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HETEROGENEOUS SUBSTITUTION SYSTEMS REVISITED

BENEDIKT AHRENS AND RALPH MATTHES

ABsTRACT. Matthes and Uustalu (TCS 327(1-2):155-174, 2004) presented
a categorical description of substitution systems capable of capturing syntax
involving binding which is independent of whether the syntax is made up from
least or greatest fixed points. We extend this work in two directions: we
continue the analysis by creating more categorical structure, in particular by
organizing substitution systems into a category and studying its properties,
and we develop the proofs of the results of the cited paper and our new ones
in UniMath, a recent library of univalent mathematics formalized in the CoqQ
theorem prover.
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1. INTRODUCTION

Given a first-order signature over some supply of variables, substitution is nearly
a homomorphism: the substitution function commutes with all term-forming op-
erations (however, at leaf positions, variables may get replaced by terms). But
substitution also gives rise to a monad structure. For this, it is useful to see the
variable supply of the terms as a parameter: writing T'A for the set of terms over
variable supply A (those variables that may occur free in the terms), parallel sub-
stitution associates with each substitution rule f, which is a function from A to
T B, a substitution function [f]: TA — TB, and for a given term ¢ : T A, the term
t[f] : TB (notice the post-fix notation for function [f]) is the result of the parallel
substitution that replaces each occurrence of a variable z : A in ¢t by fz : TB. In
fact, the function 7', the function that injects variables into terms, and the opera-
tion of parallel substitution together form a monad in the format of a Kleisli triple
over the category of sets and functions. Notice that the types serve as a means of
tracking the (names of) variables that may occur free in a term, the object syntax
itself is untyped. The parameter A plays a more prominent role as soon as variable
binding is allowed in the object syntax: for pure A-calculus, bound and free vari-
able occurrences have to be distinguished, and even the constructors of the object
language relate terms with different variable supply, in particular A-abstraction as-
sumes an argument term where the newly bound variable is added to the variable
supply (this will be seen with more details in Section ) Although parallel sub-
stitution ¢[f] has to be defined with extra care to avoid capture of free variables of
some fz by binders in ¢, it is still (modulo a-equivalence) nearly a homomorphism,
and it still yields a monad [10]. However, the monad laws by themselves do not
express the (nearly) “homomorphic nature” of substitution.

In previous work, Matthes and Uustalu [23] define a notion of “heterogeneous
substitution system”, the purpose of which is to axiomatize substitution and its
desired properties. Such a substitution system is given by an algebra of a signature
functor, equipped with an operation—which is to be thought of as substitution—
that is compatible with the algebra structure map in a suitable sense. The term
“heterogeneous” refers to the fact that the underlying notion of signature encom-
passes variable binding constructions and also explicit substitution a.k.a. flatten-
ing. More precisely, the signature is based on a rank-2 functor H (an endofunctor
on a category of endofunctors) for the respective domain-specific signature, to which
a monadic unit is explicitly added. The latter corresponds to the inclusion of vari-
ables into the elements that are considered as terms (in a quite general sense) over
their variable supply. The name “rank-2 functor” stems from the rank of the type
operator that transforms type transformations into type transformations—hence
has kind (Set — Set) — (Set — Set)—which may be seen as backbone of H in
case the base category is Set. In this rank-2 setting, the carrier of the algebra is
an endofunctor, and since a monadic unit is already present, a natural question
is if one obtains a monad. In that paper, it is then shown that for any heteroge-
neous substitution system this is indeed the case; multiplication of the monad is
derived from the “substitution” operation which is parameterized by a morphism
f of pointed endofunctors and consists in asking for a unique solution that makes
a certain diagram commute. Monad multiplication and one of the monad laws is
obtained from the existence of a solution in the case that f is the identity, while
the other monad laws are derived from uniqueness for two other choices of f.
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Furthermore, it is shown there that “substitution is for free” for both initial
algebras as well as—maybe more surprisingly—for (the inverse of) final coalgebras:
if the initial algebra, resp. terminal coalgebra, of a given signature functor exists,
then it, resp. its inverse, can be augmented to a substitution system (for the former
case, and in order to easily use generalized iteration [I3], it is assumed that the
functor — - Z has a right adjoint for every endofunctor Z). Indeed, it was one of the
design goals of the axiomatic framework of heterogeneous substitution systems to
be applicable to non-wellfounded syntax as well as to wellfounded syntax, whereas
related work (e.g., [I5, [5]) frequently only applies to wellfounded syntax.

