Lambda Calculus:
A Case for Inductive Definitions

Ralph Matthes
Institut fiir Informatik der Universitat Miinchen
Oettingenstrale 67, 80538 Munchen
matthes@informatik.uni-muenchen.de

July 8, 2000

Abstract

These lecture notes intend to introduce to the subject of lambda cal-
culus and types. A special focus is on the use of inductive definitions.
The ultimate goal of the course is an advanced treatment of inductive

types.
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1 Overview

Typed A-calculi are especially simple typed functional programming languages.
The study of those basic formalisms has applications to the design and the devel-
opment of programming languages, program logics and influences mathematical
logic (especially structural proof theory) from which it originated.

Starting with the inductive definitions of (untyped) A-terms and B-reduction,
the normal terms, the weakly normalizing terms and the strongly normalizing
terms are characterized inductively. This means, the properties of not having
a reduct or not having an infinite reduction sequence, are turned into positive
statements. Moreover, with strongly normalizing terms it is done in a way facil-
itating a proof of strong normalization of intersection-typed terms enormously
(which would even cover n-rules). Concerning the weakly normalizing terms, an
inductively defined relation is introduced for the proof of standardization (dealt
with in the exercises). The technique of superdelopments is used to establish
confluence. The system of universal types (system F a la Curry) is proved to be
strongly normalizing, and system F a la Church is introduced at length. Again
confluence and strong normalization are established which later requires but a
small modification to cover the extensions of system F by monotone inductive
types.

After having used induction on inductively defined sets so successfully, the
means of induction are added to the lambda calculus itself: By a constructively-
minded inspection of Tarski’s fixed-point theorem the most general formulation
of inductive types is gained (via the Curry-Howard isomorphism). This gives
a lot more insight into the capability of system F for modelling abstract data
types and into usual formulations of inductive types found in the literature. The
idea of interpolation will elucidate why those systems give equal computational
power. Unfortunately, the material concerning inductive types is not available
in the present version of these notes.

In essence, this course is a presentation (of a logician’s view) of several of
the most important results on the syntax (and operational semantics) by help of
general induction (in principle known to everybody who knows about context-
free grammars), and then a reflection of the principle via A-calculi with inductive
types.

Description of the ”course’s philosophy”: In some sense, the presentation
will be more elementary than in standard textbooks because everything is ac-
complished in a strictly constructive fashion. On the other hand, it requires
some level of mathematical sophistication to fully understand induction on in-
ductively defined sets although the concept will be introduced carefully and



applied to a wide range of examples (the first part of which could as well be
treated by ordinary induction). Concerning content, most of the course will
stick to results found in standard textbooks such as [Bar84, Bar93, GLTS89,
Hin97, Kri93, Mit96]. The reader may easily gain insight by comparing the
quite different styles of presentation.

To sum up, the material is self-contained and is intended to convey several
of the central insights of A-calculus in a way which should also be interesting
for those who already know the results.

Citations are quite rare in these notes. This does not indicate that I consider
the results to be original. Credits are given in my research papers. In a future
version, I might add many more citations to enhance fairness.

Acknowledgements to my colleagues Thorsten Altenkirch and Felix Jo-
achimski for helpful comments on drafts of this work.

Section 2 deals with an extended example of simultaneous inductive defini-
tions: context-free grammars. Two grammars for the same language are proven
to be equal. The proofs are done so carefully that a functional program can
be read off immediately. Its purpose is the transformation of the parse trees
from one grammar into the other. But the main purpose is the illustration of
induction.

In section 3 the concept of binding is motivated from calculus. Untyped
A-calculus is introduced: terms, substitution, B-equality, Curch numerals, (3-
reduction.

Confluence of B-reduction is defined and proved in section 4. Friends of
diagrams may enjoy the proof of local confluence which is given beforehand since
it is much more perspicuous. However, the method of establishing confluence in
the spirit of M. Takahashi with superdevelopments a la F. von Raamsdonk, is
explained in great detail in order to make it as conceivable as the local confluence
proof.

Section 5 provides the notions of normalizability. Weak and strong normal-
izability are both characterized in a syntax-directed way—useful for proofs of
normalization in later sections.

Types enter the scene in section 6: Simple and intersection types are moti-
vated and studied. The technical development is confined to intersection types
since it is more demanding as well as more informative: type assignment mat-
ters! The results are closure under substitution and reverse substitution, In-
version and Subject Reduction, and the main result the well-known fact that
exactly the strongly normalizing terms are typable with intersection types.

In section 7 universal types prevail. First, the A-terms get a richer typing
system (system of universal types=system F & la Curry) which requires the
candidate method for the proof of strong normalization. After a glance at the
undecidability of type checking, the explicit form of system F is introduced with
a richer term structure. Several technical complications occur (e.g., local con-
fluence fails without typability restriction). A first set of examples demonstrates
F’s ability to encode datatypes. Strong normalization is proved as a preparation
for the system with fixed-point types.



Section 8 is incomplete: After an illuminating ML program a discussion of
the virtues of inductive types and the limitations of F’s encodings therof can
be found. It is intended to make this quite large a section in later versions of
these lecture notes.

2 Introduction to Inductive Definitions

In theoretical computer science, inductive definitions are ubiquitous. Mostly,
they appear in the disguise of formal grammars which are idealizations of nat-
ural language grammars. Therefore, this introduction to inductive definitions
concentrates on examples of (even context-free) grammars. In [ASU86, Exam-
ple 4.8] two equivalent grammars for arithmetic expressions are studied for the
purpose of illustrating the elimination of left recursion. The first one is (with
id a set of identifiers):
E —- E+TI|T
T — TxF|F
F — (E)]id
The intuition of the non-terminals is given by:
e E: expression = a sum of terms
e T: term = a product of factors

e F: factor = a parenthesized expression or an identifier

Thus we model that in arithmetic expressions, * has a higher precedence than
+, and that parentheses enforce grouping. The grammar is left recursive and
therefore cannot be treated by top-down parsing methods: One runs into the
loopE 2 E+T—oE+T4+T S E4+T+T4+T— ...

The second grammar is as follows (with empty word €):

E — TH
H — +4TH|e
T — FK
K — «FK|e
F — (E)]id

The idea is to decompose an expression into a term and a string of the form
+T+T+...+T (expressed by the auxiliary non-terminal H) while in the first
grammar, the decomposition would be into a list of T’s with +’s inbetween. The
same idea is used for the terms.

The claim is that both grammars are equivalent, i. e., that the same expres-
sions can be derived from the non-terminal E. How can we prove that with full
mathematical rigour? Answer: By induction. More concretely: By induction on
the generation of the expressions according to these grammars. This generation
process may be made precise as follows: We simultaneously define the sets &,
T and F of strings derivable in the first grammar from the non-terminals E, T
and F, respectively. This will be done by means of an inductive definition to be
expressed by the following rules:



Ifeecfandte T thene+tel.

Ifte 7T thentef.

Iffe FthenfeT.

(1)
(2)
(3) Ifte T andfe FthentxfeT.
(4)
(5) If e € £ then (e) € F.

)

Ifieid thenie F.

These rules have to be interpreted as describing the generation of the sets £, T
and F, hence the three sets will have all the properties expressed by the rules,
and an element only enters one of the three sets if this is possible by one of the
six rules. E.g., e +t only enters £ by the first rule, if already e € £ and t € T.

Clearly, we are only interested in the set £ of expressions, but we have to
define sets for every non-terminal in the grammar.

Analogously, we inductively define five sets &', H', T',K', F', corresponding
to the five non-terminals of the second grammar:

(a) Ifte 7'and h € H' thenth € £'.
(b) If te 7' and h € #' then +th € H'.

(c) eeH'.
(

d) If fe F'and k € K’ then fk € 7.

(
(f) ee K"

g) If ec £ then (e) € F'.

)
)
)
)
e) If f € 7' and k € K’ then xfk € K'.
)
)
h)

(
(h) Ifi€id thenie F'.

Lemma 1 (Equivalence) £ =&'.

Proof It is obvious that we cannot prove £ = £’ in isolation. We first prove
£ C &' and simultaneously prove 7 C 7' and F C F' by induction on the
simultaneous inductive definition of £, 7 and F. Proving by induction means
arguing on the generation of all the strings in £, 7 and F by help of the rules
(1) to (6). Since the rules specify which strings have to be in £, T or F before,
we may assume that for those strings we already have that they are in &', T’
and F’, respectively. This is always called the induction hypothesis.
We go through (1) to (6):

(1) If e+t € £ has been concluded from e € £ and t € 7, we have to show
that e +t € £'. By induction hypothesis, e € £’ and t € T'. Since there
is only one rule for £', we conclude that e =t’h witht' € 7' and h € H'.
Now, we first prove an auxiliary statement: If h € H' and t € 7' then
h+t € H’'. This is proved by induction on H': If h € H' due to rule (b)



then h = +t'h’/ with t’ € 7’/ and h'/ € H' which entered H' before h. By
induction hypothesis, h' +t € ', hence h +t = +t'"h/ +t € H' by rule
(b) again. If h € H' due to rule (c) then h = e. By rules (c) and (b),
h+t=e+t=+t=+te € H'. By help of this statement, we infer that
h+te#H' hencee+t=t"h+t e byrule (a).

(2) If t € € has been concluded from t € 7, we have to show that t € £', and
the induction hypothesis is t € 7'. We are done by rules (c) and (a).

(3) We need another auxiliary lemma: If k € X' and f € F' then kxf € K.
The proof and the whole case are similar to (1).

(4) Similar to (2).

(5) If (e) € F has been concluded from e € £, we have to show that (e) € F’,
and the induction hypothesis is e € £’. So were are done by rule (g).

(6) If i € F has been concluded from i € id, we have to show that i € F'.
This holds by rule (h).

Let us prove £’ C £. Since the definitions of £', #', 7', K' and F' are
entangled, we need to prove something for all of those. Therefore, we inductively
define two auxiliary sets H and K. # is defined by mimicking rules (b) and (c):

(b+) If t € T and h € H then +th € .

(c+) e € H.

Analogously, K is defined after the model of (e) and (f):
(e+) If f € F and k € K then xfk € K.

(f+) e e K.

Now, we can simultaneously prove £’ C £, H' CH, T' C T, K' C K and
F' C F by induction on the simultaneous inductive definition of &', H', T,
K' and F'. In order to do this, we first prove that (a) to (h) hold when all the
primed entities X'’ are replaced by the X, for X € {£,H, T, K, F}.

(a) Show that if t € 7 and h € H then th € £. We need an auxiliary

lemma: If e € £ and e’ € £ then e+ e’ € £. It is proved by induction
on the generation of e’ € &£: If e’ € &£ has been concluded by rule (1)
then e’ = e” + t for some previously found e’ € £ and some t € 7. By
induction hypothesis, e+e” € £, hence by rule (1), e+e’ =e+e”+t € £.
If e’ € £ has been concluded by rule (2) from e’ € 7 then e + e’ € £ by
(1).
Now, the claim is proved for arbitrary t € 7 by induction on h € #H: If
h € H stems from rule (b+) then h = +t'h’ for some t € 7 and some
previously generated h' € H. By induction hypothesis, t'h’' € £. Since
t € &, the auxiliary lemma yields th =t+t'h' € £. If h € H by rule (c+)
then h = € and therefore th=1t € £.



(b) By rule (b+): If t € 7 and h € H then +th € H.

—
(g
~—

€ € H by rule (c+).

(d) Show that if f € F and k € K then fk € 7. In analogy to (a), we first
provet,t’ € 7 = t*t’' € T by induction on t’ € 7 and then do induction
on k € K.

e) By rule (e+): If f € F and k € K then *fk € K.

(
(f) € € K by rule (f+).

(g) By rule (5): If e € £ then (e) € F.

)
)
)
(h)

If i € id then i € F by (6).

Therefore, the unprimed entities fulfill the defining clauses of the primed enti-
ties. Since the primed entities are assumed to be the smallest sets with those
properties (elements only enter if one of the rules applies), we conclude that the
primed entities are all included in the unprimed ones, respectively.

Readers not being familiar with this order-theoretic arguments may simply
do an inductive proof of x € X' = x € X for X € {£,H, T, K, F} in traditional
style. We only consider this for rule (a): Assume that th € £’ has been con-
cluded from t € 7' and h € H'. By induction hypothesis, t € 7 and h € H.
Therefore, by the validity of (a) with 7', H' and £’ replaced by 7, H and &,
respectively, we get th € £ and are done. O

Since our proof only contained constructive arguments, it is straightforward
to write a program by which the parse trees for expressions according to the first
and the second grammar can be transformed into each other. The programming
language we chose is Standard ML of New Jersey (Version 110.0.6 of October
1999).

The readers are not expected to be familiar with SML. Nevertheless, it
should be possible to understand the program text without explaining the syn-
tax. Only the intentions are given and the output of the system when fed with
the program lines shown so far.

datatype
’id expr = Pnode (* P for plus *) of ’id expr * ’id term
Tnode (* T for term *) of ’id term
and
’id term = Mnode (* M for multiply *) of ’id term * ’id factor |
Fnode (* F for factor *) of ’id factor
and
’id factor = Bnode (* B for bracket *) of ’id expr |
Inode (* I for identifier *) of ’id;

Three inductive datatypes are introduced which are parameterized by ’id rep-
resenting the set of identifiers (in our examples this will always be the built-in
type string of strings). They model the set of derivation trees for £, 7 and
F. The rules (1) to (6) are represented by constructors (which are nothing but
tags). So, e.g., Pnode stands for (1) and thus requires some ’id expr and some



’id term (* denotes pairing). Note that only the derivation trees are modeled
and not the expressions themselves. The system’s answer (with its preferred
type variable name ’a):

datatype ’a expr = Pnode of ’a expr * ’a term | Tnode of ’a term

datatype ’a term = Fnode of ’a factor | Mnode of ’a term * ’a factor

datatype ’a factor = Bnode of ’a expr | Inode of ’a

val

val

val

fun

val
val
val

f1

t1

el

Bnode (Pnode (Tnode (Fnode (Inode ("7"))) ,Fnode (Inode("3"))));

Fnode (Bnode (Tnode (Mnode (Fnode (Inode ("8")) ,f1))));

Pnode (Tnode(t1) ,Mnode (Fnode (Inode("6")) ,Inode("5")));

itplus(expr,n) =

if n
else

<= 0 then expr
Pnode (expr ,Fnode (Bnode (itplus(expr,n-1))));

(* for the formation of big terms *)

e2
e3
el

itplus(el,50);
itplus(e1,1000) ;
itplus (e1,100000) ;

Some examples are provided, leading to the output

val
val
val
val
val
val
val

: string

1 string
: string

f1 = Bnode (Pnode (Tnode (Fnode #),Fnode (Inode #))) : string factor
tl = Fnode (Bnode (Tnode (Mnode (#,#)))) : string term

el = Pnode (Tnode (Fnode (Bnode #)),Mnode (Fnode #,Inode #))

itplus = fn : ’a expr * int -> ’a expr

e2 = Pnode (Pnode (Tnode #,Mnode #),Fnode (Bnode (Pnode #)))

e3 = Pnode (Pnode (Tnode #,Mnode #),Fnode (Bnode (Pnode #)))

e4 = Pnode (Pnode (Tnode #,Mnode #),Fnode (Bnode (Pnode #)))

: string

Note that # indicates truncation of output. By recursion on the derivation trees
we define the derived elements of £, 7 and F as lists of symbols:

and

and

val
val

val

fun ppe(Pnode(expr,term)) = ppe(expr)@["+"]@ppt(term) |
ppe(Tnode (term)) = ppt(term)

ppt (Mnode (term,factor)) = ppt(term)@["*"]Q@ppf (factor) |
ppt (Fnode (factor)) = ppf (factor)

ppf (Bnode (expr)) = ["("]@ppe(expr)@[")"] |
ppf (Inode(ident)) = [ident];

stril
str2
str3

ppf f1;
ppt t1;
ppe el;

Note that @ denotes concatenation of lists. We get

expr

expr
expr
expr



val ppe = fn : string expr -> string list

val ppt = fn : string term -> string list

val ppf = fn : string factor -> string list

val strl - [u(u’||7||’||+|1’|13u’u)u] . string liSt

val Str2 = [Il(ll’I|8I|’Il*ll’I|(Il’I|7I|’I|+I|’I|3I|’I|)ll,ll)ll] B String 1ist

val Str3 = [Il (Il s I|8I| s Myt s n (Il s I|7I| s I|+I| s I|3I| s Il) n ,ll) n s I|+I| ,l|6l| s Myt . ‘] B String 1ist
Note that ... denotes truncation of the list (although in this example ...

stands for nothing but "5" which can be checked by entering the line
(str3= [ll (ll s l|8l| s ll*ll s n (ll s l|7l| s ||+l| s ||3l| s ll) " s ll) " s l|+|| s ||6l| s ll*ll s ||5ll] ) ;
the response to which should be val it = true : bool).

