::�, 9�� = :8�:�.7.4 Strong Normalization and Typed Con
uen
e of FWe will see that lo
al 
on
uen
e holds for typable terms and that every typableterm is strongly normalizing and �nally 
on
lude that typable terms even enjoy
on
uen
e.Lemma 42 (Typed lo
al 
on
uen
e) If � ` r : �, r !�� r 0 and r !�� r 00then there is a term t su
h that r 0 !�� t and r 00 !�� t.Proof Indu
tion on r, 
ase distin
tion a

ording to the last rule of !�� usedto establish r!�� r 0 and r!�� r 00. Hen
e, we have to distinguish 81 
ases.53



The 9 
ases in whi
h the same rule is applied in both redu
tions either holdtrivially (in the initial 
ases) or are immediate by the indu
tion hypothesis. Theother 72 
ases 
ome in 36 pairs of symmetri
 situations. We only 
onsider thepairs where the �rst rule 
omes �rst in the list of rules. Note that the following30 
ases are synta
ti
ally impossible:� � with �, �F, �F, �, �F and t� � with �F, �F, �F, r, l and t� �F with �F, �, �F, r and l� �F with �, r, l and t� � with �F, r, l and t� �F with r, l and t� r with t� l with tHen
e, only 6 
ases have to be 
onsidered:�=r. We have (�x�r)s��
yyss

sss
ss

sss ��
""F

FF
FF

FF
FFr[x := s℄ ts with �x�r!�� t.If t = �x�r 0 with r!�� r 0 then by substitutivity r[x := s℄!�� r 0[x := s℄,hen
e we get r[x := s℄

��
��

::
::

::
::

::
::

::
::

:
ts(�x�r 0)s��

xxrrrrrrrrrrr 0[x := s℄
.

Otherwise, r = tx with x =2 FV(t). Then r[x := s℄ = t[x := s℄s = ts.�=l. Use 
ompatibility as in the 
ase l=� in the proof of Lemma 5.�=�. We have �x�:rx��
||yy

yy
yy

yy
y ��

$$I
IIIIIIIIr �x�t with rx!�� t.If t = r 0x with r !�� r 0, then also x =2 FV(r 0), hen
e �x�t !�� r 0,yielding r �� ��

>>
>>

>>
>>

�x�t��}}zz
zz

zz
zzr 0 .

54



Otherwise, r = �y�s and t = s[y := x℄. Sin
e �x�:rx is typable16, thereare � and � su
h that � ` �x�:(�y�s)x : �! �. This 
omes from �; x : � `(�y�s)x : �, hen
e �; x : � ` �y�s : � ! �. We 
on
lude � = �. Finally,sin
e x =2 FV(r), �x�t = �x�:s[y := x℄ = �y�s = r.�F=t. We have (��r)���
yyssssssssss ��

##F
FF

FF
FF

FFr[� := �℄ t� with ��r!�� t.If t = ��r 0 with r !�� r 0 then by Lemma 37, r[� := �℄ !�� r 0[� := �℄,hen
e we get r[� := �℄
��
��

;;
;;

;;
;;

;;
;;

;;
;;

;;
t�(��r 0)s��

xxrrrrrrrrrrr 0[� := �℄
.

Otherwise, r = t� with � =2 FTV(t), hen
e r[� := �℄ = t[� := �℄� = t�.�F=�F. We have ��:r���
||yy

yy
yy

yy
y ��

$$I
IIII

III
Ir ��t with r�!�� t.If t = r 0� with r !�� r 0 then also � =2 FTV(r 0), hen
e ��t !�� r 0,yielding r �� ��

>>
>>

>>
>>

��t��}}{{
{{

{{
{{r 0 .Otherwise, r = ��s and t = s[� := �℄. If � = �, then we are done.Otherwise, � =2 FTV(s) and hen
e also ��t = ��s by renaming of thebound type variable.r=l. See the same 
ase in the proof of Lemma 5. �In order to prove that even typed 
on
uen
e holds, we �rst establish strongnormalization: First we rede�ne the sets SN and SAT, and then show essentiallythe same results for SN and SAT as for the system of universal types.17De�nition 33 De�ne the set SN indu
tively by:� If the terms among ~R are in SN then x~R 2 SN.� If r 2 SN then �x�r 2 SN.� If r 2 SN then ��r 2 SN.16This is the only pla
e where we need the typability assumption.17One 
ould also derive strong normalization from that of the system of universal types.We prefer the dire
t proof, sin
e it will be extended to the system of �xed-point types.55