Examples of substitution systems are thus given by the lambda calculus, with
and without explicit flattening, but also by languages involving typing and infinite
terms.

The goal of the present work is twofold:

Firstly, we extend the work by Matthes and Uustalu [23]; in particular, we
introduce a natural notion of morphisms of heterogeneous substitution systems,
thus arranging them into a category. We then show that the construction of a
monad from a heterogeneous substitution system from [23] extends functorially
to morphisms. Moreover, we prove that the substitution system obtained in [23]
by equipping the initial algebra with a substitution operation, is initial in the
corresponding category of substitution systems. This makes use of a general fusion
law for generalized iteration [I3]. Moreover, we prove that the property of being
initial in the category of algebras lifts to initiality of the associated substitution
system in the corresponding category. As an example of the usefulness of our
results, we express the resolution of explicit flattening of the lambda calculus as
a(n initial) morphism of substitution systems.

A second part of our work is the formalization of some of our results in univalent
foundations, more specifically, building upon the UniMath library [I]. This basis
of our formalization is suitable in that it provides extensionality (functional and
propositional) in a natural way and hereby avoids the use of setoids that would
otherwise be inevitable; indeed, since our results are not about categories in ab-
stracto but use general categorical concepts in more concrete instances such as the
endofunctor category over a given category or its extension by a “point”, we need
extensionality axioms for the instantiation. We profit from the existing category
theory library [7] in UniMath.

Related work. Related work is extensively discussed in Matthes and Uustalu’s
article [23].

In the meantime, monads and modules over monads, have been used by Hirscho-
witz and Maggesi [16, [I7] to define models of syntax, and to give a categorical
characterization thereof.

The notion of signature introduced in [23] and formalized in the present work is
similar to that employed in Hirschowitz and Maggesi’s most recent work [I8]. One
difference is that we do not, in the present work, insist on our signature functor to
be w-cocontinuous, since we do not worry about the existence of initial algebras, but
assume them to exist. In our follow-up work with Mértberg [8] on the construction
of initial algebras in sets, however, this condition will be of the essence.

Monads and modules over monads can also be used as the basis, the “raw syntax”,
from which dependently typed theories are carved out, as exhibited by Voevodsky
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[30]. Our formalization provides one of the many steps involved, providing a monad
structure on an initial algebra of a rank-2 endofunctor.

Synopsis. In Section [2| we first give a brief overview of the univalent foundations
we work in. Afterwards, we review the definition of categories in those foundations,
and finally, we show how the foundations are realized in the proof assistant C0Q.

In Section [3] we define a few basic concepts and introduce notation.

In Section [4] we present “Generalized Iteration in Mendler-style”, and a fusion
law satisfied by this form of iteration. The presented results will be used in Section
ik

In Section [5] we review the notion of heterogeneous substitution system. Af-
terwards, we define a category of substitution systems and prove a few properties
about that category.

In Section [6] we state one of the main results of [23], the construction of a monad
from a substitution system. We then prove that the map thus constructed extends
to morphisms and yields a faithful functor.

In Section [7] we state another of the important results of [23]: the construction of
a substitution system from an initial algebra via Generalized Iteration in Mendler-
style as presented in Section [dl We show that the obtained substitution system is
again initial, using the fusion law stated in [4]

In Section [8] we construct a particular morphism of substitution systems, the
underlying map of which “computes away” explicit substitution of lambda calculus.

Most of the results presented in this article, both by Matthes and Uustalu [23]
and our new results, have been formalized, based on the UniMath library [I]. More
precisely, all results except for Theorem and Lemmas and are proved in
our formalization; Section [J] provides some technical details about our library.

2. UNIVALENT MATHEMATICS

The original article [23] is written without referring to a specific foundation of
mathematics. Indeed, the authors use purely categorical methods to derive their
results.

Our analysis and continuation of that article takes place in a type-theoretic foun-
dation, more specifically, in a type theory augmented by Voevodsky’s Univalence
Axiom. The resulting theory, to which we refer by the name “HoT'T” in this article,
is extensively described elsewhere [29]; we do not attempt to give a comprehensive
introduction to HoTT or to the Univalence Axiom in this article. Instead, here we
focus on some of the salient features of HoTT and indicate why they are important
to us.