The second grammar is dealt with similarly:

datatype
’id ee = THnode of ’id tt * ’id hh
and
’id hh = PPnode of ’id tt * ’id hh |
EmptyH
and
’id tt = FKnode of ’id ff * ’id kk
and
’id kk = MMnode of ’id ff * ’id kk |
EmptyK
and

’id ff = BBnode of ’id ee
IInode of ’id;

(* examples *)
val hhl = PPnode(FKnode(IInode("6") ,MMnode(IInode("5") ,EmptyK)) ,EmptyH);

val kk1 = MMnode (BBnode (THnode (FKnode (IInode ("7") ,EmptyK),
PPnode (FKnode (IInode ("3") ,EmptyK) ,EmptyH))) ,EmptyK) ;

val eel = THnode (FKnode (BBnode (THnode (FKnode (IInode("8") ,kk1),
EmptyH)) ,EmptyK) ,hh1);

(* string representation *)
fun ppee(THnode(tt,hh)) = pptt(tt)@pphh(hh)

and
pphh(PPnode(tt,hh)) = ["+"]@pptt (tt)@pphh(hh) |
pphh (EmptyH) = nil

and
pptt (FKnode (ff,kk)) = ppff (ff)Qppkk (kk)

and
ppkk (MMnode (ff,kk)) = ["*"]@ppff (ff)@ppkk(kk) |
ppkk (EmptyK) = nil

and

ppff (BBnode(ee)) = ["("]@ppee(ee)@[")"] |
ppff(IInode(ident)) = [ident];

This yields

datatype ’a ee = THnode of ’a tt * ’a hh



datatype

datatype

datatype

datatype

val
val
val

val
val
val
val
val

hhi
kki
eel

>

>

)

)

a hh =
a tt =
a kk =
a ff =

= PPnode

MMnode
THnode

string ee

pPpee
pphh
pptt
ppkk
ppff

fn :
fn :
fn :
fn :
fn :

EmptyH | PPnode
FKnode of ’a ff
EmptyK | MMnode
BBnode of ’a ee
(FKnode (IInode
(BBnode (THnode
(FKnode (BBnode

string ee -> string list
string hh -> string list
string tt -> string list
string kk -> string list
string ff -> string list

val str4 = ppee(eel);

Val Str4 = [H(H’H8H’H*H’H(H’H7H’H+H’H3H’H)",")"’H+H,"6"’H*H".

val okl = (str3 = str4);
leads to
val okl = true : bool

of ’a tt * ’a hh
* ’a kk

of ’a ff * ’a kk
| ITnode of ’a
#,MMnode #),EmptyH)
(#,#)) ,EmptyK)

string hh

#,EmptyK) ,PPnode (FKnode #,EmptyH))

.1 : string list

and shows that eel is the derivation in the second grammar of the same ex-

pression as that derived by el in the first one.

Now we come to the conversion from the first grammar to the second gram-
mar reflecting the first part of the proof of the lemma. The auxiliary statement
for (1), namely if h € H' and t € 7' then h+t € H’, is turned into a function
plus which takes an argument in ’a hh and one in ’a tt to produce that in
’a hh reflecting their addition. Similarly, we define mult to reflect the auxiliary
lemma for (3). Moreover, we exploit that there are only one rule for £’ and 7'

each which allows to decompose the derivations into two pieces.

fun

fun

fun

fun

fun

plus (PPnode(tt’,hh),tt) = PPnode(tt’,plus(hh,tt))
plus (EmptyH,tt) = PPnode(tt,EmptyH);

mult (MMnode (ff’,kk) ,ff) = MMnode (ff’,mult (kk,ff))
mult (EmptyK,ff) = MMnode (ff,EmptyK) ;

eetott (THnode(tt,hh))
eetohh (THnode (tt,hh))

tttoff (FKnode (ff,kk))

fun tttokk(FKnode (ff,kk))

tt;

hh;

ff;

kk;

val
val
val
val
val
val

plus
mult

eetott
eetohh
tttoff
tttokk

fn :
fn :

= fn :

’a hh * ’a tt -> ’a hh
’a kk * ’a ff -> ’a kk
= fn :
= fn :
= fn :

’a ee -> ’a tt
’a ee -> ’a hh
’a tt -> ’a ff
’a tt -> ’a kk

10



The following definitions of the transforming functions are straightforwardly
read off the proofs of (1) to (6). Clearly, they have to be defined simultaneously,
and every application of the induction hypothesis now becomes some recursive
call to one of the three functions about to be defined.

fun cve(Pnode(expr,term)) =
let val ee = cve(expr) in
THnode (eetott (ee) ,plus (eetohh(ee) ,cvt (term)))
end |
cve(Tnode (term)) = THnode (cvt(term) ,EmptyH)

and
cvt (Mnode (term,factor)) =
let val tt = cvt(term) in
FKnode (tttoff (tt) ,mult (tttokk(tt) ,cvf(factor)))
end |
cvt (Fnode (factor)) = FKnode(cvf(factor) ,EmptyK)

and
cvf (Bnode (expr)) = BBnode(cve(expr)) |
cvf(Inode(ident)) = IInode(ident);

val ok2=(cve(el)=eel);

Notice that the let construction provides for abbreviations used locally.

val cve = fn : ’a expr -> ’a ee
val cvt = fn : ’a term -> ’a tt
val cvf = fn : ’a factor -> ’a ff
val ok2 = true : bool

We turn to the other direction corresponding to the proof of £’ C £. The two
auxiliary sets H and K are represented by two additional inductive datatypes:

datatype ’id auxh = PPPnode of ’id term * ’id auxh |
EmptyAuxH;

datatype ’id auxk = MMMnode of ’id factor * ’id auxk |
EmptyAuxK;

datatype ’a auxh = EmptyAuxH | PPPnode of ’a term * ’a auxh
datatype ’a auxk = EmptyAuxK | MMMnode of ’a factor * ’a auxk

We again need auxiliary functions reflecting the lemmas
elfecfande’ € thene+e’ €f.

e Ifte7 and h e # thenthef.

elftcTandt' €7 thentxt' € 7.

elffc Fandk € K then fk € T.

11



embedded into the proof. The operations on the derivations are given in the
order of those lemmas:

fun pluse(expr,Pnode(expr’,term)) = Pnode(pluse(expr,expr’),term) |
pluse(expr,Tnode(term)) = Pnode(expr,term);

fun concth(term,EmptyAuxH) = Tnode(term) |
concth(term,PPPnode (term’ ,auxh)) =

pluse(Tnode (term) ,concth(term’,auxh));

fun multt(term,Mnode(term’,factor)) = Mnode(multt(term,term’),factor) |
multt (term,Fnode(factor)) = Mnode(term,factor);

fun concfk(factor,EmptyAuxK) = Fnode(factor) |
concfk(factor,MMMnode (factor’,auxk)) =
multt (Fnode (factor),concfk(factor’,auxk));

val pluse = fn : ’a expr * ’a expr -> ’a expr
val concth = fn : ’a term * ’a auxh -> ’a expr
val multt = fn : ’a term * ’a term -> ’a term
val concfk = fn : ’a factor * ’a auxk -> ’a term

As before, no intuition is needed to produce the transforming functions from
the proofs of (a) to (h). However, note that since we only showed them for the
rules where the primed entities X'’ have been replaced by the X', the applications
of the induction hypotheses are hidden, but nevertheless the recursive calls have
to be made as for the other direction.

fun cvee(THnode(tt,hh)) = concth(cvtt(tt),cvhh(hh))
and
cvhh (PPnode (tt,hh)) = PPPnode(cvtt(tt),cvhh(hh)) |
cvhh (EmptyH) = EmptyAuxH
and
cvtt (FKnode (ff,kk)) = concfk(cvff (ff),cvkk(kk))
and
cvkk (MMnode (ff,kk)) = MMMnode (cvff (ff),cvkk(kk)) |
cvkk (EmptyK) = EmptyAuxkK
and
cvff (BBnode(ee)) = Bnode(cvee(ee)) |
cvff (IInode(ident)) = Inode(ident);
val ok3 = (cvee(eel) = el);
val ok4 = (cvee(cve(e2)) = e2);
val okb5 = (cvee(cve(e3)) = e3);
val ok6 = (cvee(cve(ed)) = ed); (* takes some time *)

12



val cvee = fn : ’a ee -> ’a expr
val cvhh = fn : ’a hh -> ’a auxh
val cvtt = fn : ’a tt -> ’a term
val cvkk = fn : ’a kk -> ’a auxk
val cvff = fn : ’a ff -> ’a factor
val ok3 = true : bool

val ok4 = true : bool

val okb = true : bool

val ok6 = true : bool

val it = () : unit

Note that the last line of output stems from the execution of the whole program
loaded into SML by the command use("expr.sml") where expr.sml is the
name of the source file.

3 Lambda Calculus

We introduce A-calculus in its simplest form: There is only A-abstraction and
application, and no typing whatsoever. Nevertheless, in the motivating exam-
ples, a richer signature will freely be used.

3.1 DMotivation

Imagine how in mathematical texts you will express that the function f is the
squaring function. The easiest way to do that is by saying that f(x) = x? for
all x. Others prefer to write f := (-)2, using the anonymous dot instead of the
variable name x. But how would we denote the two-place function g which forms
the sum of the squares of the arguments? We could write g(x,y) := x> + y?
with the variables x and y. Is g := (-)? + (x)? acceptable? It does not indicate
which is the first and which is the second argument. Hence we prefer to have
variable names.

If we want to speak about the sum of two squares, why should we first
introduce some name g for that, instead of directly writing a mathematical
description? In A-calculus, we would write AxAy.x? + y2.

How would we express the first derivative 0.9 of g := AxAy.x?+y? w.r.t. the
second argument (often written g—g)? It is again a function of two arguments:

h) —
9,0 — Ny, limah, 90V M — oY)
—0 h

In order to use A-notation as much as possible, we even have written

lim}\h_g(x,y +h) —gl(x,y)
—0 h

instead of the more usual

I g(x,y +h) —g(x,y)
1m .
h—0 h

13



Since the construction does not depend on the concrete definition of g, we
may again do an abstraction and define 0, as an operation which takes a two-
place function g and returns 9,9, i.e., we define

(x,y +h) —glx,y)

. : 9
02 := AgAXAyY. li)ng.?\h. ™ .

Note that the limit need not exist for every g and that therefore, strictly speak-
ing, 0, is not well-defined. So, do not take this example too serious. A much
more important issue: We do not need to have the name 0, at hand in order to
be able to express our concept of forming the derivative. We may simply say
that it is given by

(x,y+h)—g(xy)

. g
1 . .
AgAXAyY 58 Ah "

Let us now calculate Ax.d;(AxAy.x? + y?)x 2, i.e., the function taking any
argument x to the partial derivative of our previous g w.r.t. y, evaluated at
the point (x,2). By expanding the abbreviation, we get

(x,y +h) —glx,y)
h

AX. (?\g?\x)\y. lim Ah. 9 ) (AxAy X2 +y?)x 2.
—
Clearly, we now want to replace the formal parameters g,x,y of 0, by the
expressions AxAy.x? 4+ y?, x, 2, respectively. This yields
(AxAy.x2 +uy2)(x,2 4+ h) — (AxAy.x2 +y?)(x,2)

i . .
AX i)r{)l Ah ™

Again we replace the formal parameters x,y of g by the actual arguments. (For
this example, we do not distinguish between two subsequent arguments and a
pair of arguments.) We get

(x? + (2+h)?) — (x? +22)

AX. 11)113. Ah. " .

It is now a matter of algebra to see that the numerator of the fraction has
the same value as 4h + h?. And lim_,y Ah.4 + h will certainly be 4 since it
is sufficient for that to evaluate Ah.4 + h at the argument O, hence replacing
the formal parameter h by O in 4 + h, yielding 4 + 0 which, by algebra, has
the same value as 4. Hence, we have transformed Ax.0,(AxAy.x> +y?)x 2 into
Ax.4 which does not allow any further simplification. So we may say that the
constant function returning 4 on any input, is the result of our calculation.

In pure A-calculus, we only model the bare bones of this example: There
will be neither a reference to algebraic manipulations nor even to the concept
of a limit. So, there will be no squares, no sums, no fractions, no subtractions.
There are even no pairs (no tuples). But we may freely A-abstract “formal”
variables and may always apply one expression to another with the intuition
that the first expression represents a function and the second one an argument
to it. And the only mechanism for “calculation” will be the replacement of
formal parameters by actual arguments.

14



3.2 Pure Untyped Lambda Calculus

Let an infinite set V of identifiers be given. The identifiers serve as names for
variables. We usually denote elements of V by x,y,z. The identifiers them-
selves do not matter and will never appear in the presentation. The possibility
of having different sets V is not exploited. The most basic A-calculus only mod-
els functionals (since those functions may take as well functions as arguments,
it is preferred to refer to them as functionals). This is done by giving a sim-
ple grammar for them—more precisely, by the following inductive definition of
terms:

Definition 1 (Terms) The set T of terms is inductwvely given by:
e IfxeV thenx€eT.
e IfxeV andre T then Axre T.

e IfreT and s € T then (rs) € T.

The intention is that Axr models the function x — r(x) in general mathematical
language, where 7(x) is just r with the dependency on x indicated (hence only a
metasyntactically blown up notation for r). In mathematics one would perhaps
prefer to write r(s) instead of the A-calculus notation (rs) for an application of
T tos.

By definition, terms are strings consisting of identifiers in ), parentheses
and the greek letter A. Since we do not aim at studying parsing issues, we will
view terms as trees, i.e., we identify a term with its inductive generation by
the above definition. And as long as it is clear which tree is meant, we leave
out parentheses. We also assume that application associates to the left and use
the dot notation: A dot hides a pair of parentheses, which opens at the dot and
closes as far to the right as is syntactically possible.

Examples 1 xx s (xx). xxx 1s ((xx)x). w = Ax.xx s Ax(xx). Q= ww 18
(Ax(xx)Ax(xx)).

Note that all of the examples are quite counterintuitive since x is applied to
x itself, hence x is on one hand viewed as a function and on the other as an
argument to that function. By typing restrictions to be introduced later, those
bizarre terms will be ruled out. Nevertheless, the theorems on pure A-calculus
always also hold for them.

To give at least some intuition for QQ, think of functions as predicates, i.e.,
functions with boolean range. Then fx means that f holds true of the argument
x. Moreover, Axr is the predicate which holds true of x iff r(x) is true. In this
way, A-abstraction becomes set comprehension. In a set-theoretic notation, w
would then correspond to M := {x | x € x} and Q to the assertion that M € M.

IBertrand Russell used the set M :={x | x ¢ x} and the assertion M € M for his famous
set-theoretic paradox. As a remedy he proposed typed systems. The cure for unpleasant
behaviour of A-terms will also be types, i.e., the restriction to terms which follow some
typing discipline.
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Definition 2 (Free variables) Define the set F'V(r) of variables occurring
free in v by recursion on r:

o FV(x):={x}].
e FV(Axr) = FV(r) \ {x}.

e FV(rs):= FV(r)U FV(s).

Obviously, FV(r) is always a finite subset of V. As long as a term has free
variables (a term without free variables is closed), its intended meaning depends
on the assignment of values for the free variables. Hence, it is important to
know the names of the variables. On the contrary, the variables occurring
in v which are not free (the formal parameters or bound variables) are only
a means of pointing to the places where to bind the actual argument to the
formal parameter. Hence, there is no difference at all between Axx and Ayy.
More generally, we will never make a distinction between terms differing only
in the names of their bound variables as long as the internal references are
the same.? So for us, (Ax.xy)x = (Az.zy)x where = denotes syntactic equality.
Surely, (Az.zy)x Z (Ay.yy)x.

A word of caution: In the passage from Axr to r, x may become a free
variable, and consequently its name matters. Hence in arguments by induction
on terms, the case of an abstraction typically reads as follows: “Case Axr. By
renaming of the bound variable x, we may assume that x does not appear in
the set M [given beforehand]. By induction hypothesis for v, ...”. This means
that although an arbitrary Axr has to be studied, we feel free to rename x in it.
We even assume this has already been done and led to the choice x. Then we
fix the variable name and break up Axr to yield r with possible free occurrences
of x. We may now apply the induction hypothesis to r or rename other bound
variables in 1, etc.3

Definition 3 (Substitution) Define the result v[x := s] of replacing every
free occurrence of the vartable x in v by the term s recursively as follows:

o ylx:=sl:i=y fory #x.

e (Ayr)[x:=s] := Ay.r[x := s] where we may assume by renaming of the
bound variable y thaty ¢ {x}U FV(s).

o (Tt)[x:=s]:=71[x:=s]t[x :=s].