� If r[x := s℄~S 2 SN and s 2 SN then (�x�r)s~S 2 SN.� If r[� := �℄~S 2 SN then (��r)�~S 2 SN.De�nition 34 A set M of terms of system F is saturated if the followingholds:1. If r 2M then r 2 SN.2. If the terms among ~R are in SN then x~R 2M.3. If r[x := s℄~S 2 M and s 2 SN then (�xr)s~S 2 M.4. If r[� := �℄~S 2M then (��r)�~S 2M.Let again SAT be the set of saturated sets. Again, SN 2 SAT.Lemma 43 SN � sn := a

!�� .Proof We have to show that sn has all the de�ning properties of SN, i. e., wehave to show that� If the terms among ~R are in sn then x~R 2 sn.� If r 2 sn then �x�r 2 sn.� If r 2 sn then ��r 2 sn.� If r[x := s℄~S 2 sn and s 2 sn then (�x�r)s~S 2 sn.� If r[� := �℄~S 2 sn then (��r)�~S 2 sn.The 
ase with the variable in the head is obvious sin
e every redu
tion in x~Rtakes pla
e in one of the ~R.The abstra
tion 
ase is more 
ompli
ated: Do indu
tion on r 2 sn. Assume�x�r!�� t. Either t = �x�r 0 with r!�� r 0, and t 2 sn by indu
tion hypoth-esis, or r = tx and t 2 sn sin
e it is a subterm of r 2 sn. A similar argument isneeded for the �-abstra
tion.The 
ase of (�x�r)s~S is as for untyped lambda 
al
ulus (see the proof ofLemma 18): By main indu
tion on s 2 sn and side indu
tion on r[x := s℄~S 2 snwe prove that (�x�r)s~S 2 sn. Therefore, we have to show for every t with(�x�r)s~S !�� t that t 2 sn. The only new 
ase 
ompared to the treatmentof untyped lambda 
al
ulus is r = r 0x with x =2 FV(r 0) and an �-redu
tionapplied to �x�:r 0x, leading to r 0s~S. However, this is not really a new 
ase, sin
e�-redu
tion of (�x�:r 0x)s also yields (�x�r)s~S!�� r 0[x := s℄s~S = r 0s~S.Finally 
onsider (��r)�~S. Show that this term is in sn by indu
tion onr[� := �℄~S 2 sn. Assume that (��r)�~S !�� t. Show that t 2 sn. Eithert = (��r)�~S with r!�� r 0, hen
e r[� := �℄~S!�� r 0[� := �℄~S, and we are doneby the indu
tion hypothesis. Or t = (��r)�~S 0 with redu
tion of one of the termsin ~S. Then r[� := �℄~S !�� r[� := �℄~S 0, and again the indu
tion hypothesisapplies. Or t = r[� := �℄~S 2 sn. Or, �nally, r = r 0� with � =2 FTV(r 0) andt = r 0�~S. But t = (r 0x)[� := �℄~S 2 sn by assumption. �56