2.1. About univalent foundations. By “univalent foundations” we refer to an
intensional Martin-Lof type theory (IMLTT) augmented by Voevodsky’s univalence
axiom. In the following, we give a brief overview of the type constructors available
in univalent foundations, and a technical statement of the univalence axiom.

Technically, the univalent foundation we work in is a dependent type theory. For
a dependent type B over A, written x : A F B(x), there is the dependent sum
> (2:4) B(@), elements of which are dependent pairs (a, p) where a : A and p : B(a).
The type H(I:A) B(x) is the type of dependent functions from A to B, that is, a
function f : [],.4) B(z) maps a : A into the type B(a).
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Special, non-dependent, cases of the aforementioned constructors are the carte-
sian product A x B and the function type A — B.

For any type A and a,b : A elements of A, there is the Martin-Lof identity type
a =4 b of “(propositional) equalities” between a and b. We often omit the subscript
A and hence simply write a = b.

One of the most salient features of univalent foundations is the univalence axiom.
Intuitively, it says that any construction expressible in intensional type theory is
invariant under equivalence of types. What is equivalence of types? The reader
can think of it as isomorphism of types: two types A and B are isomorphic if there
are maps f: A— B and g : B — A such that both composites fog and go f are
pointwise equal (with respect to propositional equality) to the identity function.
While the definition of equivalence is more refined than that of an isomorphism of
types, it is the case that any isomorphism gives rise to an equivalence, that is, two
types are isomorphic if and only if they are equivalent. The univalence axiom is
stated for a particular given universe. Define, for a fixed universe U, the canonical
map

idtoeqv : H A=B—~A~B
A,B:U
from identities to equivalences between A and B; it is defined by identity elimina-
tion, mapping the reflexivity term refl4 : A = A to the identity equivalence on A.
The universe U is called univalent if for any A and B in U, the map idtoeqv, g is
an equivalence.

The univalence axiom has a number of desirable consequences—provable inside
the theory—which can be subsumed by the term “equivalence principle”: The equiv-
alence principle says, intuitively, that reasoning about mathematical objects should
be invariant under an appropriate notion of “equivalence” for those objects. In the
foundation we work in, the equivalence principle can be proved for function types
(function extensionality), for mathematical structures such as groups and rings [14],
and for categories [T7].

A second salient feature of univalent foundations is its internal notion of propo-
sitions and sets. A type A is called a proposition if it satisfies the (propositional)
“proof irrelevance” principle, that is, if one can construct a term of type

isProp(A) := H =y .
T,y A

Furthermore, a type A is called a set if all of its identity types are propositions,
that is, if one can construct a term of type

isSet(A) := H isProp(z = y) .
z,y: A
These two definitions are actually special cases of a more general definition of
homotopy levels of types. However, the general definition will not be of use in
this article, and can be consulted in [29]. We call proposition any type that is
a proposition in this sense, that is, any element of Prop := Z(X:M) isProp(X), and
similarly for sets.

2.2. Category theory in univalent foundations. Some category theory in uni-
valent foundations has been developed in [7]. A category C is given by

e a type Cy of objects;
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e for any a,b : Cy, a type C(a,b) of morphisms from a to b;

e for any a : Cp, an identity morphism id(a) : C(a,a);

e for any a,b,c : Cy, a composition function C(a,b) — C(b,c) — C(a,c),
written f+— gr— go f;

e for any a,b: Cy and f : C(a,b), we have f0|d(a) = fand id(b)o f = f;

e for any a,b,c,d : A and f : C(a,b), g : C(b,¢c), h : C(e,d), we have
ho(gof)=(hog)of.

There is an important difference between categories as usually formalized in
intensional type theory and categories as considered in [7]: in intensional type
theory, categories are usually defined to come with a custom equivalence relation
on the types of morphisms, which is to be read as equality relation on morphisms,
specified for each category individually (see, e.g., [20], [6, Chapter 6]). This notion
of category is sometimes referred to by “E-categories” [27].

In the formalization of 7], which takes place in univalent foundations, however,
the authors consider morphisms of a category modulo equality as given by the
identity type. That this is feasible is due to the extensional features that the
univalence axiom adds to type theory, in particular, function extensionality.

The notion of category is actually more refined in [7]; two conditions must be
satisfied by a category:

(i) Its hom-types C(a,b) need to be sets. This is necessary for the axioms—
which talk about equality of arrows—to be propositions.