2In the literature, this will often be called a variable convention or that terms are consid-
ered up to renaming of bound variables or modulo «-equivalence. A mathematically sound
justification of this identification process is not as trivial as one might expect it to be. More-
over, for any operation on terms such as substitution defined below, the independence of the
chosen representative of the term has to be checked.

3In a rigorous treatment, induction on the term structure would not even be available.
Instead, one would have to argue by induction on the height of a term since the height is the
same for x-equivalent terms.

16



Note in the case of an abstraction that y = x would forbid any replacement since
then x would not be free in Axr. If we allowed y € FV(s), this free variable
of s would be captured by the outer A-abstraction although there has been no
functional dependency beforehand. This would be counterintuitive and also
make substitution incompatible with renaming of bound variables.

Lemma 2 v[x:=s][y:=t] =1y :=t][x :=sly :=t]] for x € {y}U FV(t).
Proof Induction on r. O

With the notion of substitution at hand, we are now able to define which
terms are considered to be computationally equal if our computations are re-
stricted to the replacement of formal parameters by arguments, i.e., when re-
placing (Axr)s by r[x := s] in any part of the expressions.

Definition 4 (p-equality) Let =g be the congruence relation generated
from (Axr)s =g v[x :=s], i. e., =p s defined inductively by:

(B) (Axr)s =g rlx :=s] (outer p-equality).

(£) v =p 7' = Axr =g Axv' (B-equality under an abstraction).
(a) r=p " Ns=ps' = rs=pr's' (application).

(r) v =p v (reflexivity).

(t) v=p sA\s=pt=>r1=pt (transitivity).

(s) T=p s =s=pT1 (symmetry).

(£)* and (a) are the rules of compatibility with the term formation rules,
the rules (r), (t) and (s) express that =g is an equivalence relation.

Clearly, it would suffice to restrict the reflexivity rule (r) to x =g x since (&)
and (a) are present in the system. Note that the names  and ¢ are standard
notation.

Example 2 QO = (Axxx)w =g (xx)[x := w] = ww = Q by rule (B). This
does not sound interesting since reflexivity would also prove QO =p Q.

Example 3 (Church numerals) Definen :=AfAx.f(...(fx)...). The term
——

n times
n s called the n-th Church numeral. It will be convenient to introduce the

abbreviation s :=1(...(rs)...) such that n = AfAx.f"x. The composition
——

n times

of terms s defined as v o s :=Ax.r(sx) (for some x & FV(r)U FV(s)). Then
for every natural numbers m and n and terms v we have that (mr)o(nr) =g
m + nr. Thus addition s represented within pure A-calculus. The proof is
only sketched: By choosing the names of the bound variables appropriately,

4The names {8 and & are standard notation.
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the left-hand side becomes ?\z.((?\f?\x.fmx)r) (([)\g)\y.g“y)r) z) . By applying
(B) twice, compatibility several times, and associativity once, we get the
B-equal term ?\z.()\x.rmx)((?\y.r“y)z) =g Az.(Ax.T™x)(1"z) =g Az.r™(1"z) =
Aza™inz =5 (AMfAz.f™ " z)r. Why is this a proof sketch? Because we tacitly

use several properties which need to be proved by induction on natural
numbers.

Exercise 1 Define K := AxAyx and S := AxAyAz.xz(yz) with x,y,z different.
(Recall that xz(yz) = ((xz)(yz)).) Produce some term t such that SKK =g t
and t has no subterm of the form (Axr)s (hence t will later be called -
normal).

Exercise 2 Show for every m and n that mon =g m-n and for m # 0
and every n: mn =g n'™. Hence, also multiplication and exponentiation
are represented within pure \-calculus.®

Exercise 3 (Predecessor) (difficult) Define some closed term P represent-
wng the predecessor function: For every n > 1, Pn =g n—1 and PO =g 0.
Show that P meets its specification.

One possible solution® is as follows: Numeral n applies its first argu-
ment n times to its second argument. Hence, iteration s already present
wn the system. Full primitive recursion may be derived from iteration by
means of pairing. Pairs may be defined very easily (a term (r,s) and terms
T and 7o for any terms v and s such that i (r,s) =g T and T2 (r,s) =g s).

Problem 1 How can we argue that AxAyx #pg AxAyy? Clearly, we want
them to be different since they represent procedures taking two arguments
and returning the first and the second argument, respectively.” But how
do we know that we cannot use (p) together with (s) in order to produce
terms (Axr)s out of r[x := s] in course of the hypothetical deriwation of
AXAYx =g AxAyy ?

By leaving out the rules of equivalence relations, and by adjusting the ap-
plication rule properly, we arrive at the definition of p-reduction.

Definition 5 (p-reduction) Inductively define the relation —p as follows:
(B) (Axr)s —p r[x:=s] (outer B-reduction).
(£) v —=p 1/ = Axr =g Axr' (B-reduction under an abstraction).
(r) v =g v = 1rs 2 1v's (right application).

(1) v =g r' = sr =g s’ (left application).

51n fact, every partial recursive function can be modeled within A-calculus by taking the
Church numerals as numbers.

6There are much easier solutions and much more bizarre ones.

7If they were B-equal, all the terms would be p-equal.
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If r =p s we say that r reduces by one 3-reduction step to s.

Example 4 Q = (Ax.xx)w —g (xx)[x 1= w] = ww = Q by rule (). This is
interesting since reflexivity has been excluded by passing from =g to —p.
In fact, this example 1s a major nuisance which will later be removed by
typing restrictions.

Lemma 3 r —p ' = FV(r') C FV(r).
Proof Induction on —g. O

For every binary relation —, the transitive reflezive closure of — (i.,e.,
the least transitive and reflexive relation containing —) is denoted by —*.

Equivalently, r —* s iff there are n € Ny and vy, 71,...,7T such that r = o,
vie{l,...,ntri_1 =7, and r, =Ss.
Corollary 4 r —} "= FV(r') C FV(r). O

It is easy to see that — has all the defining properties of =g except symme-
try. But the absence of symmetry makes life much easier as will be the theme
of the next section. Problem 1 will be solved.

4 Confluence

Although A-calculus even enjoys confluence, a proof of local confluence is shown
first.

Definition 6 (Local confluence) A binary relation — CM x M 1s locally
confluent iff

YVre MV e MV e Mr s ' Ar o 1" = Jte Mar s tAT =% t.

T
1/

"
v ocal confluence o

~ -
~ -
~ -~

Sk
Lemma 5 —g 15 locally confluent.

Proof Let r —p v’ and r —p r". By induction on r show that there is a term t
such that r’ —7p tand r! —p t. We distinguish sixteen cases according to the
four cases in the generation of r —g v’/ and r —¢ 1"/, respectively. This will be
indicated by a pair of names of rules taken from the definition of 3-reduction.
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/B. The situation is trivial: (AxT)s

Tx 1= 8] T 1= 3]
T[X 1= 3]
&/&. We have AXT due to r .
. / \ . . / \ .
Axr! Axr” r! T’

By induction hypothesis, we get a term t with ./

Bt B
Therefore, also 5,/ Axr!!
B axt P
r/r and 1/1. Similarly.
r/l. We have s with r =g v’ and s —p s'.
B / \ B
T's s’
Obviously, /g rs! -
B prgr B
1/r. Symmetric to the preceding case.
r/f. We have (AxT)s with Axr —g t.
B / \B
ts r[x :=s]

Hence, t = Axr' with r —g r’. Since this implies r[x := s] —pg 1/[x := s]
(see the substitutivity lemma below),
we arrive at 4 rhx:=s] -

(Axr')s
\B B
r'x =

20
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B/r. Symmetric to the preceding case.

1/B. We have (AxT)s with s =g s’

N

(Axr)s’ r[x := 8]
By the compatibility lemma below, this implies r[x = s] =} rlx = s']
(with as many steps as free occurrences of x in 1).

Hence, (\xr)s’ rix:=s] -

S

Tl :=s']
Notice that it is essential to put —} instead of —p in this diagram.

r/f. Symmetric to the preceding case.

& with other rules. Those six cases are impossible since the other rules need
application terms. O

Two properties of —p have been used in this proof which are now stated
more prominently:

Lemma 6 (Substitutivity) If r —p r' then v[x :=s] =g r'[x :=s].
Proof Induction on —g. O

Lemma 7 (Compatibility) If s —g s’ then r[x = s] —% rlx = s'], and
rlx :=s] =g rlx :=s'] if x occurs exzactly once free in .

Proof Prove by induction on r that r[x := s] —>’[§ rlx := s'] with as many
B-reduction steps as the number of free occurrences of x in 1. O

Definition 7 (Confluence) A binary relation — CM x M is confluent iff

Vre Mvr' e Mvr”" e Mur =% ' Ar = 1" = 3te Mo =F LAY S* L

r! confluence "
N b
N e
N e
N b
Nk ox
S, K
t
Problem 2 Can we get confluence of — out of its local confluence? A

direct proof fails:
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— T —

— — —

J !

— —
This could go on with ever increasing complexity. Moreover, there is a
binary relation — which is locally confluent and not confluent: It is given

by the following graph on four items: O - .

Later we will see a condition for deriving confluence from local confluence.
Theorem 1 —p is confluent.
The proof will occupy the rest of this section.

Definition 8 (Diamond Property) A binary relation - CM x M has the
diamond property iff

YVre MVr' e MYt e Mor s 1" Ar—= 1" =2FteM.r st AT >t

T

T~

2 diamond property or

Notice that confluence is a derived concept: — is confluent iff —* has the
diamond property. Also note that the case 1/ of the proof of local confluence
immediately lets us find a counterexample to the diamond property for —g,
e.g., by starting with (Ax.yxx)((Azr)s).

The idea to prove confluence of some — is as follows: Find a binary relation
— (to be read as parallel reduction) such that - C — C —* and —» has the di-
amond property. Confluence of — follows easily: Assume T ,
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Since — C —», we have r

Multiple uses of the diamond property for — give:

T

r! / \‘ \/ \‘T’I

t
Hence, by - C —*, 1/ —=* ... =* tand v —* ... —=* t. Since —* is transitive
by definition, we finally get v’ —* t and r"” —* t. (Of course, this proof with
dots could be made more precise by some inductive argument.)

How do we define such a notion —p for —3? Reconsider the crucial case 1/$

in the proof of local confluence. If we want to satisfy =g C —p and the diamond
property for —» 5, we have to solve (Ax1)s

SN

B 7B
(Recall that s —p s’ is assumed in 1/3.) Clearly, we want to have r[x := s'] as
the common reduct. Therefore, our - must fulfill
s —=p s’ = rlxi=s] »p rlx =38l
This intuitively means that in r[x := s] g r[x :=s'], the f-reduction step from

s to s’ has to be carried out in parallel for each free occurrence of x in r. We
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will now try to find out which B-reductions on a term can be performed in one
pass through it, and will later define —p such that r —p s iff s is the result
when performing (-reductions on v in one pass through r. First we define the
optimal result r* of such an action on .

Definition 9 (Complete superdevelopment) By recursion on termsr de-
fine the term v* as follows:

*

xX* =x,

(AxT)* == Axr*,

(rs)* — tlx :=s* fr :?\xt,
T*8* otherwise.

In case of a variable, there is nothing to do. Everything we can do with an
abstraction Axr, takes place in its kernel r. Concerning an application rs, we
first look what can be done with r and s. If the result r* happens to be an
abstraction, we even carry out the outer 3-reduction step (Axt)s* —g tlx 1= s*],
otherwise we simply apply v* to s*. (Further possibilities for 3-reduction steps
cannot be grasped uniformly by one pass through the term.)

Examples 5 Consider v := (AxAy.xyy)st. In order to calculate r* we need
to know ((AxAy.xyy)s)* which hin turn calls for (AxAy.xyy)*. (AxAy.xyy)* =
AxAy.xyy s plain. Therefore, ((AxAy.xyy)s)* = (Ay.xyy)[x := s*] = Ay.s*yy.
Since we may assume thaty ¢ FV(s), we finally get v* = (s*yy)ly := t*] =
s*t*t*. We see that the complete superdevelopment 1s capable of replacing
a list of formal parameters (here x and y) by the actual arguments (here
the results s* and t*).

The complete superdevelopment may also eliminate intervening iden-
tities, e. g., ((Axx)(Ayr)s)* = r*[y := s*]. Notice that (Axx)(Ayr)s has hid-
den parentheses, as shown in ((Axx)(Ayr))s, preventing the B-reduction of
(Ayr)s. Nevertheless, (Axx)(Ayr)s and (Ayr)s have the same complete su-
perdevelopment.

Finally, complete superdevelopments cannot remove every possibility for
B-reduction, e. g., forx & FV(s), we get ((Ax.xs)(Ayr))* = (Ayr*)s* (use that
FV(s*) C FV(s) shown below) which can further be -reduced to v*[y := s*]
(which of course may again be B-reducible depending on v and s).

Lemma 8 r —* r*,
Proof Induction on r. O

As a corollary, we get FV(r*) C FV(r).

Now, we want to see how —p should be defined to ensure that r —pg r*:
Since x* = x, we have to require x g x. Concerning (Axr)* = Axr*, we will
already know that r —p v and have to show that Axr —g Axr*. This suggests
to require, more generally, r —pg 1/ = Axr —»g Axr’. Similarly—we now treat
the application—in case ™ = Axt, we will already know that r —p Axt and
s —p s* and have to show that rs —p t[x := s*]. This suggest to require
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T > AXt As »g s’ = rs —»p t[x 1= s']. Finally, if we already know r —g *
and s —p s*, we want to conclude rs —p 1*s*, if v* fails to be an abstraction.
This suggests to require v »g 1" A's »g s’ = rs »pg 1's’
reasonable if we also allow 1’ to be an abstraction. These four requirements will

, which seems more

be the definition of —p.

Definition 10 (Parallel B-reduction) Define the binary relation —pg in-
ductwvely as follows:

(B) =g AXtAs g s’ = rs »p tlx:=s'].
(£) v —p 1" = Axr - Axr’.

(a) T »g 1" As —»p s’ = rs»pgr's’

(v) x »p x.

Notice that for given v, there may be several terms r’ such that r —p 1/, e. g.,
in case r —»p Axt and s —g s, we have that rs —p t[x := s’] by (B) and
rs —g (Axt)s’ by (a). (Recall that there are possibilities that those terms
coincide: t =xx and s’ = w.)

Lemma 9 1 —»p ™.

Proof By induction on r we verify that —p indeed has the property which led
us to the definition. O

Lemma 10 —p is reflerive.
Proof By induction on r show r —p r. This does not need rule (f). O
Corollary 11 —g C —3.

Proof By induction on —p. Since —p is the smallest set with its defining
properties, we simply have to show those properties for -, i.e., we have to
show:

(B) (Axr)s =g rlx:=5s].

(&) 1 —p 1" = Axr —p Axr'.

(r) r—>pr =18 »g1's.

(1) r»p 1" = st »pg st

This uses reflexivity of —p at least four times. O

Lemma 12 —p C —)E

Proof By induction on —p. Since —p is the smallest set with its defining
properties, we simply have to show those properties for —}, i.e., we have to
show:
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B) v —)‘[‘3 Axt A's —>’[§ s’ = s —>’[§ tlx :=s'].
& r —>’l§ Tl = Axr —)E Axr’.

a) 1‘—)}‘5 ' As —)E s' = T1s —)E r's’.

(
(
(
(

V) X —p X
They clearly hold. O
The only remaining task is to prove the diamond property for . A crucial
case (with r »p v’ and s - s') will be (AxT)s
B/ \B
(Axr’)s’ T[x 1= 5]

Clearly, we want to have r'[x := s’] as the common reduct. This calls for the
following

Lemma 13 v —g ' As »pg s’ = r[x:=s] =g r'[x:=5s'].

Proof Induction on r —g r'. We only consider the most technical case (3):
Assume that ru —g t[y := u'] has been derived from r g Ayt and u —»pg u'.
By the inductive hypothesis, r[x := s] =g (Ayt)[x := s'] = Ay.t[x = s'] (since
we may assume that y ¢ {x]UFV(s’)), and also u[x := s] g u'[x := s']. Hence,

rhx:=slulx :=s] »p thix =3Iy :=u'lx =5l = tly :=u'][x =],
by Lemma 2. Therefore, (ru)lx :=s] —p tly := u'l[x := s'], as required. O

Note that this lemma comprises substitutivity and compatibility (cf. Lemma 6
and Lemma 7 for —g).

Lemma 14 (Maximality) If r —g v’ then v’ —p 1*.