Note that SN = sn does not hold (see Lemma 39).Again, it is always possible to produ
e a saturated set from an arbitrary setM of terms by the saturated 
losure 
l(M), de�ned by indu
tion as follows:� If r 2M \ SN then r 2 
l(M).� If the terms among ~R are in SN then x~R 2 
l(M).� If r[x := s℄~S 2 
l(M) and s 2 SN then (�x�r)s~S 2 
l(M).� If r[� := �℄~S 2 
l(M) then (��r)�~S 2 
l(M).Sin
e, again, 
l(M) � SN (proved by indu
tion on the de�nition), it is the leastsaturated set 
ontaining M \ SN.Given a saturated set M and a saturated set N , we 
onstru
t a saturatedset M! N : De�neSx(M;N ) := fr j 8s 2 M r[x := s℄ 2 N g;I(M;N ) := f�x�r j x 2 V , � 2 Tu and r 2 Sx(M;N )g andE(M;N ) := fr j 8s 2M; rs 2 N g:We get the introdu
tion-based de�nition M !I N and the elimination-basedde�nition M!E N of saturated sets:M!I N := 
l(I(M;N )) and M!E N := 
l(E(M;N )).We get the same properties as before (
ompare Lemma 31).Lemma 44 I(M;N ) � SN, E(M;N ) \ SN 2 SAT, and I(M;N ) � E(M;N ).Proof(1) See the proof of Lemma 31.(2) Che
k the 
onditions of saturatedness for E(M;N ) \ SN:1. Trivial.2. Let the terms among ~R be in SN and s 2 M. Sin
e s 2 SN andN 2 SAT, x~Rs 2 N .3./4. Simply append s and use saturatedness of N .(3) See the proof of Lemma 31. �From the lemma, we get I(M;N ) �M!I N , M!E N = E(M;N )\SN and,due to monotoni
ity of 
l, M!I N �M!E N .De�ne M ! N := M !X N with X 2 fI; Eg. As before, we never use anyproperty depending on this 
hoi
e but only the following three properties whi
hare valid for both 
hoi
es and follow immediately from the pre
eding remarks:(SAT) M! N 2 SAT. 57



(!I) If r 2 Sx(M;N ) then �x�r 2M! N .(!E) r 2 M! N ^ s 2 M) rs 2 N :Sin
e we now have an expli
it 8-introdu
tion and 8-elimination in the termsystem, we also have to provide an expli
it 
onstru
tion of universal quanti�
a-tion on saturated sets. Given a fun
tion � from SAT to SAT, we de�neS�(�) := fr j 8� 2 Tu8M 2 SAT r[� := �℄ 2 �(M)g;I(�) := f��r j � 2 VT and r 2 S�(�)g andE(�) := fr j 8� 2 Tu8M 2 SAT r� 2 �(M)g:We get the introdu
tion-based de�nition 8I� and the elimination-based de�ni-tion 8E� of saturated sets:8I� := 
l(I(�)) and 8E� := 
l(E(�)).We get similar properties:Lemma 45 I(�) � SN, E(�) \ SN 2 SAT, and I(�) � E(�).Proof(1) Let r 2 S�(�). Then for � := � and M := SN, we get r = r[� := �℄ 2�(M) � SN, hen
e also ��r 2 SN.(2) Che
k the 
onditions of saturatedness for E(�) \ SN:1. Trivial.2. Let the terms among ~R be in SN, � 2 Tu and M 2 SAT. Sin
e�(M) 2 SAT, x~R� 2 �(M).3./4. Append � and use saturatedness of �(M).(3) Let r 2 S�(�), � 2 Tu and M2 SAT. Show that (��r)� 2 �(M). Sin
e�(M) 2 SAT, if suÆ
es to show r[� := �℄ 2 �(M) whi
h follows byde�nition of S�(�). �From the lemma, we get I(�) � 8I�, 8E� = E(�)\SN and 8I� � 8E�. De�ne8� := 8X� with X 2 fI; Eg. As usual, we never use any property depending onthis 
hoi
e but only:(SAT) 8� 2 SAT.(8I) If r 2 S�(�) then ��r 2 8�.(8E) r 2 8�^ � 2 Tu ^M2 SAT) r� 2 �(M):The notion of 
andidate assignment remains un
hanged:De�nition 35 (Candidate assignment) Any �nite set of pairs (written� :M), 
onsisting of a type variable and a saturated set, su
h that no typevariable o