(ii) Secondly, in a category, the type of (propositional) equalities (as given by
the Martin-Lof identity type) between any two objects must be equivalent
to the type of isomorphisms between those objects. More precisely, to any
category one defines a family of maps

idtoiso : H (a=10b) —iso(a,b) .

a,b:Co

This family of maps is defined by identity elimination, mapping refl, : a = a
to the identity isomorphism on a. A category C is called univalent, if for
any a,b : Cp, the map idtoiso, ; is an equivalence.

The univalence condition for categories states, intuitively, that isomorphic
objects in such a category cannot be distinguished. The equivalence principle for
univalent categories, proved in [7], then says that any two equivalent such cate-
gories cannot be distinguished either, that is, the postulated invariance on objects
(univalence) lifts to the categories themselves. One of the results proved below
shows that our main category of interest is univalent if one starts with a univalent
category (Theorem .

An important remark about naming: in [7], the term “precategory” is employed
for categories that satisfy condition and the term “category” is reserved for
categories that, additionally, satisfy the univalence condition That is, the
authors of [7] use the terms “precategory” and “category” for what we call “category”
and “univalent category” in the present article, respectively. The rationale behind
this naming convention in [7] is that the notion of categories satisfying condition
should be considered to be the right notion of category, for those categories satisfy
the equivalence principle. Furthermore, many important examples of categories do
satisfy this condition, and the condition is closed under a lot of constructions of
new categories from old categories:
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the category of sets and functions between them is univalent;
categories of algebraic structures (groups, rings,...) are univalent;
the functor category [C, D] is univalent if D is;

a full subcategory of a univalent category is again univalent.

More constructions of categories that preserve univalence are given below.

For the purposes of the present article, the univalence condition on categories is
not essential. Indeed, no other result depends on Theorem 20| We thus choose to
de-emphasize the importance of the univalence condition for categories by deviating
from the naming of [7], and instead to make it explicit when considering categories
that satisfy univalence.

2.3. About UniMath. The goal of the UniMath library is to provide a library of
computer-checked mathematics formalized in (a computer implementation of) the
univalent foundations. At this time, there is no computer theorem prover that
implements exactly the univalent foundations as described in Section 2.1} As an
approximation for such a tool, we use the CoQ proof assistant [24] as a base of
UniMath. However, in order to simulate working in the theory described in Section
we do not use the full language CoQ provides, but restrict ourselves to the
language constructors described above. In particular, there is no use of inductive
types besides that of the natural numbers, and of the identity type and the type of
dependent pairs, both of which are not primitives in CoQ, but instead implemented
via the general Inductive vernacular. Furthermore, record types are not used in
UniMath; bundling of structures is instead implemented via (iterated) Sigma types.

The proof assistant COQ has recently gained a form of universe polymorphism
[28]. Unfortunately, this universe management is not powerful enough for our pur-
poses. In particular, it does not implement a form of resizing rule that is needed for
some impredicative encodings of constructions—propositional truncation in partic-
ular, as described by Voevodsky [31, Section 4]. It was thus Voevodsky’s choice to
use a modified version of COQ where the checking of universe levels was deactivated,
and the system hence inconsistent. In the meantime, CoQ has been improved to
allow the disabling of universe checking via a flag -type-in-type passed to the
program, instead of modifying its source code. The UniMath library hence is based
on an unmodified version of CoQ, but is still working in an inconsistent system
for now, while waiting for a new, more suitable universe management to be imple-
mented.

Another difference to standard CoQ is our use of the -indices-matter flag.
This flag ensures that the identity type associated to a type A, lives in the same
universe as the type A itself. By default, without that flag, CoQ would put the
identity type into the universe Prop (not to be confounded with the homotopy
level of propositions explained in Section .

The experimental “Higher Inductive Types” (HITs), described e.g. in the HoTT
book [29], are not used in UniMath.

The univalence axiom is implemented in UniMath via the Axiom vernacular of
Co0Q. This leads to potentially non-normalizing terms, when using the axiom or
any of its consequences—such as function extensionality. We do not experience
any problems related to non-normalization, since we only use the univalence ax-
iom (indirectly by using function extensionality) for proving propositions, not for
specifying operations.
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3. PRELIMINARIES

Categories, functors and natural transformations are defined in [7]. Some more
concepts and notation are defined in the following:

For functors FF : C — D and G : D — &, we write G - F : C — & for their
composition. We use the same notation for composition of a functor with a natural
transformation (sometimes called “whiskering”), as in 7 - F and G - 7.