T

/

' B mazimality of (.)*

~

Thus r* is the optimum what can be done by -reduction in one pass, and g
gives all the possibilities one has in one pass (including doing nothing since —g
is reflexive), and if in the passage from r to r’, the optimal way has not been
chosen (hence v’ # r*), r* can be reached in another pass through r'.

Proof Induction on v g r’. We only look at the interesting cases.
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(B). Case rs g t[x :=s'] thanks to r - Axt and s - s’. By induction
hypothesis, Axt - 1* and s’ - s*. By inspection of the rules of —»g, it
is clear that Axt —»g 1* can only be derived by rule (£). Therefore, v has
to be a A-abstraction r* = Axt’ and t —p t'. Hence, (rs)* = t'[x := s*].
By the preceding lemma, t[x :=s'] »g t'[x :=s*].

(a). By induction hypothesis, v’ - ™ and s’ -5 s*. We have to show
that v's’ —p (rs)*. If v = Axt then, by rule (B), r's’ —»p tlx 1= s*] =
(rs)*. Otherwise, by rule (a), v's’ =g r*s* = (rs)*. O

Notice that Lemma 9 is merely the special case with v’ = r, hence its proof is
superfluous since we did not use it to prove maximality.

Corollary 15 —p has the diamond property.

Proof Given r, we already know the term t which for any r’ and r"' such that
r—pg 1’ and r g v” fulfills v’ -5 t and v »g t: It is ¥, |

To conclude, we have found a binary relation —g with =g C —»5 C =
and the diamond property. Hence, —p is confluent.

Exercise 4 Show that —p has the Church-Rosser property: For every
terms v and s, v =g s implies that there is some term t such that r —pt
and s -5t

Exercise 5 Solve Problem 1.

Exercise 6 (a sequel to Ezercise 2) Show that for m # 0 and any n, we
have mn —>’[§ nm.

Exercise 7 A simple lemma says Vs3r.sr =g v. The idea: For given s, set
T = (Ax.s(xx))(Ax.s(xx)) with x ¢ FV(s). Verify that st =g s. (Hence, 7 s
a fized point of s viewed as a function.)

In the wntended solution to Ezercise 3, one needs some successor on
Church numerals, hence some closed terms S such thatVn € NSn =g n41.
Show that S := AzAfAx.f(zfx) is a possible chozce.

By the little lemma, there is a term 1 such that St =g r. The term v in
the proof 1s no Church numeral, i. e., not of the form n with some n € N.
Show that (this is no accident:) no Church numeral is fized point of S.

5 Weak and Strong Normalization

Definition 11 Given a binary relation - CM x M, an element r € M 1s
in normal form ff there 1s no s € M such that r — s.

Lemma 16 (B-normal forms) The set nf of terms in normal form w. r. t.
—p equals the set NF, defined by induction as follows:

o If ¥ C NF then x¥ € NF.
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o Ifr € NF then Axr € NF.

The notation with vectors deserves a short explanation: ¥ denotes a finite list of
terms. This is not part of the syntax of A-calculus but a metasyntactic device
to communicate terms. In fact, we have infinitely many rules of the form:
T1,...,Tn € NF = xr7...1 € NF for every n € Ny.2

Proof nf C NF is proved by induction on terms: x € NF. Let rs be in nf,
hence also r,s € nf since a reduction in v or s gives rise to a reduction in rs.
By induction hypothesis r,s € NF. If r were of the form Axt, then certainly
rs ¢ nf. Hence, r = x§ for § C NF. We conclude rs = x8s € NF. Let Axr be in
nf. Hence, also r € nf. By induction hypothesis, r € NF which yields Axr € NF.

NF C nf is proved by induction on the definition of NF. Let x¥ be in NF
thanks to ¥ C NF. By induction hypothesis, ¥ C nf, hence also x¥ € nf since
any possible reduction of x¥ has to happen in one of the ¥. Let Axr be in NF
due to v € NF. By induction hypothesis, r € nf. Since reductions on Axr can
only happen by help of the rule &, also Axr € nf. O

Examples 6 w =Ax.xx € NF. Q = ww ¢ NF.

Definition 12 Given a binary relation - CM x M, an element r € M 1s
weakly normalizing iff there is an s € M in normal form such that r —* s.

Let wn be the set of terms which are weakly normalizing w.r.t. —g.

Examples 7 nf C wn. Q & wn since the only term t such that Q —§ t s
Q atself. (AxAy.y)Q € wn since its reduct Ayy is in nf.

Exercise 8 Show that v € wn and r =} v’ imply v’ € wn.

Definition 13 Given a binary relation - CM x M, an element r € M 1s
strongly normalizing iff there s no infinite reduction sequence starting from
T, . e., iff there are no ry,71,... such that ro =1 and vy — 1141 for every i.

This definition has a major drawback: It is formulated as a negative state-
ment, namely the non-existence of an infinite reduction sequence. This can be
avoided and even the reference to infinity be removed in the following inductive
characterization.

Definition 14 Gwven a binary relation — CM x M, 1its accessible part acc
18 inductwely defined by:

Vre M.(Vs € M.r — s = s € acc) = T € acc.

In other words: An object r € M qualifies for acc if every one-step reduct s
(any object s € M such that r — s) already qualified for acc.

Clearly, if r is in normal form, then there is nothing to check, and r enters
acc immediately.

8The infinity could be avoided by introducing the concept of neutral term simultaneously
with NF: Variables are neutral, and if r is neutral and s € NF, then rs neutral. Moreover, all
neutral terms are in NF.
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Lemma 17 The set acc s the set of strongly normalizing elements of M.

Proof How can we prove that acc only contains strongly normalizing objects?
By induction on the inductive definition of acc! Let r be in acc thanks to s € acc
for every s such that r — s. Assume, we had an infinite reduction sequence
starting from r, i.e., some s_q, g, S1,... such that r =s_; and for all i > —1:
sy — Siy1. Setting s := sp, we have r — s, and an infinite reduction sequence
starting from s. This contradicts the induction hypothesis which tells us that s

is already strongly normalizing (since s has entered acc before r entered it).
We now show that an r € M\ acc is not strongly normalizing by constructing
To,T1,...such that ro = r and for all i, r{ = r{;7 and r; € M\ acc. Set 1 := .
Assume that 1y, ..., r; have already been constructed. Since r; € acc, it did not
qualify for acc, hence there has to be some one-step reduct ;1 of r; which also
did not qualify for acc, i.e., some vy, 1 € M such that r; — 1,1 and 11 ¢ acc.
O

Note that the second part of the proof uses some form of the axiom of choice
and is not constructively justified.’

Define sn := acc_,,. Hence, sn is the set of A-terms which do not have an
infinite sequence of 3-reductions.

Example 8 (AxAy.y)Q € sn since we get a constant infinite reduction se-
quence by B-reductions of Q.

Exercise 9 Show that for a strongly normalizing binary relation —, 1. e.,
every object is strongly normalizing w. r. t. —, local confluence implies con-
fluence.

Hint: By induction on r being in the accessible part of — show that
every diagram for confluence originating in r may be closed.

Lemma 18 (Characterization of the strongly normalizing terms) The
set sn equals the set SN, defined by induction as follows:

e If#C SN then xi € SN.
o Ifr € SN then Axr € SN.

e Ifr[x:=s]5€ SN and s € SN then (Axr)ss € SN.

Proof The more important part is proving that SN C sn which may also be
called the soundness of SN w.r.t. strong normalization of —p (every element
of SN is indeed strongly normalizing). Clearly, this has to be done by induction
on the inductive definition of SN. We will profit from a deeper understanding
of induction: Proving by induction on an inductively defined set I, that every
inhabitant of I has some property expressed by a set M, amounts to showing
that this set M has each of the defining properties of I (where—of course—the

9A constructivist would simply say that the accessible part is the notion of strong nor-
malization and would probably never encounter any necessity for the exclusion of infinite
reduction sequences.
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reference to I has to be replaced by M). Why is that so? The very idea of an
inductive definition of I is that the rules describing its definition give all the
possibilities. No element may enter I without the application of one of the rules.
Hence, I becomes the smallest set with those closure properties, and if M is an
arbitrary set fulfilling the closure properties, then I C M, which was our goal
to prove.

Therefore, it suffices to prove

e If ¥ C sn then x¥ € sn.
e If r € sn then Axr € sn.
e If r[x:=s]S€snand s € sn then (Ax1)s§ € sn.

We first give a proof which does not argue by induction on the accessible part
but by the non-existence of infinite reduction sequences. Imagine an infinite
reduction sequence starting from x¥. In every step there has to be a reduction in
one of the ¥. Since there are only finitely many terms in ¥, there hasto be an r; in
¥ which faces infinitely many reduction steps. Contradiction. Assume an infinite
reduction sequence with first term Axr. Since the reductions can only take
place in 1, we get an infinite reduction sequence starting from r. Contradiction.
Imagine an infinite reduction sequence starting from (Axr)ss. Since v —p 1’/
implies v[x := s] =g 1r'[x := s], and consequently r[x := s]§’ =g 1'[x := 5§, there
can neither be an infinite reduction sequence starting from r nor from s nor from
any of the S. Hence, there has to be a reduct of (Axr)s§ in the infinite reduction
sequence which does no longer have the shape (Axr')s’s’ with r —% r',s —% s’,
St =5 s/. Assume this were the last successive term of this shape. The next
term then has to be r/[x := s']5’, still followed by an infinite reduction sequence.
From Lemma 6 and Lemma 7, we get r[x := s]S —>E 1'[x := s']§"'. Therefore, we
also get an infinite reduction sequence starting with r[x := s]S. Contradiction.

Now we redo the proof for the last clause and completely avoid Lemma 17:
Show that (Axr)sS € sn by main induction on s € sn and side induction on
r[x := s]s € sn. Hence, prove t € sn for every t such that (Axr)ss’—p t. The
following reductions are possible.

(Axr)ss —p (Axr')ss. Then v[x = s|§ —p 1'[x := s]s by substitutivity,
hence by side induction hypothesis (Axr’)ss € sn.

(Axr)s§ —p (Axr)s’s. Then r[x = s —} rlx := s'|s by compatibility,
hence also r[x := s']S € sn. The main induction hypothesis yields (Axr)s’s €
sn.

(Axr)s§ —p (Axr)sS’. Then v[x := s|§ —p r[x := s|s’, hence by side induc-
tion hypothesis (Axr)ss’ € sn.

(Axr)s§ —p r[x :=s|§ € sn by assumption.

In order to clarify the intricate structure of the argument we prove this once
again and spell out the nesting of inductions precisely. Main induction on s € sn
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amounts to showing the defining property of sn for the set
M :={s|Vr,Sr[x :=s]§€sn = (Axr)ss € sn}.

So assume that any one-step reduct of s is in M. For s € M we do side induction
on r[x := s]§ € sn, i.e., we show the defining property of sn for the set

N:={t'|t' €sn AVr, st =71[x:=5]5= (Ax1)s§ € sn}.

So assume t’ is a term and each immediate reduct is in N. We have to show
t’ € N. t’ € sn follows from the definition of sn, since N C sn. If t’ has the
form v[x := s]S we have to show (Axr)sS € sn, so we prove t € sn for every
one-step reduct t. Henceforward, each clause of the proof in the above proof
can be recast using the pending assumptions.

For the other direction sn C SN (also called completeness of SN), we do
induction on sn. Hence, we have to show Vr.(Vr'.r —g v’ = v’ € SN) = r € SN.
This is done by induction on the term r. For this to work, note that every
term has exactly one of the following shapes (to be proved by induction on
terms): x¥,Axr, (Axr)sS. And because we do induction on terms, we may use
the induction hypothesis for r; in the case x¥, for r in the case Axr (no surprise!)
and for s in the case (Axr)sS. The rest is routine verification. (Another proof
would first show that strongly normalizing terms are also strongly normalizing
when the binary relation —p is extended by > defined by rv s iff s is a subterm
of r. Then the result follows by induction on acc_,, ) O

Exercise 10 (another proof with induction on natural numbers) Let sn(k)
be the set of terms where all 3-reduction sequences have at most length k.
We start counting such that sn(0) is the set of p-normal terms. Show that
SN C Uygensn(k). This shall be done constructively. Clearly by induction,
but as follows: Define n-place functions f,, withn € N, a one-place function
g and a two-place function h such that

o Ifri €sn(ky) forie{l,...,n} then x¥ € sn(f(k1,...,kn)).

e Ifr € sn(k) then Axr € sn(g(k)).

o Ifr[x:=s]s€sn(k) and s € sn(L) then (Axr)ss € sn(h(k,{)).
Prove these properties.

As a final remark: SN is syntax-directed in the sense that from the shape of
every term 1 it can be read off which single rule of SN could prove that r belongs
to SN. This may be exploited for the following naive normalization algorithm
working for every term r € SN and defined by recursion on 1:

nf(x¥) = xnf(r1)...nf(ry)
nf(Axr) := Axnf(r)
nf((Axr)ss) := nf(r[x:=s]3)

Clearly, we do not make use of s € SN in the last clause. Therefore, the algo-
rithm would also work if this requirement were dropped in the definition of SN.
The following exercise shows that one even gets an inductive characterization
of the weakly normalizing terms wn by this modification.
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Exercise 11 Inductwely define the set WN:
e If#C WN then x¥ € WN.
e If r € WN then Axr € WN.
o Ifr[x :=s]s§€ WN then (Axr)ss € WN.

As mentioned above, the only difference with the definition of SN s the
omusston of “s € SN” wn the last clause.

Define the binary relation ~> on terms inductiely (the vector notation
1s understood elementwise, implicitly assuming that both vectors are of the
same length)

o Frn ¥l = XTF ~s XF!
e T~ 1 AT~ §' = (Axr)§ ~ (Axr')S
e 1[x:=38]§~t= (Ax1)sS ~ t

~ 15 reflezive (8rd rule is not needed).
Show Lemma 1: v~ 1" As~ s’ = rs~1's’,

Hint: Induction on the derivation of v ~ 1’.
Show Lemma 2: —>ngg—>g.

Hint: For every inclusion do induction on the derwation of the relation
to be proved smaller than the other.

Show Lemma 3: v~ 1' As~s' = r[x:=5s] ~ 1'[x :=5].

Hint: Induction on the derivation of v ~ 1'.

Show Lemma 4: v~1" =g 1" =1~ 1.

Hint: Induction on the derivation of v ~ v’ and analysis which possibil-
ties arise for v' —p v". This is the major work of this exercise and needs
Lemma 1 and Lemma 3.

Show the Corollary: r —)E R P

Remark: Thus we have learnt —p=", hence a new induction principle
for —5, namely induction on the derivation of ~~. Up to now we only had
the opportunity to argue by induction on the number of steps in r —% Tl

Define ~— by omitting S from the second clause of the definition of ~
(hence ~~C~»). The inductive definition reads:

o T T/ = xT s xT!
o T~ 1/ = AxT ~" Ax1’

e r[x: =8]8~ t= (Axr)sS~" t

Show Lemma 5: v~~~ 1'=re WNAr" € NF.

Hint: Induction on the derivation of 1~ 1.
Show Lemma 6: v € WN = Ir'r ~s— 1/,
Show Lemma 7: v~ 1" € NF = 1~ 1/,

Hint: Induction on ~. (We even see that the derwation of r ~ '
only uses rules which are also present in ~—, hence there is no need for a
transformation of the derivation.)
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Theorem WN 1s the set wn of weakly normalizing terms.

Proof: ”WN C wn”’ By L. 6 we have v ~— 1’ for some v'. By L. 5,
r" € NF. Since w*Q—fé, we conclude r € wn.

”'wn C WN”’ Let v = v’ € NF. From the Corollary we get v~ v' € NF.
L. 7 shows v ~~ v/, and finally, by L. 5, r € WN.

Final question: Which of the two parts of the statement needs the witty
approach taken in this exercise? (The Corollary is called the Standardiza-
tion Theorem, its proof followed [Loa98].)

6 Simple and Intersection Types

We have seen that there are terms which are not strongly normalizing and even
terms which fail to be weakly normalizing. The idea was to use the unintuitive
term w = Ax.xx and apply it to itself. The first examples in section 3.1 dealing
with derivatives of functions on the reals were modeled without using the in-
formation on the domains and ranges of the functions at hand. E.g., we never
expressed that we considered the squaring function

{IR{ - R
f: 5
X = X

This more specific information may be expressed by Ax.x*> : R — R, meaning
that Ax.x? is considered as a function from the reals to the reals. That our
Ax.x? belongs to the function space R — R is called type information. If we
again ignore the fact that limits do not always exist, we might type lim_,, with
(R — R) — R, reflecting that lim_,, takes a function from R to R and returns a
real. What would be the type of 0,7 Again by ignoring undefinedness problems,
we would give it the type (R - R — R) -4 R — R — R: The first argument is
a two-place real-valued function on R, the second and third arguments are reals
again, and the result is again in R.