urs twi
e. 58



De�nition 36 (Strong 
omputability) De�ne the saturated set SC�[�℄ ofstrongly 
omputable terms w. r. t. type � and the 
andidate assigment � byre
ursion on �:� SC�[�℄ := � M if � :M2 �,SN otherwise.� SC�!�[�℄ := SC�[�℄! SC�[�℄.� De�ne � : SAT ! SAT by setting �(M) := SC�[�; � : M℄. SetSC8��[�℄ := 8�.Lemma 46 (Coin
iden
e) If � =2 FV(�) then SC�[�; � :M℄ = SC�[�℄.Proof Indu
tion on �. �Lemma 47 (Substitution) SC�[�:=�℄[�℄ = SC�[�; � : SC�[�℄℄.Proof Indu
tion on �, using the previous lemma. �As in Lemma 34, we make use of the simultaneous substitution r[~x := ~s℄ of allo

urren
es of xi by si (for every i, with di�erent variables xi) in r and moreoverof the simultaneous substitution r[~� := ~�℄ of all o

urren
es of �i by �i (forevery i, with di�erent variables �i) in r whi
h both may be de�ned by re
ursionon r like the ordinary notions of substitution. We will again use the notation~x : ~� for x1 : �1; : : : ; xn : �n, ~s 2 SC~�[�℄ for s1 2 SC�1 [�℄; : : : ; sn 2 SC�n [�℄, andmoreover, ~� : ~M for �1 :M1; : : : ; �m :Mm.Lemma 48 If ~x : ~� ` r : �, ~s 2 SC~�[~� : ~M℄ and ~� is a list of types 
orre-sponding to ~� then r[~� := ~�℄[~x := ~s℄ 2 SC�[~� : ~M℄.Proof By indu
tion on ~x : ~� ` r : � simultaneously for every 
andidate assign-ment.(V) r : � = xi : �i. Obvious.(!I) Let ~x : ~� ` �x�r : � ! � thanks to ~x : ~�; x : � ` r : �. We have toshow that (�x�r)[~� := ~�℄[~x := ~s℄ 2 SC�[~� : ~M℄ ! SC�[~� : ~M℄. We mayassume that x =2 ~x [ FV(~s), and hen
e(�x�r)[~� := ~�℄[~x := ~s℄ = �x�[~�:=~�℄:r[~� := ~�℄[~x := ~s℄:It suÆ
es to show that r[~� := ~�℄[~x := ~s℄ 2 Sx(SC�[~� : ~M℄; SC�[~� : ~M℄). Soassume s 2 SC�[~� : ~M℄ and show r[~� := ~�℄[~x := ~s℄[x := s℄ 2 SC�[~� : ~M℄.This follows from the indu
tion hypothesis sin
e, by our assumption,r[~� := ~�℄[~x := ~s℄[x := s℄ = r[~� := ~�℄[~x; x := ~s; s℄:(!E) This is an immediate 
onsequen
e of the indu
tion hypothesis andthe rule (!E) for saturated sets.59