Definition 1 (pointed functors). Let C be a category. We denote by Ptd(C) the
category of pointed endofunctors on C, an object of which is a pair (X,n) of an
endofunctor X on C and a natural transformation 7 : Ild — X, called a “point” of
X, where Id is the identity functor on C. Morphisms of pointed functors are natural
transformations between the underlying endofunctors that are compatible with the
chosen points. Call U the forgetful functor from Ptd(C) to the underlying endofunc-
tor category [C,C] (in particular, for a morphism f, Uf is f, but its compatibility
with the points is not taken into account in the type information—justifying to
confuse U f and f in the rest of the paper).

Definition 2 (monoidal structure on functor categories). The monoidal structure
on the endofunctor category [C,C| given by composition extends to Ptd(C). We
denote by axyz: X - YV -Z)~(X-Y) - Z,px:ld- X X and A\x : X -ld~ X
the monoidal isomorphisms.

Remark 3. In [23], the authors implicitly assume the monoidal structures on
[C,C] and Ptd(C) to be strict. In univalent foundations, “strict” should mean “the
same modulo definitional equality”; the monoidal structures are not strict for this
notion of strictness. Instead, we need to explicitly insert the isomorphisms (which
correspond to propositional equalities in univalent categories, but that shall not be
of importance in the following). Note, however, that those isomorphisms are given
by families of identity morphisms, and thus do not carry any information at all;
they are merely needed to formally adjust the type of source and target functors
of the natural transformations involved in order to allow composing two natural
transformations which would not be composable otherwise. Indeed, composability
of two natural transformations o : F' — G and 8 : G’ — H depends on G being
definitionally equal to G'.

Definition 4 (algebras of a functor). For an endofunctor F' : C — C, the category
Alg(F) of algebras has, as objects, pairs (X, «) of an object X : Cy and a mor-
phism « : C(FX, X). For a given algebra (X, o), we call X the (algebra) carrier
of the algebra. A morphism f : Alg(F)((X, a), (X’,o/)) is given by a morphism
f:C(X,X’) such that foa=a'o Ff.

Convention 5. We are using the arrow symbol “—” for three different things:
(i) morphisms f : ¢ — d in a category, as shorthand for f : C(c,d) (hence in
particular for natural transformations as morphisms in functor categories);
(ii) functors F': C — D between categories; and
(iii) type-theoretic functions f: A — B.
Information on what the arrow denotes in each occurrence will be deducible from
the context.

Definition 6 (monads). For a category C, the category Mon(C) of monads has,
as objects, triples (7,7, u) of an endofunctor T of C, and natural transformations
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n:ld—=Tand p: T -T — T (using our convention on natural transformations),
subject to the usual monad laws. A morphism f : Mon(C)((T,n,,u), (T, u’)) is
given by a natural transformation f : T — T’, subject to the usual compatibility
conditions.

Notice that we follow [23] in taking monad multiplication p as third component
of a monad and not the binding operation that is more widespread in computer
science literature.

Convention 7. Given d : D and a category C, we call d : C — D the functor that
is constantly d and id; on objects and morphisms, respectively. This notation hides
the category C, which will usually be deducible from the context. In this article, C
will always be D.

4. GENERALIZED ITERATION IN MENDLER-STYLE AND FUSION LAW

In this section we discuss “generalized iteration in Mendler-style” and a fusion
law that one can prove for this iteration scheme. Both the iteration scheme and
the fusion law are used in Section

Lemma 8 (Generalized iteration in Mendler-style (Theorem 2 of [I3] by Bird and
Paterson)). Let C be a category, and let F' : C — C be an endofunctor on C. Suppose
(wF,in) is the initial algebra of F. Let D be another category, and letC : L4 R : D
be an adjunction. Let X : Dy be an object of D, and let

U :D(L—, X) = D(L(F-), X)

be a natural transformation. Then there is exactly one morphism h : L(uF) — X
such that the following diagram commutes:

L(F(uF)) "> L(uF)

h
|

X

We call It%(¥) := h the unique morphism thus specified.