Our semantic intuition is a world of functionals, i.e., functions taking func-
tions and even functionals as arguments. In that simply-typed world, there is
no place for w = Ax.xx. Since w is already in normal form, it is very well-
behaved w.r.t. B-reduction. So, in some sense, we have to give up too much
when restricting to the simply-typed world.

If we loosen the typing concept to include intersection types invented in
[CDC78], we also cover w: Simply allow intersections of already formed types.
If some x “lives” in N — N as well as in N, there is no hesitation to assert that
xx “lives” in N. Hence, we would type w with ((N - N) NN) — N. Are there
objects which can been seen as numbers and as number-theoretic functions?
Not in the set-theoretic model we were appealing to, but in recursion-theoretic
models (where recursive functions are coded by numbers). But this is not the
point. We only need the soundness of the implications x : (N - N)NN = x :
N—o>NAx:Nand x:N—= NAx:N = xx: N to conclude a correct type for w.
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6.1 Simply-Typed Lambda Calculus

Assume a set V1 of identifiers.’® These serve as names for atomic types. Their
generic name will be (. Typical examples would be nat and real, representing N
and R by mere syntax.

Definition 15 (Simple types) The set Ty of simple types s inductively
gwen by:

o If L€ V7 then L€ Ts.

e Ifp€eTs and 0 € Tg then (p — o) € Ts.

Hence, the simple types are nothing but strings of symbols built up from the
given symbols in V1 by help of the binary —, syntactically representing the
construction of function spaces. As for the terms, we avoid parentheses as
much as possible, and therefore assume — to be right-associative (application
was meant to be left-associative).

Examples 9 p — o0 s (p — 0). nat — nat — nat is (nat — (nat — nat)).
The second example represents the space of number-theoretic functions of
two arguments and ezxplains why — has been declared right-associative.
More complicated things need parentheses: (nat — nat) — nat represents
the functionals taking number-theoretic functions and returning values in
N. Here, we only suppressed the outer parentheses.

As a further abbreviation, set p1,...,pn @ 0:=p1 = ... = pn — 0 and also
use this with § := p1,...,pn, hence p — o0 is a well-defined type. (For n =0
we set ) = o := 0.) By induction on types, it is easy to verify that every type
uniquely decomposes into § — ( for some « € V1 and arbitrary types {.

Definition 16 (Simple typing) The relation I'F v : p (term v has type p
wn context I' ) 1s inductively defined by the following rules:

x:pkr:o l'tFr:p—oo NEs:
(V) i (—1) b i

Mx:pkx:p 'EFAxr:p—o Frs:o (=)

From these clauses, it 1s clear that only finite lists of variable names with
types (each pair separated by a colon) may occur on the left-hand side
of F. We moreover restrict those contexts to lists wnth pairwise disjoint
variable names. Hence, by writing I x : p, it is tmplicit that x does not
occur in T, written x ¢ I'. We also syntactically identify contexts which are
permutations of each other. This amounts to using the following exchange
rule without including 1t into the typing system: If A is a permutation of
the pairs in I and Tk v:p then AFr:p (Ezchange 1).

10Generally, we assume that V1t and V are disjoint sets, and even that terms and types are
always disjoint—in contrast to the systems of dependent types not covered by this course.

34



Note that our notation always suggests that we have lists on the left-hand side
of . In fact, we consider the contexts to be sets of variable declarations without
inconsistencies arising from multiple declarations for some variable. The empty
context will be denoted by ), hence - 1: p and ) I v : p mean the same assertion.

Some comments on the rules: Rule (V) is nothing but lookup in the context,
rule (—1), the —-introduction rule, follows our intuition: If r gets type o under
the assumption that the possibly free variable x is of type p, then the abstraction
Axr gets the function type p — 0. The —-elimination rule (—+) requires that
the argument s to r of type p — o has to have the domain type p, and states
that the result of the application has the range type o.

Lemma 19 There are no I' and p such that T F w : p.

Proof If there were I' and p, then the rule (—) would have been applied
last. Hence, we would have p = p;1 — p2 and INx : p; F xx : p2. This
can only be derived by help of (—g). Hence, there is a type o such that
x:p1Fx:0—p2and Ix:p; Fx: 0. These can only be found by applying
(V), hence ¢ — p2 = p1 = 0. Contradiction (the equality is the equality of
strings). O

Exercise 12 Let p be any type. Show that for the n-th Curch numeral n, we
haveFn:(p — p) — p — p. Which types are possible for mon = Ax.m(nx)
and m n wn the empty context?

Exercise 13 Show that every term in NF recewing type (L > L) =5 L — 1
(according to our convention, L is an atomic type) in the empty context
1s either a Church numeral or Mf. (What is the difference between 1 and
A 2?)

Exercise 14 Show that for typable terms in normal form we can always
reconstruct the types p which have been used in the abstraction rule, 1. e.,
mtherulex:pkr:0=TFAxr:p — 0. Show by example that this is
not the case for arbitrary typable terms.

Exercise 15 We want to prove weak normalization of stmply-typed terms
with nearly no overhead. Therefore we abandon the typing assignments
and stmply assume that every term we consider is simply-typed. More
precisely, we inductively define the simply-typed terms with their types as
follows:

e If x 1s a vartable and p s a type, then x° s a term of type p.

e If x 1s a variable, p ts a type and r 15 a term of type o then Ax°r s a
term of type p — o.

e If r 1s a term of type p — o and s s a term of type p then rs s a
term of type o.
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T 15 a term of type p will be expressed by v: p orrP, e. g., AMfPTPAXP f(f(fx)):
(p = p) = p — p. For simplification of notation, the types of the bound
variables are not written if there 1s no ambiguity. Of course, e. g., AXPAx°.x
1s ambiguous for p # o and therefore illegal. But even after disambiguation,
those terms should not be used in explicit considerations.

The set NF now has to obey the additional proviso of well-formedness
of x¥. This will not be made explicit.

Define r|:% 3t € NF.r =3 t. In principle {r [ v |} equals wn, but wn
1s made up of untyped terms.

(a) Show the following lemma: If v € NF and s° € NF, then (i) vs | if
rs s a typed term, and (i) v[xP :=s] |.

Hint: Main induction on the type p, side induction on v € NF. A
somewhat more involved proof first shows only (i) (and uses r°—° € NF =
P | to be proved beforehand) and infers (7).

(b) Show that every typed term r satisfies v |.

6.2 Lambda Calculus with Intersection Types

Definition 17 (Intersection types) The set Ti of intersection types is in-
ductiwvely given by:

e If Le V7 then L€ T;.
e Ifpe T, and 0 € T; then (p = 0) € Ti.
e IfpeTi and o € T; then (pNo) € T;.

Since we have more types, i.e., 75 C Ti, we also have additional rules for
typing. Nevertheless, we will use the same symbol F for both simple typing and
intersection typing.

Definition 18 (Intersection typing) The relation I' - v : p (term v has
type p in context I' ) 1s inductively defined by the following rules:

x:pkr:o l'Fr:p—>o 'Es:p
- (v P P
F,x:pl—x:p( ) Fl—Axr:p—)a(_)I) 'Frs:o (=)
l'er: l'kEr:o F'Er:piN ie{1,2}
p ' (ﬁ[) p1 PZ. { J(mE)
'kEr:pno 'Er:p:

The conventions concerning contexts are as for simple typing.

Note that the rules of N-introduction (N1) and N-elimination (Ng) capture the
intuition that the intersection type construct models intersection.

Examples 10 x: (p 2 p)NpFx:p—opandx:(p—=p)Npkx:p, hence
x:(p=2p)Npkxx:pand finally- w: ((p = p)Np) = p. In Lemma 24,
we will see that for no T and p, '+ Q : p holds, 1. e., QO s not typable with
intersection types.

Lemma 20 (Derived rules)
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IfTFr:p thenyx:okr:p (Weakening 1).

Ifix:okFr:p then,x:oNTkr:p (Weakening 2).

Ifix:okFr:p and x ¢ FV(r) then Tk r:p (Strengthening).

Ifix:pNnokr:1thenx:0Npktr:1 (Ezchange 2).

Ifiix: (piNp2)Np3 Fr:t thenTyx: p1N(p2Np3) Fr:1 (BEzchange 3).
Proof By rule induction on . O

Lemma 21 (Substitution)
(a) Ifx:pFr:tandTks:p thenTFr[x:=s]:T.

(b) IfT'krx:=sl:t,x ¢ FV(s)UT and (x ¢ FV(r) = '+ s:pp) then there
15 a type p such that)x:pkFr:1Tand "'k s:p.

Proof (a) has a completely straightforward proof by induction on the derivation
of Ix: pF r: T and does not reveal anything specific to intersection types. (b)
is typical of intersection types (compare with Proposition 3 in [Kri93, p.51]
which is unfortunately too weak since it always requires I' - s : py for some type
po) and is proved by induction on the derivation of I' F r[x := s] : T. The case
r = x is trivial. Let now r # x.

(V) Let THrlx:=s] =y:tduetoy:T€T. Sincer #x, v =y # x.
Therefore, x ¢ FV(r), and we set p := py and apply rule (V).

(—=1) Let THrlx:=s] =Ayt:t=17 512 dueto lNy: 1y - t:71y. Since
T #X, T =Ayry and t = rg[x := s]. We may assume that y ¢ {x} U FV(s).
Since x ¢ FV(ro) implies x ¢ FV(r) implies I' I s : po implies Iy : 71 F
s : po, we may apply the induction hypothesis and get a type p such that
Ny:ti,x:pkFro:1and Ny: 11 F s:p. Strengthening yields '+ s : p.
Finally, Ix: p F Ayrp : T1 — T2.

(—g) Let T F r[x := s] = t1t2 : T be derived from ' - t; : 0 — T and
N1t :0 Sincer #x, v =mr2and t4 = 1i[x =] (1 = 1,2). If
x € FV(r) then x € FV(ry) or x € FV(r;). In both cases the induction
hypothesis provides a type py such that I' - s : po. Hence, from the
assumption of (b) we always have some po with ' - s : pg. By induction
hypothesis, there are types p; and p, such that I'x: py F 11 : 0 — T,
'kEs:pi,x:pakr2:0and '+ s: po. By Weakening 2 and Exchange
2, weget ix:pyNp2Fr1:0 = Ttand INx:prNpz F r2: 0, hence
Ix:p1NpakFrir2:T. Finally, 'k s:pq Npa.

(Ng) Intersect the two types given by the induction hypothesis as in the
preceding case.

(Ng) Trivial from the induction hypothesis. O
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The next lemma will always be needed if a given type assignment is analyzed.
For its statement we need the concepts of prime types and prime factors [Kri93,
p.50]: A prime type is a type which is not of the form p N o. Let P be the set
of prime types. Every type can be written in the form pyN...Np, with n > 1
and p; € P fori € {1,...,n}. Note that we do not care about parentheses since
they do not change typability (neither in contexts due to Exchange 3 nor in the
derived type due to (Ng) and (Ng)). The p; are called prime factors of p. We
now present Lemma 1 from [Kri93, p.50]. In the sequel the notation NP will be
used for py N...Np, with the implicit assumption that the p; are prime types.
p € { clearly means that p = p; for some i.

Lemma 22 (Inversion) Let 't v:p with p € P.
1. Ifr=x thenx:NP €T with p € p.
2. Ifr=MAxt thenp=p; = p2 and I,x:p; Ft:p2.1"1

3. Ifr=tsthenl'Ft:0 > NP and 'k s: 0 for some types 0 and § such
that p € §.

Proof Consider in the derivation of I' - r: p an uppermost occurrence of some
' r:Np with p € p. The rule by which this is achieved cannot be (N1) or (Ng)
since they would require an earlier occurrence of the described form. Therefore,
in the first, second and third case, the rule is (V), (—1) and (—g), respectively.

O

Lemma 23 (Subject Reduction) IfT'Fr:p andr —pg v’ then TF1':p.

Proof By induction on ' - v : p. Only the case (—g) is non-trivial: We have
'rs:pduetol-r:0—pand"Fs:o,and rs =g t. Show that 't :T.

e If t =v's’ by one reduction step altogether from r to r’ and s to s’ then
we are done by the induction hypothesis.

e In the case of an outer B-reduction r = Axrp and t = ro[x := s]. By the
preceding lemma, I x: 0 F 1o : p. By Lemma 21(a), I'Frolx:=s]:p.

As a further application of Inversion, we show that Q is not typable.

Lemma 24 Let 6 C P. The following is impossible:
N-w:NG—pandl-w:NG.

Proof Induction on the number of different types in 6. Assume both typings.
By Inversion, I x: NG F xx : p. p = NP. Therefore, I x: NG F xx : p1 (the first
element of ). Again by Inversion, [x: NGk x:t > NEand [x: NG F x: T
with p; € fi. T decomposes into prime factors as T = t1 N ... N T,, hence for
every k € {1,...,n}: I'x: NG F x : Tx. Again by Inversion, 1, € & for every
k € {1,...,n}. Therefore, T = NG ' for some finite list 6’ composed only of

11We may assume that x ¢ TI".
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elements of 6. Once more by Inversion, applied to I'x: NG = x : NG’ — N,
there is a 0j in G such that 05 = NG’ — N{. Hence o ¢ ', and consequently
G ' has fewer different types than &. From I' F w : NG we now immediately get
N-w:Né’" 5> Nitand I' - w :NG'. Contradiction by induction hypothesis.

Corollary 25 T/ Q: p.

Proof If ' F Q : p then also for some p € P. By Inversion, there is § and o
suchthat pe gand ' w:0—>NPand '+ w: 0. Since 0 = NG with ¢ C P,
the previous lemma applies. 0

Exercise 16 Produce a weakly normalizing term which cannot be typed
with intersection types.

6.3 Strong Normalization of Typable Terms

The following proof is in the spirit of [JM99] which dealt with permutative
conversions instead of intersection types.

Lemma 26 If r € SN and x ¢ FV(r) then rx € SN.
Proof Induction on SN. O

Note that x ¢ FV(r) is a superfluous assumption. Nevertheless, we do not need
a stronger statement, and therefore only consider what can be proved so easily.

Lemma 27 Ifr,s € SN and'Fs:p and INx:pt r: 0 then r[x:=s] € SN.

Proof We first define a measure h(p) € Ny for every type p by recursion on p
as follows:
h{i) =0
h(p — o) := 1+ max(h(p),h(0))
h(p N o) := max(h(p), h(o))

The proof is by main induction on h(p), side induction on r € SN and case
distinction according to v € SN. (Observe that we also have I' - r[x :=s] : 0 by
Lemma 21(a).)

Case y¥. This has been derived from ¥ € SN. By multiple Inversion, we get
Ix:pkF ¥: [ for suitable {i. By side induction hypothesis, ¥[x := s] C SN.
Therefore, y¥[x := s] € SN. This finishes with the case y # x. So assume
y = x. If ¥ is empty, the claim is trivial. Otherwise, ¥ = t,, hence
Nx:phk xtt: 0. xtt = (zt)[z := xt] for some “new” variable z. By
Lemma 21(b), there is a type T such that I'x : p,z : T F zt : ¢ and
Mx:pkxt:t. T=NT. Consider the element Ty of T. I x: p F xt : Ty.
By Inversion, there is a type p; and types Vi with i € Vi such that
Nx:pkx:p, o> MVgand Nx:pkt:p,. With p =Ng and Inversion,
we get p;, — NV € p. Therefore, h(ti) < h(MVy) < h(p, — NVi) < h(p).
Since this holds for every k, also h(t) < h(p). We continue with k := 1,
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p’ :==pj and vV :=V;. Clearly, ' F s : p’ = NV. By the previous lemma,
sz’ € SN with a “new” variable z’. By Weakening 1, INz": p’' F sz’ : NV.
By Lemma 21(a): '+ t[x :=s] : p’. Since h(p’) < h(p’ = NV) < h(p) we
may apply the main induction hypothesis for type p’ and get st[x :=s] €
SN. By Lemma 21(a), llz: T+ ztlx:=s]: cand T stlx:=s] : 7. Clearly,
z{[x := s] € SN. Hence, by the main induction hypothesis for type T, we
finally get (x¥)[x :=s] = st[x := s]tfx := s] € SN.

Case Ayr. This comes from r € SN. We have I'x : p F Ayr : 0. Show
(Ayr)[x := s] € SN. We may assume that y ¢ {x} U FV(s). Therefore
(Ayr)[x := s] = Ay.r[x := s], and it suffices to show r[x :=s] € SN. 0 = NG
and I x: pk Ayr: oy (the first element of &). By Inversion, 01 =t — o’
and Nx:p,y: Tk r:0'. By Weakening 1, Ty : T F s : p. The side
induction hypothesis yields r[x := s] € SN.