(8I) Let ~x : ~� ` ��r : 8�� thanks to ~x : ~� ` r : � and � =2 FV(~�). We mayassume that � =2 ~� [ FV(~�) [ FTV(~s). Therefore, (��r)[~� := ~�℄[~x := ~s℄ =��:r[~� := ~�℄[~x := ~s℄. Let � 2 Tu and M 2 SAT. We have to show thatr[~� := ~�℄[~x := ~s℄[� := �℄ 2 SC�[~� : ~M; � : M℄. Sin
e � =2 FV(~�), we mayapply the Coin
iden
e Lemma and get ~s 2 SC~�[~� : ~M; � : M℄. We aredone by the indu
tion hypothesis sin
er[~� := ~�℄[~x := ~s℄[� := �℄ = r[~�;� := ~�; �℄[~x := ~s℄:(8E) Let ~x : ~� ` r� : �[� := �℄ thanks to ~x : ~� ` r : 8��. By indu
tionhypothesis, r[~� := ~�℄[~x := ~s℄ 2 SC8��[~� : ~M℄. Set M := SC�[~� : ~M℄.Then r[~� := ~�℄[~x := ~s℄�[~� := ~�℄ 2 SC�[~� : ~M; � : M℄ = SC�[�:=�℄[~� : ~M℄by the Substitution Lemma. �By setting si := xi 2 SC�i [;℄ for � = ~x : ~�, and by using SC�[;℄ � SN, we getthe followingTheorem 5 (Strong normalization of F) If � ` r : � then r 2 SN. �As an appli
ation, we prove:Lemma 49 (Typed 
on
uen
e) If � ` r : �, r !��� r 0 and r !��� r 00 thenthere is a term t su
h that r 0 !�� t and r 00 !�� t.Proof Indu
tion on r 2 sn.18 If r = r 0 or r = r 00 then the 
laim is trivial(set t = r 00 or t = r 0, respe
tively). Otherwise, r !�� r 00 !��� r 0 and r !��r 000 !��� r 00 for some terms r 00 and r 000 . By typed lo
al 
on
uen
e, there is a terms su
h that r 00 !��� s and r 000 !��� s. By Subje
t Redu
tion, � ` r 00 : � and� ` r 000 : �. Hen
e, by indu
tion hypothesis for r 00, there is s 0 su
h that r 0 !��� s 0and s!��� s 0, hen
e r 000 !��� s 0. We now apply the indu
tion hypothesis to r 000and get the term t with and r 00 !��� t and s 0 !��� t, hen
e also r 0 !��� t. �Exer
ise 22 Show that there is no term r su
h that ` r : 8��.8 Monotone Indu
tive TypesThe expressiveness of system F is highlighted by the fa
t that least pre-�xedpoints of monotone operators 
an be represented|even with respe
t to redu
-tion behaviour. Its main pra
ti
al 
onsequen
e arises in the �eld of programextra
tion: The 
omputational 
ontent of intuitionisti
 proofs with indu
tivede�nitions 
onsists of terms of system F whose normalization yields the obje
tswhose existen
e has been proved.19 Later we will see that one also needs tomodel �xed-points (not only pre-�xed points) in order to get primitive re
ur-sion (not only iteration), and those �xed-points are not available in system Fas is generally believed and greatly supported by [SU99℄.18This proof is in essen
e the proof of Newman's Lemma saying that a lo
ally 
on
uentand strongly normalizing binary relation is 
on
uent.19Unfortunately, be
ause of la
k of spa
e, this 
laim 
annot be substantiated in these notes.60



8.1 The Example of ContinuationsThe guiding example for the treatment of indu
tive types will be the one in[Hof95℄ treating a 
lassi
al problem in algorithm design by a non-stri
tly positiveindu
tive type: The labels of a �nite labelled binary tree shall be put into a listbreadth-�rst, i. e., �rst the root label, then the labels of its 
hildren, then thelabels of the next layer, . . .The following SML program will be studied in great detail:datatype nat = O | S of nat;(* natural numbers *)val one= S O;val two = S one;val three = S two;val four = S three;val five = S four;val six = S five;val seven = S six;val eight = S seven;val nine = S eight;(* example numbers *)datatype btree = L of nat | N of nat*btree*btree;(* binary trees *)val extree = N(one,N(two,L seven,N(three,L five,L four)),N(four,N(six,L two,L nine),L eight));(* the example tree *)datatype list = nil | 
ons of nat*list;(* lists of natural numbers *)datatype 
ont = D | C of (
ont -> list) -> list;(* non-stri
tly positive !! *)fun apply(D,g) = g D |apply(C f,g) = f g;(* definition without re
ursion but with inversion *)fun breadth(L x,k) = C(fn(g)=>
ons(x,apply(k,g))) |breadth(N(x,s,t),k) = C(fn(g)=>
ons(x,(apply(k,fn(m)=>g(breadth(s,(breadth(t,m))))))));(* iteration on the tree argumentfn(g)=> is the notation for lambda-abstra
tion of g *)fun ex(D) = nil | ex(C f) = f ex;61