Case (Ayr)sS. This is derived from r[y = t}f € SN and t € SN. We
have Ix : p - (Ayr)tf : o and have to show that (we assume that y ¢
{x}UFV(s)) (Ayr)th)[x := s] = (Ay.r[x := s])t[x := s]{[x := s] € SN. For
this we need (v[x := s])[y := t[x := s]]{[x := s] € SN and t[x := s] € SN.
By multiple Inversion, we get I'x : p - t : u for some type w. The
side induction hypothesis yields tlx := s] € SN. By Subject Reduction,
Ix : p - rfly := t]t : 0. Hence, again by side induction hypothesis,

-,

(rly := tlt)[x := s] € SN. We are done by Lemma 2 which tells us that

-, —

(rly == tlt)[x := s] = (r[x :=s])[y = t[x := s]]t[x = s]. O
Corollary 28 (Main Theorem) IfT'F r:p then r € SN.

Proof By induction on . In the case (—g) use the induction hypothesis,
rs = (rx)[x := s] and the preceding two lemmas. O

Since SN is the set of strongly normalizing terms (here we only need sound-
ness of SN), every typable term is strongly normalizing. Since typability with
simple types is more restrictive than that with intersection types, simple typa-
bility also implies strong normalization.

Note also that Corollary 25 is a trivial consequence of our normalization
result.

Exercise 17 Let | and k be different atomic types. Show that
Fr:i(tok)—=1) >

for every term r.

Hint: It is advisable to solve the problem first for simple types. This
case 1s well-known as the underwability of the Peirce formula in minimal
logic.
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6.4 Typability of Strongly Normalizing Terms

Let us write I' + A for the context where the requirements on the variables in I'
and A are added. More formally, if ' =X:p,j: 6 and A=X:0',Z: T with X,
§ and Z pairwise disjoint and X of length n, then

F+A:=x1:p1N0p7,...,Xn:pn NP, J:6,2: T

From Weakening 1 and Weakening 2, it follows that I' - r: p implies'+AF r: p.
We will also form I'y+...4T", in a similar way without caring about parentheses.

Theorem 2 (Completeness) If r € SN then there are I' and p such that
Er:p.

Proof Induction on v € SN.

x¥. By induction hypothesis, I'; F r; : p; for every i. Therefore
M4+ T+ x:(p1 = ... o pn 2 p) FxFip
for any type p.

Axr. Let Axr € SN due to v € SN. By induction hypothesis, I' - r : p.
Possibly by Weakening 1, we may assume that ' = A x : 0. This yields
AFAxr:o— p.

(Axr)sS. Assume (Axr)sS € SN has been derived from r[x := s]s € SN and
s € SN. By induction hypothesis, ' F r[x := s]§: Tand I s : 0.
Setting A := T +T’', we get AF r[x :=s]S:Tand A+ s: 0. Writing
r[x ;= s]§ = (yS) [y := r[x := s]] and applying Lemma 21(b), we find a type
p such that A+ ys:tand AF r[x :=s]: p. Again by Lemma 21(b), there
isatype o’ suchthat A,x: o’ Fr:pand A+ s:c’'. Hence, AF (Axr)s:p
and by Lemma 21(a), A F (Axr)s§: T. O

Remark: One can also characterize the weakly normalizing terms via in-
tersection types. For this, one has to add an atomic type (typically called Q)
which is inhabited by every term (hence the typing rules have to be extended by
this simple rule). Then the weakly normalizing terms are exactly those which
are typable in the extended system with a type and a context where in both of
them the special atomic type does not occur. (However, it may appear in the
typing derivation!)

7 Parametric Polymorphism

Although the situation with intersection types is quite satisfying since the as-
sociated typing system exactly captures the strongly normalizing terms, there
is interest for other typing systems which type only strongly normalizing terms
but fail to type all of them.
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Exercise 18 In [Urz96] it is shown that (MAx.f(fx))(AMfAx.f(fx))(AxAy.x) is
not typable in the system of universal types presented below. Show that it
1s strongly normalizing.

Why is there an interest? By intersection typing, one can model that a term
has finitely many types in parallel. But very often, terms have infinitely many
types all being instances of some pattern. The easiest example is the identity
Axx which may receive any type of the form p — p in the empty context. It is a
natural idea to allow universal quantification over type identifiers (the elements
of V1). In this example, we would assume « € V1 and give the type Va.oo — «
to Axx (in the empty context). And we may instantiate this for any type p
instead of « to get - Axx : p — p. The universal quantifier thus expresses
the parametric polymorphism of the identity: For every type p (which is the
parameter) the identity acts as an element of the function space p — p, hence
belongs in some sense to many different spaces, but in a uniform fashion, namely
in spaces described uniformly by a type expression depending on the parameter
p. In the following, this intuition will be made precise. And since we want to
study the idea of parametric polymorphism in isolation, we abandon the ad hoc
polymorphism stemming from intersection typing.

Definition 19 (Universal types) The set T, of uniwversal types is induc-
tively given by (we will always assume that Vr is an infinite set):

o I[fu € V1 then x € Ty,.
e IfpeT, and 0 € Ty, then (p — o) € Ty,.

e Ifdx € Vr and p € Ty, then Vop € Ty,.

Note that the usual name for type identifiers is now changed from ( to « (3 and
v will also be used) which emphasizes their variable nature.

Definition 20 (Free type variables) Define the set FV(p) of type vari-
ables occurring free in p by recursion on p:

o FV(a):={al.
e FV(p — 0):=FV(p)U FV(o0).
o FV(Vap) = FV(p) \{«}.

As is indicated by the preceding definition, the universal quantifier V is
considered as a binder like the A in terms. We will follow the same conventions
concerning the irrelevance of the given variable name, e.g., we syntactically
identify the types Va.o — « and V3. — P and also use (like in the previous
examples) the dot notation for “invisible parentheses”.

Definition 21 (Type substitution) Define the result plx := o] of replac-
ing every free occurrence of the vartable « in p by the type o recursively as
follows:
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Blo:= o] := B for B # «.

e (p— 1)a:=0]:=plx:= 0] = tlax:= 0].

(VBp)lx := o] := VB.plx := o] where we may assume by renaming of
the bound type variable « that o« € {B}U FV(o).

Lemma 29 If x ¢ FV(p) then pla := o] = p.

Proof Induction on p. O
Lemma 30 FV(p[x:=o0]) C FV(Vap)U FV(o).

Proof Induction on p. O

Let us describe the typing system known under the name “system F in
Curry-style [Bar93]”, and overload the symbol - once more.

Definition 22 (Universal typing) The relation '+ v : p (term v has type
p in context ') s inductively defined by the following rules:

x:pkr:o l'Fr:p—>o 'Es:p
- (v P P
F,x:pl—x:p( ) Fl—Axr:p—)a(_)I) 'Frs:o

l'kr:p océFV(l")(v) I'-r:Vap o€Ty
MeEr:Vap ! Ier:pla:=o0]
The conventions concerning contexts are as before, and since contexts are
lists of declarations for term wariables, « ¢ FV(I') shall mean that « ¢
FV(p) for p being one of the assigned types in I'.

(—E)

(Ve)

The rule (V1) of V-introduction has the proviso called “eigenvariable condition”
that nothing depending on « may have been assumed on the free variables in
r. Otherwise, we would derive x : & F x : Vax, then x : « F x : p for any
type p, and finally - Axx : « — p for any p which we never had in mind. The
V-elimination rule (Vg) expresses that every instance of p (with p replaced by
any type o) is also a type of r if it received the type Vap. Note that the type
0 may again involve universal quantifiers, e. g., we have that

FAxx: (Va.ax = B) = (Va.x = B)

and hence F Axx : VB.(Va.ao = B) = (V.o — ). We may also type w: E.g.,
Fw:Vax — Vao.

We again have Exchange 1 (p. 34) as part of our understanding of contexts.
It is quite easy to establish Weakening 1, Strengthening (see Lemma 20) and
Lemma 21(a). Subject Reduction (see Lemma 23) also holds but requires a
more intricate Inversion Lemma (see e.g. [Bar93, p. 174]).

Exercise 19 [Bar93, p. 165] Show that our favourite ezample term w re-
cetves the types Vp.Vax — B, Vp.Vax — p — B and Yax — Vawx in the
empty context.
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7.1 Strong Normalization of Typable Terms

We again want to establish strong normalization, i.e., that whenever ' F r: p
then r € SN. For proof-theoretic reasons which require the strength of the
metatheory exceeding that of second-order arithmetic!?, our direct proof for in-
tersection typing in section 6.3 that SN is closed under typed substitution can-
not work. Therefore, the powerful and versatile candidate method (also called
computability predicates method) is introduced by which a stronger statement
than r € SN for every typable term r is proved. For this we need the concept
of saturated sets which are subsets of SN with good closure properties. First
we define them, then explain the method, and finally apply the method to our
setting.

7.1.1 Saturated Sets

The following concept was first used by Tait [Tai75].

Definition 23 (Saturated set) A set M of terms is saturated if the fol-
lowing conditions are met:

1. If r € M then r € SN.
2. If ¥ C SN then xT € M.

3. If r[x:=s]§ € M and s € SN then (Axr)ss € M.

This definition is nearly the same as that in [Bar93, p. 177].1 Let SAT be the
set of saturated sets. Trivially, SN € SAT.

The transformation of the definition of SN into that of saturatedness is
well motivated by typing considerations: It would be possible to relativize the
definition to t-saturatedness for a type T by restricting to terms of type T (in
a given context) only. For this to work it is essential to have no requirement
in the rules that a term of a different type shall be in M in order to conclude
that some term belongs to M. Therefore we omit the rule which changes the
type (hence leave out the abstraction rule), and in the other rules replace every
occurrence of SN by M in the conclusion and for the terms in the premisses
receiving the same type. In general, the other terms do not get the same type
and therefore can only be required to belong to SN.

The candidate method goes as follows: By means of saturated sets we de-
fine (by recursion on types) predicates of strong computability with respect
to an assignment of saturated sets for type variables (a candidate assignment)
and finally show (by induction on typings) that every typable term is strongly
computable under substitution. Hence every typable term is contained in a
saturated set (the computability predicate) which only consists of strongly nor-
malizing terms (due to SN C sn).

123 consequence of Gddel’s second incompleteness theorem, see chapter 15 in [GLT89)

13Note, however, that in our definition SN stands for the syntax-directed definition, whereas
[Bar93] considers strong normalization which is intensionally different (and extensionally the
same).
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This all works if there are constructions for saturated sets corresponding
to the type constructs of the system for which the introduction rules and the
elimination rules are sound. (This is presented at length in [Mat98].)

7.1.2 Calculating with Saturated Sets

It is always possible to produce a saturated set from any set M of terms by the
saturated closure cl(M), defined by induction as follows:

e If r€ MNSN then r € cl(M).
e If ¥ C SN then x¥ € cl/(M).
o If r[x :=5s]S € cl(M) and s € SN then (Axr)sS € cl(M).

Since cl(M) C SN (proved by induction on the definition), it is the least satu-
rated set containing M N SN. In the remainder of the normalization proof, let
M and N denote saturated sets.

We want to construct a saturated set M — A which will later serve to
define strong computability for function types. Define

Sy (M, N) :={r|Vs e Mrix:=s] e N},
(M,N):={MAxr|x€Vandr €S, (M,N)} and

EIM,N):={r|Vse M,rs e N

We get the introduction-based definition M —; A and the elimination-based
definition M —¢ A of saturated sets:

M =1 N i=c(l(M,N)) and M —¢ N :=cl(E(M,N)).
Lemma 31 I(M,N) C SN, E(M,N)NSN € SAT, and |(M,N) C E(M,N).
Proof

(1) Let r € Sx(M,N). Then for s :=x € M, we get r =r[x :=s] € ' C SN,
hence also Axr € SN.

(2) Check the conditions of saturatedness for E(M, N') N SN:

1. Trivial.
2. Let ¥C SN and s € M. Since s € SN and A/ € SAT, x¥s € NV.
3. Simply append s and use saturatedness of .

(3) Let r € Sy (M, N) and s € M. Show that (Axr)s € N. Since N € SAT,
it suffices to show v[x := s] € /' and s € SN which follow by definition of
S« (M, N) and M C SN. O

From the lemma, we get | M,N) C M =1 N, M —¢ N =E(M,N)NSN and,
due to monotonicity of cl, M =1 N C M —g N.

Define M — N := M —x N with X € {I,E}. We never use any property
depending on this choice but only the following three properties which are valid
for both choices and follow immediately from the preceding remarks:
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(SAT) M — N € SAT.
(=1) Ifr e Sy(M,N) then Axr e M = N.
(D) TEM I NAseM=>r1seN.

Exercise 20 Show that M —1 N # M —g N s possible by considering
M :=SN and N = cl({(Axx)t | t € SN}).

Hint: Study how abstractions may enter the saturated closure and apply
this to the identity.

7.1.3 Strong Computability

In order to specify strong computability for universally quantified types Vap,
we have to define strong computability for the type p, but have to provide
an arbitrary candidate for the strong computability of its argument x. Our
candidates are the saturated sets, and the candidate assignments provide the
relativization needed to put the proof through.

Definition 24 (Candidate assignment) Any finite set of pairs (written
x: M), consisting of a type variable and a saturated set, such that no type
variable occurs twice.

Candidate assigments are the counterpart to contexts. We will again use the
letter I to denote a candidate assignment and write I', x : M for the extended
candidate assignment (with the implicit proviso that « does not occur in I').

Definition 25 (Strong computability) Define the saturated set SCP[I'] of
strongly computable terms w. . t. type p and the candidate assigment I' by
TECUTSION oM P:

M ifau: MEeT,

SN  otherw:se.

o SCH[I:= {

e SCP°7°[I:=SCP[r — SC°[T.

e SCY*P[M := Natesar SCPIN oc: M (with set-theoretic intersection that
clearly does not lead outside SAT; note that we may assume that
does not occur in ).

The definition of SC°~°[I"] is a variant of the computability predicate definition
in the famous [Tai67], its relativization to a candidate assignment and the big
intersection in the definition of SC”*°[I'] have been invented in [Gir72] and
only today seem to be the straightforward extension of Tait’s ideas. It has
to be stressed that exactly this big intersection shows the impredicativity of
the system of universal types: We need the intersection over any saturated set
M in order to define a specific saturated set, namely SC’*?[I']. This definition
cannot be dealt with by second-order arithmetic, and, as remarked above, strong
normalization also cannot be established by other means taken from second-
order arithmetic. Finally note that we could easily reprove strong normalization
for the system of intersection types by setting SC*™ := SC® N SC® and by
abandoning the notion of candidate assignment altogether.
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Lemma 32 (Coincidence) If x ¢ FV(p) then SCP[I, «: M] = SCP[I'].
Proof Induction on p.** O
Lemma 33 (Substitution) scPle=olir) = SCPT, o : SCOITT].

Proof Induction on p, using the previous lemma. O

We want to show that every typable term is strongly normalizing. By using
the inductive characterization, we only need to show that they are in SN. Since
saturated sets are contained in SN, it suffices to show that r € SC°[})] whenever
T gets type p. This is achieved by applying the following lemma to the identity
substitution. Unfortunately, we first have to extend the notion of substitution
T[x = s] to the simultaneous substitution r[X := §] of all occurrences of x;
by si (for every i, with different variables x;) in v which may be defined by
recursion on 1 like ordinary substitution. We will also use the notation X : ¢ for
X1:P1,...,Xn : pn and § € SCP[I for s; € SCP'T],...,sn € SCPT].

Lemma 34 IfX:3F r:p and § € SCP[I] then v[X:= § € SCP[T].

Proof By induction on X : g I 1 : p simultaneously for every candidate assign-
ment .

(V) v:p=xq:pi. Obvious.

(—1) Let X: g Axr:p — o thanks to X : p,x : p F v : 0. We have
to show that (Axr)[X := §] € SCP[I'] — SC°[I']. We may assume that
x ¢ XU FV(S), and hence (Axr)[X := §] = Ax.r[X := §]. It suffices to
show that r[X := 5] € S, (SCP[I'],SC°[T']). So assume s € SC°[I'] and show
r[X := §][x := s] € SC°[T']. This follows from the induction hypothesis
since r[X := §][x := s] = r[X, x := §, s] by our assumption.

(—g) This is an immediate consequence of the induction hypothesis and
the rule (—¢) for saturated sets.

(V1) Let X: g r:Vap thanks to X : gF v:p and & ¢ FV(p). Let M €
SAT. We have to show that r[X := 5] € SC°[I, x: M]. Since x € FV({),
we may apply the Coincidence Lemma and get § € SCPIT, o : M. Hence,
we are done by the induction hypothesis.

(Ve) Let X: g F r: plx := o] thanks to X : § F r: Vap. By induction
hypothesis, r[X := §] € SC"*°[I']. Set M := SC°[']. Then v[X := §] €
SCPI ox: M] = scrle=alm) by the Substitution Lemma. O

By setting s; := x; € SCP[})] for I' = X : ¢, and by using SC”[)] C SN, we get
the following

Theorem 3 (Strong normalization) If '+ v:p then r € SN. O

14Clearly, our choice whether M — AN equals M —; A or M —g AN has to be made
consistently. To be on the safe side, we assume that it has been made once and for all.
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Note that by help of the interactive theorem-proving environment LEGO
a variant to this proof has been produced [Alt93] which demonstrates the ca-
pability of those systems to deal with essentially complicated mathematical
theorems.

Exercise 21 Show that there 1s no term v such that - r:Voo.

7.2 Undecidability of Type Checking

The problem of type checking is to find out whether I' - v : p holds for given
I', r and p. The problem of typability is to find out if there is a type p for
given I' and r, such that I' - r: p. For both of these problems it was an open
question whether they may be solved algorithmically [Bar93, p. 183]. It was
generally believed that they are both undecidable. Nevertheless, the result was
an achievement much applauded at the 1994 LICS!® conference.

Theorem 4 ([Wel94]) Type checking and typability are undecidable for the
system of universal types.

Proof See the 46 pages paper [Wel99] which rests on the undecidability of
semi-unification. O

Therefore, in the sequel we will study a variant of the pure calculus with uni-
versal typing to be called system F. It has type information inside the term
system making type checking decidable again.

7.3 An Explicit System of Parametric Polymorphism
This time, we do not alter the type system but the term system.

Definition 26 (Terms of system F) The set T¢ of terms s inductively given
by:

Ifx eV then x € Tg.

IfxeV, peTy and v € Tg then AxPr € Tg.

Ifr € Tr and s € Tg then (rs) € Tr.

If r€ Tr and « € V1 then Aar € Tk.

Ifr€7Tr and o € T, then (ro) € TE.

The idea is to add type information to the terms. AxPr is Axr but with an
indication which was the type in the extended context for the typing of r (see
the typing rules below). Aar is r but with its polymorphism in the parameter
o« made explicit. (ro) is r but with a declaration that it is used with type o.

Again parentheses are omitted as much as possible (with applications asso-
ciating to the left).

15 Annual IEEE Symposium on Logic in Computer Science
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Definition 27 (Free variables) Define the set FV(r) of variables occur-
ring free in v by recursion on r:

o FV(x):={x}.

o FV(APr):= FV(r)\ {x}.
o FV(rs):= FV(r)U FV(s).
o FV(Aar):= FV[r).

e F'V(ro):= FV(r).

As before, AxP binds the free occurrences of x in r, and we syntactically identify
terms which only differ in the names of their bound variables.

Since types may form parts of a term, we now have an additional concept of
free type variables of a term:

Definition 28 (Free type variables of a term) Define the set FTV(r) of
type variables occurring free in v by recursion on v:

o FTV(x):=0.

o FTV(Ax°r) = FV(p) U FTV(r).
e FTV(rs):= FTV(r)U FTV(s).
e FTV(Aar):= FTV(r)\{«}.

e FTV(ro):= FTV(r)U FV(o).

Clearly, Ao binds the free occurrences of « in r. We also identify terms which
differ only in the names of their bound type variables.

It is straightforward to redefine substitution of terms for term variables in
terms:

Definition 29 (Substitution) Define the result r[x := s] of replacing every
free occurrence of the vartable x in v by the term s recursively as follows:

e y[x:=s]:=y fory #x.

(AyPr)[x := s] := AyP.r[x := s] where we may assume as usual that
y ¢ {x}U FV(s).

o (1t)[x:= 8] := r[x :=s]t[x := s].
o (Aar)[x:=s]:= Aw.r[x ;= s] where we assume that x ¢ FTV(s).
e (r0)[x :=s]:=r[x:=s]o.

But we also have substitution of types for type variables in terms:
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Definition 30 (Type substitution) Define the result v[o := o] of replacing

every free occurrence of the type variable x in v by the type o recursively
as follows:

o (ABT)a:= o] := AB.r[ot := 0] where we assume that B ¢ {o} U FV(c).
e (r7)[oc:= 0] := 7ot := o7l := 0].

Lemma 35 Ifx & FV(v) thenrlx:=s] =r. Ifa ¢ FTV(v) thenrla:= o] = .

Proof Induction on 7. -

The richer term syntax allows a new reduction in the spirit of -reduction,
namely (Aar)o — r[x := o] which perfectly fits with our intuition of A-
abstraction and type application. For coding purposes, this is yet not enough (as
will be clear later). Therefore, we also include the following n-reduction rules:
AxPax — rif x ¢ FV(r), and Ax.roe — 1 if o« ¢ FTV(r). Clearly, we could
have added the first rule (without the type superscript) to the pure untyped
A-calculus. Unfortunately, the addition of Ax.rx —p 1 for x ¢ FV(r) would have
destroyed Subject Reduction: Take three different type variables «, 3,y and
apply rule (—1) toz: x 5 VyB,x:abkzx:Bortoz: o — B,x:ak zx:Vyp.
Note that neither z: 0x - VypFz: o — B norz:a — B Fz:o— Vyp holds.

Definition 31 (Bn-reduction) Inductiwely define the relation —g, as fol-
lows:

(B) (AxPr)s —pq Tlx :=s] (outer B-reduction).
(M) AxP.rx —py 1 of x ¢ FV(r) (outer n-reduction).
(Br) (Aar)o —gn rla:= o] (outer type-B-reduction).
Mr) Ax.row —pn v if &« ¢ FTV(r) (outer type-n-reduction).
(£) T —=pn v = AXPT —pn AXPT! (reduction under a A-abstraction).
(&) T —pn ' = Aar —pn Aar’ (reduction under a A-abstraction).
(r) v —=gn v = s —py 1's (right application).
(1) v =pn 1/ = st oy sr’ (left application).
(t) v —=pn v = r0 =gy 7’0 (type application).
If r =y s we say that r reduces by one n-reduction step to s.

Lemma 36 If r -, v' then FV(r') C FV(r) and FTV(r') C FTV(r).
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Proof Induction on —g,. For (), one first has to prove FV(r[x = s]) C
(FV(r) \ {x}) U FV(s) and FTV(r[x := s]) C FTV(r) U FTV(s). For (Bf), we
need FV(r[x := o]) = FV(r) and FTV(r[ := 0]) C (FTV(r) \{a}) UFV(0). O

Lemma 6 and Lemma 7 also hold for the extended syntax. Moreover, we get
substitutivity w.r.t. type substitution:

Lemma 37 (Substitutivity and compatibility)
If r —pn 1’ then r[x :=s] —py v'[x == 5] and r[a:= o] —=py 1'[x == 0].

If s =5pn s’ then r[x :=s] B rlx :=s'l, and v[x :=s] =gy X :=5'] of
X occurs exactly once free in r.

Proof Substitutivity is proved by induction on r —p, v/, compatibility is
proved by induction on r. O

Unfortunately, —pn is not locally confluent: Consider

AxP.(Ay°r)x

APy == x] Ay°r

AyPr
with p # o and x ¢ FV(Ayr). This problem will be overcome by typing.

Definition 32 (Typing for system F) The relation I' - r: p (term v has
type p in contezt I' ) s inductively defined by the following rules:

x:pkr:o l'Fr:p—o Es:p
(V) (—1)

Mx:pkx:p 'EAxPr:p— o0 l'kErs:o (=)

l'kr:p océFV(l")(v) I-r:Vap o€Ty
['E Aar:Voap I ['kFro:plx:= o]

The usual conventions concerning contexts apply.

(Ve)

Note how we restored the property that we always know which typing rule has
been applied last (like with simple typing and unlike intersection typing or even
universal typing).

Lemma 38 IfI'+1:p then FV(p) C FV(I')U FTV(r).

Proof Induction on . Note that in case (—) we need that the information on
the type of the abstracted variable is included in the syntax: If x € FV(p — o)
then « € FV(p) or « € FV(0). In the first case, « € FTV(AxPr). In the
second case, the induction hypothesis gives that « € FV(I[)UFV(p)UFTV(r) =
FV(I)UFTV(AxPr). The case (Vg) uses Lemma 30. O
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Lemma 39 FEvery typable term, 1. e., every term v such that there are I'
and p with '+ r:p, has exactly one of the following forms:

— —

xS AxPr (AxPr)sS Aor (Aar)oS

where S shall denote a finite list of terms and types (we will later also use
R for such a list).

Proof It is clear that every term has exactly one of the following forms:

xS AxPr (?\xpr)sg ()\xpr)crg Aor (/\oa‘)sg (/\ocr)crg.
Typability rules out the fourth and sixth possibility (note that the typability
of S implies that of r). O

Once again we have Exchange 1 (p. 34) as part of our understanding of
contexts, and it is again quite easy to establish Weakening 1, Strengthening (see
Lemma 20) and Lemma 21(a). Moreover, we have a version of Lemma 21(a)
pertaining to type substitution:

Lemma 40 IfT'F1:p then I'a:= o] F 1l := 0] : plax := 0o].

Proof I'a:= o] clearly denotes the context where all the types of the variables
are substituted. The proof is by induction on . O

Lemma 41 (Subject reduction) Ifr =gy v and TFr:p then TF1':p.

Proof Induction on —p,. We only consider the initial cases.

(B) Let T (AxPr)s : 0. Then I'F AxPr:p — ocand ' - s : p. Hence
Ix:pk r:0, and by the analogue of Lemma 21(a), ' r[x :=5s] : 0.

(m) Let T F AxPrx : p — 0. Hence, I'x : p F rx : 0, and therefore,
Ix:pkr:p— 0. By Strengthening, 'Fr:p — 0.

(Br) Let T' - (Aar)o : . Then I' F Awxr : Vap and pla := o] = T.
Consequently, ' F r: p and & ¢ FV(I'). Hence ' := o] =T and by the
preceding lemma I' - r[x := o] : plx ;= 0] = 1.

(me) Let T'F Aocrae - Vap with o ¢ FTV(r). Then ' - ro : p and « ¢
FV(Tl'). Hence, ' F r: V@0 and o[f := ] = p. If &« = B, then we are done.
Otherwise, by Lemma 38, « ¢ FV(0), hence Vap = VAo by renaming of
the bound variable. O

Note that the examples on page 50 are no longer critical: The first one yields
z:o = VYR FAXx*zxy: o — B, the second z: o« — B F Ax*Ay.zx : « — Vyp.
In both cases, we cannot apply an outer n-reduction.

Before studying confluence and strong normalization of the typable terms,
we consider several examples showing the expressivity of system F.

Examples 11 1. Set 0:=Vax. Then 'k 1:0 tmpliesT Frp:p.
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2. Set1:=Vo.ex = o and IN1 := AaAx*x. Then FIN1:1.

3. Set px o:=Voa.(p— 00— &) = « for some « ¢ FV(p)U FV(o). Set
(r,8)p,0 := AoAZP7 9% 215 for some z ¢ FV(r)U FV(s) and assume
that « ¢ FTV(r)U FTV(s). Hence, if TFr:p and"Fs: o thenT
(r,8)p.0 1 p X 0. Set 1Ly ¢ :=1p(AxPAY°.x) and TR, & = ro(AXxPAY°.y).
Hence, if TFr:pxothenl'Frlyo:p and ' 1R, o1 0. Moreover,
(r,8)p,0Lp,0c =y T and (1,8)5,0Rp,c 23, -

4. Setp+o0:=Voa.(p—= a) = (0 = ) = « for some x ¢ FV(p)U FV(o).
Set INL, o7 := AoAxP7*Ay 7 * xr and INRy o7 1= AoAxP7*Ay 7 * yr
for some x,y & FV(r) (we assume that « ¢ FTV(r)). Hence, if I' -
r:p thenlFINLyor:p+o0, and tf TFr:0 then T FINR, o7 :p+ 0.
Moreover, if T'Fr:p4+0, TFs:p—o>1TandTFt: 0 — T then
I' F rtst : T which gives a construct for case distinction as follows:
INLo, ortst —5, st and INR, srTst —, tr.

5. Set Jap = VB.(Va.p = PB) — P for some B ¢ {a} U FV(p). Set
Canpa? = APAXY*P2B x11 for some x ¢ FV(r) and B ¢ FTV(r)U
FV(t). Hence, of I' - r: plx := 1] then I' b Caxp,«r : oxp. Also, of
Necr:3dap and 'k s : Va.p = 0 with « ¢ FV(o), then ' F ros : o.
Moreover, C3xp 108 —)En STT.

6. Set nat := Vo.(x = a) = a = «. Set 0 := AcAx*7*Ay*y (this
should not be confused with the type 0 = Vo). Then + 0 : nat. Set
St i= AaAx* 7 *Ay*.x(raxy) for some x,y ¢ FV(r) and « & FTV(r).
Hence, if ' F r : nat then I' - Sr: nat. This gwes back iteration on
naturals as follows: IfT'Fr:nat, 'Fs:p o> pand T''F t: p then
't rpst: p. Moreover, Opst =}, t and (Sr)pst —Bn s(rpst), hence t
1s the wnitial term of the iteration, and s is the step term.

Note that the examples with exception of the last one may all be seen as intu-
itionistic variants of classical encodings. If instead of the universally quantified
o, we only had the falsum |, we came to the following classical identities (writ-
ing —pforp— L, L for0, T for I, pAcfor pxocand pVoforp+o): L=1,
T=1l—o1,pAo=—(p—>—0),pVo=—p— -0, Jap =—Va—p.

7.4 Strong Normalization and Typed Confluence of F

We will see that local confluence holds for typable terms and that every typable
term is strongly normalizing and finally conclude that typable terms even enjoy
confluence.

Lemma 42 (Typed local confluence) IfTFr:p, r —pgy v and r —pg, 1"
then there is a term t such that v’ =g, t and '’ —p, t.

Proof Induction on r, case distinction according to the last rule of —p, used
to establish r — gy, v’ and v —pg, v". Hence, we have to distinguish 81 cases.
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The 9 cases in which the same rule is applied in both reductions either hold
trivially (in the initial cases) or are immediate by the induction hypothesis. The
other 72 cases come in 36 pairs of symmetric situations. We only consider the
pairs where the first rule comes first in the list of rules. Note that the following
30 cases are syntactically impossible:

B Wlthﬂ, BF; nF, ‘z—w & and t

n with Bg, NE, &r, 7, Land t

Br with nf, &, &, T and 1

ne with &, r, land t

& with &, 1, land t

EF withr, land t

r with t

e lwith t

Hence, only 6 cases have to be considered:

3/r. We have (AxPT)s with AxPr —pq t.

Bn/ \[311
rlx == g] ts

If t = AxPr’ with r — gy, v’ then by substitutivity v[x := s] =g, v'[x :=s],

hence we get [ := g] ts
(AxPr')s
pn B/
r'[x = 3]

Otherwise, 1 = tx with x € FV(t). Then v[x :=s] = t[x ;= s]s = ts.

B/1. Use compatibility as in the case 1/ in the proof of Lemma 5.

n/&. We have AxP 1x with vx —pq t.
Bn/ \Bn
T AxPt
If t = r'x with r —pgy, 1/, then also x ¢ FV(r'), hence AxPt —g, 7/,
yielding Ax Pt -
Bn ! ‘{
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Otherwise, 1 = Ay®s and t = s[y := x]. Since AxP.rx is typable'®, there
are I' and T such that I' = AxP.(Ay®s)x : p — 1. This comes from Ix: p -
(Ay°s)x : T, hence INx: p F Ay°s : p — 1. We conclude p = 0. Finally,
since x € FV (1), AxPt = Ax°.s[y :=x] = Ay%s = .

(X—O'

Br/t. We have with Aar —pgn t

If t = Aar’ with r =g, v’ then by Lemma 37 Tl := 0] =gy 1'[x = 0l,

hence we get [y :— ¢] to

(Aor’)
Bn B/

(X—G

Otherwise, 1 = tax with o ¢ FTV(t), hence r[x := o] = t[x := o]0 = to.

ne/&F. We have with ra =gy t.

AT

N

Aot
If t = v'oc with v —p, v’ then also « ¢ FTV(r'), hence Axt —py 1/,

yielding Aot -
Bn v B

Otherwise, r = APs and t = s[p := «]. If x = 3, then we are done.
Otherwise, « ¢ FTV(s) and hence also Axt = APBs by renaming of the
bound type variable.