(* iteration on the datatype 
ont !! *)fun breadthfirst t = ex(breadth(t,D));val result = breadthfirst(extree);val exlist= 
ons(one, 
ons(two, 
ons(four, 
ons(seven, 
ons(three,
ons(six, 
ons(eight, 
ons(five, 
ons(four, 
ons(two,
ons(nine,nil)))))))))));val ok=(result=exlist);This leads to the following output:Standard ML of New Jersey,Version 110.0.6, O
tober 31, 1999 [CM; autoload enabled℄- use("hofmann.sml");[opening hofmann.sml℄datatype nat = O | S of natval one = S O : natval two = S (S O) : natval three = S (S (S O)) : natval four = S (S (S (S O))) : natval five = S (S (S (S (S #)))) : natval six = S (S (S (S (S #)))) : natval seven = S (S (S (S (S #)))) : natval eight = S (S (S (S (S #)))) : natval nine = S (S (S (S (S #)))) : natdatatype btree = L of nat | N of nat * btree * btreeval extree = N (S O,N (S #,L #,N #),N (S #,N #,L #)) : btreedatatype list = 
ons of nat * list | nildatatype 
ont = C of (
ont -> list) -> list | Dval apply = fn : 
ont * (
ont -> list) -> listval breadth = fn : btree * 
ont -> 
ontval ex = fn : 
ont -> listval breadthfirst = fn : btree -> listval result = 
ons (S O,
ons (S #,
ons #)) : listval exlist = 
ons (S O,
ons (S #,
ons #)) : listval ok = true : boolval it = () : unit-The �rst questions to raise:1. Are the results always 
orre
t?2. Does the program terminate for every input tree?62



3. Is it eÆ
ient? (Compare it with the state-based implementation with aqueue.)4. How 
an we understand a de�nition of a fun
tion ex having the formex(C f) = f ex? The fun
tion about to be de�ned is passed over as anargument in the re
ursive 
all!There are pleasing answers:1. The program is 
orre
t, and 
an be shown so by suitable indu
tive argu-ments.2. The program terminates sin
e it 
an be expressed in an extension of sys-tem F by �xed-point types, and every term typable in that system isstrongly normalizing, to be shown by a straightforward extension of theproof for system F whi
h has been designed so as to fa
ilitate this exten-sion.3. It is running in linear time like the implementation with a queue. En
od-ings in system F are extremely unlikely to give linear time. The problem iswith the de�nition of apply where apply(C f,g) = f g needs to isolatef out of C f, and whi
h is an instan
e of inversion.4. The re
ursive 
all 
an be understood quite well: It is indeed an instan
e ofiteration whi
h 
an be modeled inside system F. And even mu
h more de-manding indu
tive types 
an be treated: every monotone indu
tive type.The proof of monotoni
ity provides the iteration prin
iple.The theoreti
al understanding goes further: The embedding of iteration onmonotone indu
tive types into system F 
an be read o� a 
areful proof of Tarski's�xed-point theorem stating that a monotone operator on a 
omplete latti
e hasa least �xed-point (see the explanation in [Mat99b℄). Moreover, we only neednon-interleaving non-stri
tly positive �xed-point types to derive full primitivere
ursion on monotone indu
tive types be
ause of system F's impredi
ative
apabilities [Mat99a℄.Unfortunately, this all 
an only be addressed in a future version of thesele
ture notes. The plan is to enlarge this se
tion until it 
onsumes about onethird of the total time of the le
ture 
ourse on lambda 
al
ulus, a 
ase forindu
tive de�nitions.Referen
es[Alt93℄ Thorsten Altenkir
h. A formalization of the strong normalizationproof for system F in LEGO. In Bezem and Groote [BG93℄, pages13{28.[ASU86℄ Alfred V. Aho, Ravi Sethi, and Je�rey D. Ullman. Compilers, prin-
iples, te
hniques, and tools. Addison-Wesley, 1986.63