/1. See the same case in the proof of Lemma 5. O

In order to prove that even typed confluence holds, we first establish strong

normalization: First we redefine the sets SN and SAT, and then show essentially
the same results for SN and SAT as for the system of universal types.'”

Definition 33 Define the set SN tnductively by:

o If the terms among R are in SN then xR € SN.
o Ifr € SN then AxPr € SN.
e Ifr € SN then Axr € SN.

16This is the only place where we need the typability assumption.
170One could also derive strong normalization from that of the system of universal types.

We prefer the direct proof, since it will be extended to the system of fixed-point types.
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e Ifr[x:=s]S € SN and s € SN then (AxPr)sS € SN.
o Ifrlo:= cr]§€ SN then (/\ocr)cr§€ SN.

Definition 34 A set M of terms of system F s saturated if the following
holds:

1. If r € M then r € SN.

2. If the terms among R are in SN then xR € M.

8. Ifr[x:= sISe M and s € SN then (}\xr)sg e M.

4. If rloc:= 0]S € M then (/\ocr)og € M.
Let again SAT be the set of saturated sets. Again, SN € SAT.
Lemma 43 SN Csn:=acc,,, .

Proof We have to show that sn has all the defining properties of SN, i.e., we
have to show that

e If the terms among R are in sn then xR € sn.

If r € sn then AxPr € sn.

If r € sn then Axr € sn.
e If v[x :=s]S € sn and s € sn then ()\xpr)sg € sn.
e If rlo:= 0]S € sn then (/\oa‘)0§ € sn.

The case with the variable in the head is obvious since every reduction in xR
takes place in one of the R.

The abstraction case is more complicated: Do induction on r € sn. Assume
AXPT =gy, t. Either t = AxPr’ with r —p,, 1/, and t € sn by induction hypoth-
esis, or 1 = tx and t € sn since it is a subterm of r € sn. A similar argument is
needed for the A-abstraction.

The case of (}\xpr)sg is as for untyped lambda calculus (see the proof of
Lemma 18): By main induction on s € sn and side induction on r[x := s}g € sn
we prove that (?\xpr)sg € sn. Therefore, we have to show for every t with
(?\Xpr)sg —pn t that t € sn. The only new case compared to the treatment
of untyped lambda calculus is r = r'x with x ¢ FV(r') and an 1-reduction
applied to AxP.r'x, leading to 1/sS. However, this is not really a new case, since
B-reduction of (Ax°.r'x)s also yields (Ax°r)sS —pn T[x = s]sS = 1'sS.

Finally consider (/\oc‘r)0‘§. Show that this term is in sn by induction on
rlo = cr]§ € sn. Assume that (/\oa‘)crg —pn t. Show that t € sn. Either
t= (/\ocr)crg with r =g, 1/, hence rlo == cr]§ —gn 7o = cr]§, and we are done
by the induction hypothesis. Ort = (Aar) 0S’ with reduction of one of the terms
in S. Then Tl == cr]§ —pn Tl = 0]§’, and again the induction hypothesis
applies. Or t = r[x := ]S € sn. Or, finally, r = '« with « ¢ FTV(r') and
t =1'0S. But t = (r'x)[x := 6]S € sn by assumption. O
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Note that SN = sn does not hold (see Lemma 39).
Again, it is always possible to produce a saturated set from an arbitrary set
M of terms by the saturated closure cl(M), defined by induction as follows:

e If r€ MNSN then r € cl(M).

e If the terms among R are in SN then xR € cl(M).

e If v[x :=s]S € cI(M) and s € SN then (Ax°r)sS € cl(M).
e If [ := 0]S € cl(M) then (Aar)oS € cl(M).

Since, again, cl(M) C SN (proved by induction on the definition), it is the least
saturated set containing M N SN.

Given a saturated set M and a saturated set A/, we construct a saturated
set M — N Define

Sx(M,N) :={r|Vs € Mr[x:=s] € N},
(IM,N) :={AxPr|x eV, p€Tyandr e Sy(M,N)} and

E(M,N):={r|Vse M,rs e N}

We get the introduction-based definition M —; A and the elimination-based
definition M —g N of saturated sets:

M =1 N =M, N)) and M —¢ N :=cl(E(M,N)).
We get the same properties as before (compare Lemma 31).
Lemma 44 I(M,N) C SN, E(M,N)NSN € SAT, and I(M,N) C E(M,N).
Proof
(1) See the proof of Lemma 31.
(2) Check the conditions of saturatedness for E(M, N') N SN:

1. Trivial.

2. Let the terms among R be in SN and s € M. Since s € SN and
N € SAT, xRs € NV

3./4. Simply append s and use saturatedness of \.

(3) See the proof of Lemma 31. O
From the lemma, we get | M,N) C M =1 N, M —¢ N =E(M,N)NSN and,
due to monotonicity of cl, M =1 N C M —g N.

Define M — N := M —x N with X € {I,E}. As before, we never use any

property depending on this choice but only the following three properties which
are valid for both choices and follow immediately from the preceding remarks:

(SAT) M — N € SAT.
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(—1) If r € Sy (M, N) then AxPr € M — N.
(D) TEM I NAseM=>r1seEN.

Since we now have an explicit V-introduction and V-elimination in the term
system, we also have to provide an explicit construction of universal quantifica-
tion on saturated sets. Given a function ® from SAT to SAT, we define

Se(®) :={r|Vo € T,VM € SAT r[a:= 0] € (M)},
(@) :={Aar| o€ Vrand r € Sy(DP)} and

E(®):={r|Voe T,.VM € SATro € O(M)}.

We get the introduction-based definition V{® and the elimination-based defini-
tion Ve @ of saturated sets:

Vi® :=cl(l(®)) and Ve ® := cl(E(D)).
We get similar properties:
Lemma 45 I(®) C SN, E(®) N SN € SAT, and |(D) C E(D).
Proof

(1) Let r € Sy(®). Then for 0 := ¢ and M := SN, we get r = r[a := 0] €
® (M) C SN, hence also Axr € SN.

(2) Check the conditions of saturatedness for E(®) N SN:

1. Trivial.

2. Let the terms among R be in SN, o0 € 7y and M € SAT. Since
(M) € SAT, xRo € ®(M).

3./4. Append o and use saturatedness of ®(M).

(3) Let r € Su (@), 0 € T, and M € SAT. Show that (Aar)o € ®(M). Since
®(M) € SAT, if suffices to show r[x := o] € ®(M) which follows by
definition of Sy (D). O

From the lemma, we get |(®) C VO, VE® = E(O)NSN and Vi® C Vg ®. Define
VO :=Vx® with X € {I,E}. As usual, we never use any property depending on
this choice but only:

(SAT) VO € SAT.
(V1) If r € Sy (D) then Aaxr € VO.
(Ve) TeVOAGETANAMESAT = ro € D(M).
The notion of candidate assignment remains unchanged:

Definition 35 (Candidate assignment) Any finite set of pairs (written
o : M), consisting of a type variable and a saturated set, such that no type
variable occurs twice.
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Definition 36 (Strong computability) Define the saturated set SCP[I'] of
strongly computable terms w. . t. type p and the candidate assigment I' by
TECUrsIon on P:

o SCX[M] = {M fou: MEeT,

SN otherw:se.
e SCP7°[I":=SCP[l" — SC°[I].

e Define ® : SAT — SAT by setting ®(M) = SC°[ILx : M]. Set
SCY*P [T := V.

Lemma 46 (Coincidence) If «x ¢ FV(p) then SCP[I, «: M] = SCP[I'].
Proof Induction on p. O
Lemma 47 (Substitution) scPle=olir) = SCPT, o : SCOITY].

Proof Induction on p, using the previous lemma. O

Asin Lemma 34, we make use of the simultaneous substitution r[X := §] of all
occurrences of x; by s; (for every i, with different variables x;) in r and moreover
of the simultaneous substitution r[& := G] of all occurrences of «; by oy (for
every i, with different variables «;) in r which both may be defined by recursion
on r like the ordinary notions of substitution. We will again use the notation
X:pfor x1:p1,...,Xn :Pn, S E SCP[I for s; € SC°'[T],...,8n € SCP[I'], and
moreover, & : M for o tMa, o, 0t M.

Lemma 48 IfX: g+ r:p, §€ SCP[&: M] and & is a list of types corre-
sponding to & then v[& := &][X:=3] € SC°[X: ./\/l}

Proof By induction on X: § F r: p simultaneously for every candidate assign-
ment.

(V) r:p =xq:pi. Obvious.

(—1) Let X: 0 F AxPr:p — o thanks to X: g,x : p F r: 0. We have to
show that (AxPr)[& := 6][X := §] € SCP[& : M] — SC°[& : M]. We may
assume that x ¢ X U FV($), and hence

(AxPr)[& := G][X:=35] = AxP1&=81 15— F[% := 3.

It suffices to show that T[& := &][X := §] € S (SCP[& : M],SCO[&: M]). S
assume s € SC°[& : M] and show r[& := &][X := §][x := s] € SCO[& : /\/l]
This follows from the induction hypothesis since, by our assumption,

—

T[& := 6][X := §][x := s] = r[& := G][X,x := §, s].

(—g) This is an immediate consequence of the induction hypothesis and
the rule (—¢) for saturated sets.
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(V1) Let X: pF Aor:Vap thanks to X: g F r:p and & € FV(p). We may
assume that « ¢ K UFV(6) UFTV(S). Therefore, (Axr)[& := 6][X :=§] =
Ao.r[® = 6][X := §]. Let 0 € 7, and M € SAT. We have to show that
r[& = G][X := §][ax := o] € SC°[X : M,oc : M]. Since o ¢ FV(p), we may
apply the Coincidence Lemma and get § € SCP[& : M, o : M]. We are
done by the induction hypothesis since

=

r[& ;= 6][X = §][ex := 0] = 7[&, & := T, 0][X := §].

(Ve) Let X : § F ro: plx := o] thanks to X : § F r: Vap. By induction
hypothesis, 7[& := §][X := §] € SC"*°[& : M]. Set M := SC°[& : M].
Then 7[& := 5% := §]o[& := &] € SC°[& : M, o : M] = SC° N[ : ]
by the Substitution Lemma. O

By setting s; := x; € SC*[()] for I = X : §, and by using SC°[P] C SN, we get
the following

Theorem 5 (Strong normalization of F) If '+ r:p then r € SN. O
As an application, we prove:

Lemma 49 (Typed confluence) IfI'-r:p, r —Bn " and —Bn 1" then
there s a term t such that v’ —pgnt and v" —p, t.

Proof Induction on r € sn.*® If r = v/ or v+ = v then the claim is trivial
(set t = 1" or t = 1/, respectively). Otherwise, v —pgy T} —Bn v’ and r —gq
ry —Bn " for some terms 1} and rj. By typed local confluence, there is a term
s such that 1§ —py $ and s —y S- By Subject Reduction, I' - T4t p and
I'F r{ : p. Hence, by induction hypothesis for vj, there is s’ such that v’ B s’
and 8 =3, s', hence 1 —Bn s’. We now apply the induction hypothesis to v}
and get the term t with and " —p, tand s’ —%y, t, hence also ! Bt O

Exercise 22 Show that there 1s no term v such that - r:Vox.

8 Monotone Inductive Types

The expressiveness of system F is highlighted by the fact that least pre-fixed
points of monotone operators can be represented—even with respect to reduc-
tion behaviour. Its main practical consequence arises in the field of program
extraction: The computational content of intuitionistic proofs with inductive
definitions consists of terms of system F whose normalization yields the objects
whose existence has been proved.!® Later we will see that one also needs to
model fixed-points (not only pre-fixed points) in order to get primitive recur-
sion (not only iteration), and those fixed-points are not available in system F
as is generally believed and greatly supported by [SU99].

18This proof is in essence the proof of Newman’s Lemma saying that a locally confluent
and strongly normalizing binary relation is confluent.
19Unfortunately, because of lack of space, this claim cannot be substantiated in these notes.
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8.1 The Example of Continuations

The guiding example for the treatment of inductive types will be the one in
[Hof95] treating a classical problem in algorithm design by a non-strictly positive
inductive type: The labels of a finite labelled binary tree shall be put into a list
breadth-first, i.e., first the root label, then the labels of its children, then the
labels of the next layer, ...

The following SML program will be studied in great detail:

datatype nat = 0 | S of nat;
(* natural numbers x)

val one= S 0;

val two = S one;

val three = S two;
val four = S three;
val five = S four;
val six = S five;

val seven = S six;
val eight = S seven;
val nine = S eight;
(* example numbers *)

datatype btree = L of nat | N of nat*btreexbtree;
(* binary trees *)

val extree = N(one,N(two,L seven,N(three,L five,L four)),N(four,
N(six,L two,L nine),L eight));
(* the example tree *)

datatype list = nil | cons of natxlist;
(* lists of natural numbers *)

datatype cont = D | C of (cont -> list) -> list;
(* non-strictly positive !! x)

fun apply(D,g) = g D |
apply(C f,g) = £ g;
(* definition without recursion but with inversion *)

fun breadth(L x,k) = C(fn(g)=>cons(x,apply(k,g)))
breadth(N(x,s,t),k) = C(fn(g)=>cons(x, (apply(k,
fn(m)=>g(breadth(s, (breadth(t,m))))))));
(* iteration on the tree argument
fn(g)=> is the notation for lambda-abstraction of g *)

fun ex(D) = nil | ex(C f) = f ex;
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(* iteration on the datatype cont !! *)
fun breadthfirst t = ex(breadth(t,D));
val result = breadthfirst(extree);

val exlist= cons(one, cons(two, cons(four, cons(seven, cons(three,
cons(six, cons(eight, cons(five, cons(four, cons(two,

cons(nine,nil)))))))))));

val ok=(result=exlist);
This leads to the following output:

Standard ML of New Jersey,

Version 110.0.6, October 31, 1999 [CM; autoload enabled]
- use("hofmann.sml");

[opening hofmann.sml]

datatype nat = 0 | S of nat

val one = S 0 : nat

val two = S (S 0) : nat

val three = S (S (S 0)) : nat

S (8 (5 (50))) : nat

val five = S (S (S (S (S #)))) : nat

val six = S (S (S (S (S #)))) : nat

val seven = S (S (S (S (S #)))) : nat

val eight = S (S (S (8 (S #)))) : nat

val nine = S (8 (S (S (8 #)))) : nat

datatype btree = L of nat | N of nat * btree * btree
val extree = N (S O,N (S #,L #,N #),N (S #,N #,L #)) : btree
datatype list = cons of nat * list | nil

datatype cont = C of (cont -> list) -> list | D

val apply = fn : cont * (cont -> list) -> list

val four

val breadth = fn : btree * cont -> cont

val ex = fn : cont -> list

val breadthfirst = fn : btree -> list

val result = cons (S O,cons (S #,cons #)) : list
val exlist = cons (S O,cons (S #,cons #)) : list
val ok = true : bool

val it = () : unit

The first questions to raise:
1. Are the results always correct?

2. Does the program terminate for every input tree?
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3. Is it efficient? (Compare it with the state-based implementation with a
queue.)

4. How can we understand a definition of a function ex having the form
ex(C £) = £ ex? The function about to be defined is passed over as an
argument in the recursive call!

There are pleasing answers:

1. The program is correct, and can be shown so by suitable inductive argu-
ments.

2. The program terminates since it can be expressed in an extension of sys-
tem F by fixed-point types, and every term typable in that system is
strongly normalizing, to be shown by a straightforward extension of the
proof for system F which has been designed so as to facilitate this exten-
sion.

3. It is running in linear time like the implementation with a queue. Encod-
ings in system F are extremely unlikely to give linear time. The problem is
with the definition of apply where apply(C f,g) = f g needs to isolate
f out of C £, and which is an instance of inversion.

4. The recursive call can be understood quite well: It is indeed an instance of
iteration which can be modeled inside system F. And even much more de-
manding inductive types can be treated: every monotone inductive type.
The proof of monotonicity provides the iteration principle.

The theoretical understanding goes further: The embedding of iteration on
monotone inductive types into system F can be read off a careful proof of Tarski’s
fixed-point theorem stating that a monotone operator on a complete lattice has
a least fixed-point (see the explanation in [Mat99b]). Moreover, we only need
non-interleaving non-strictly positive fixed-point types to derive full primitive
recursion on monotone inductive types because of system F’s impredicative
capabilities [Mat99a].

Unfortunately, this all can only be addressed in a future version of these
lecture notes. The plan is to enlarge this section until it consumes about one
third of the total time of the lecture course on lambda calculus, a case for
inductive definitions.
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