[Bar84℄ Henk P. Barendregt. The Lambda Cal
ulus: Its Syntax and Se-manti
s. North{Holland, Amsterdam, se
ond revised edition, 1984.[Bar93℄ Henk P. Barendregt. Lambda 
al
uli with types. In Samson Abram-sky, Dov M. Gabbay, and Tom S. E. Maibaum, editors, Ba
kground:Computational Stru
tures, volume 2 of Handbook of Logi
 in Com-puter S
ien
e, pages 117{309. Oxford University Press, 1993.[BG93℄ Mar
 Bezem and J.F. Groote, editors. Typed Lambda Cal
uli andAppli
ations, volume 664 of Le
ture Notes in Computer S
ien
e.Springer Verlag, 1993.[CDC78℄ Mario Coppo and Mariangiola Dezani-Cian
aglini. A new type as-signment for �-terms. Ar
hive for Mathemati
al Logi
, 19:139{156,1978.[Gir72℄ Jean-Yves Girard. Interpr�etation fon
tionnelle et �elimination des
oupures dans l'arithm�etique d'ordre sup�erieur. Th�ese de Do
toratd'�Etat, Universit�e de Paris VII, 1972.[GLT89℄ Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types,volume 7 of Cambridge Tra
ts in Theoreti
al Computer S
ien
e.Cambridge University Press, 1989.[Hin97℄ J. Roger Hindley. Basi
 Simple Type Theory, volume 42 of Cam-bridge Tra
ts in Theoreti
al Computer S
ien
e. Cambridge Uni-versity Press, 1997.[Hof95℄ Martin Hofmann. Approa
hes to re
ursive datatypes|a 
ase study.5 pages. Unpublished, April 1995.[JM99℄ Felix Joa
himski and Ralph Matthes. Short proofs of normalizationfor the simply-typed lambda-
al
ulus, permutative 
onversions andG�odel's T. Submitted to the Ar
hive for Mathemati
al Logi
, 1999.[Kri93℄ Jean-Louis Krivine. Lambda-
al
ulus, types and models. Masson,Paris and Ellis Horwood, Hemel Hempstead, 1993. English translationof Lambda-
al
ul, types et mod�eles, Masson, 1990.[Loa98℄ Ralph Loader. Notes on simply typed lambda 
al
ulus. Reports of theLaboratory for Foundations of Computer S
ien
e ECS-LFCS-98-381,University of Edinburgh, 1998.[Mat98℄ Ralph Matthes. Extensions of System F by Iteration and Primi-tive Re
ursion on Monotone Indu
tive Types. Doktorarbeit (PhDthesis), University of Muni
h, 1998. Available via the homepagehttp://www.t
s.informatik.uni-muen
hen.de/~matthes/.[Mat99a℄ Ralph Matthes. Monotone (
o)indu
tive types and positive�xed-point types. Theoreti
al Informati
s and Appli
ations,33(4/5):309{328, 1999. 64



[Mat99b℄ Ralph Matthes. Tarski's �xed-point theorem and lambda 
al
uli withmonotone indu
tive types. To appear in: Benedikt L�owe and FlorianRudolph, Foundations of the Formal S
ien
es, Refereed Papers ofa Resear
h Colloquium, Humboldt-Universit�at zu Berlin, May 7-9,1999.[Mit96℄ John C. Mit
hell. Foundations for Programming Languages. Foun-dations of Computing. The MIT Press, 1996.[SU99℄ Zdzis law Sp lawski and Pawe l Urzy
zyn. Type Fixpoints: Iterationvs. Re
ursion. SIGPLAN Noti
es, 34(9):102{113, 1999. Pro
eed-ings of the 1999 International Conferen
e on Fun
tional Programming(ICFP), Paris, Fran
e.[Tai67℄ William W. Tait. Intensional interpretations of fun
tionals of �nitetype I. The Journal of Symboli
 Logi
, 32(2):198{212, 1967.[Tai75℄ William W. Tait. A realizability interpretation of the theory ofspe
ies. In R. Parikh, editor, Logi
 Colloquium Boston 1971/72,volume 453 of Le
ture Notes in Mathemati
s, pages 240{251.Springer Verlag, 1975.[Urz96℄ Pawe l Urzy
zyn. Positive re
ursive type assignment. FundamentaInformati
ae, 28(1{2):197{209, 1996.[Wel94℄ Joe B. Wells. Typability and type 
he
king in the se
ond-orderlambda-
al
ulus are equivalent and unde
idable. In Pro
eedings ofthe 9th Annual IEEE Symposium on Logi
 in Computer S
ien
e,pages 176{185. IEEE Computer So
iety Press, 1994.[Wel99℄ Joe B. Wells. Typability and type 
he
king in system F are equivalentand unde
idable. Annals of Pure and Applied Logi
, 98(1{3):111{156, 1999.

65