Note that, strictly speaking, the functors occurring in the type of ¥ have to be
the opposites of L and F.

The link with the work by Mendler [25] is not made in the original proof [I3]
of the lemma. The presentation in [I3] is very much oriented towards functional
programming. In their notation, the natural transformation ¥ would be typed as

U VA (LA— X) = (L(FA) —» X) .

The existence of the right adjoint R for L is rather a matter of technical conve-
nience: it can be replaced by asking for the preservation of colimits of chains by F’
and L and the preservation of initiality by L [I3], Theorem 1], but we do not pursue
that alternative in our formalization.

In [23], only a specialized form of generalized iteration in Mendler-style is used
that is called “generalized iteration” (again with no hint to Mendler’s work—see
our remarks in Section [7| on the connection). The specialization consists in taking
only natural transformations ¥ of a specific form (so that ¥ disappears from the
formulation, as explained in [23]). In fact, we do not need the fuller generality of
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generalized iteration in Mendler-style (in Sections [7| and |8) but the formulation of
the fusion law to come next is more natural in the more general setting (no fusion
law was needed in [23] since no morphisms of heterogeneous substitution systems
were considered there).

The next lemma shows a sufficient condition for two applications of the iterator
It(—) to be related:

Lemma 9 (Fusion law). Suppose the data as given in Lemma @ Additionally, let
L' :C — D be a functor, X' : Dy be an object of D, let

v :D(L'—, X") = DL (F-),X")
be a natural transformation with type analogous to that of ¥, and let
®:D(L—,X)— D(L'—,X")
be a natural transformation. Then we have

O, p (Ith(0)) = ItE (0)

!
(I)F#Fo\:[/#p = \I/#FO@#F .

The name “fusion law” is wide-spread in functional programming for means to
eliminate the creation of some extra structure, here the subsequent calculation of
@, for the result It;:( W) of the iteration over pF is “fused” into one single iteration
over uF'—the right-hand side of the conclusion.

The version of this fusion law with X and X’ the same object of D and instanti-
ated to the special situation of generalized folds (see Section @ has been found by
Bird and Paterson [I3] (see right before their Theorem 1). While we will only use
the fusion law for generalized folds (in Section, it is necessary to have the liberty
in choosing X and X’ separately. The proof itself is a matter of verifying that the
left-hand side satisfies the defining equation (embodied in the commuting diagram
in Lemma [8) of the right-hand side. This also settles existence of the right-hand
side, which is why we did not require a right adjoint for L’, which would have
allowed us to invoke Lemma [8] also for ¥’. (In our formalization, we did not imple-
ment this subtlety but require a right adjoint for L’, in order to use the definition
of the It(—) operator underlying the formalization of Lemma [} )

5. THE CATEGORY OF HETEROGENEOUS SUBSTITUTION SYSTEMS

In [23], implicitly there is a notion of signature. Here, we make this definition
explicit and adapt it to the lack of strictness of our monoidal structures on endo-
functors (see Definition [2)) — recall that U “forgets” the points of pointed functors:

Definition 10 (Signature). Given a category C, a signature is a pair (H, ) of an
endofunctor H on [C,C] and a natural transformation 6 : (H—) - U~ — H(—-U~)
between functors [C,C] x Ptd(C) — [C,C] such that

GX,id = H()\)_(l) OAHX
and

Ox,(z'-2,e'¢) = H(Oé)_(,lz/,z) 00x.72/(z,e)° (Ox,(z,e) Z)oux,z'.2 -
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In practice, a signature is given by a family of arities, each arity specifying the
type of a term constructor. The above definition of signature is modular in the
sense that building a signature from arities corresponds to taking an amalgamated
sum. This is explained in detail in Section [8] to which we refer for an example of
signature.

Note that while the definition of signature does not require the base category C
to have coproducts, this is a requirement for most signatures that we consider in
practice, and in particular for the example of Section [ It also is a requirement for
the definition of “models” of that signature, see Definition

Convention 11. From now on, we assume the category C to have (specified)
coproducts. We denote by inlyp: A =+ A+ B and inry g : B — A+ B the maps
into the coproduct. We omit the subscripts of inl and inr when possible without
ambiguity.

Remark 12. The notion of signature introduced in Definition [I0] encompasses
“polynomial” signatures like the ones described in [I5] and [26]. In fact, it is strictly
more general in that it also encompasses the arity of explicit flattening—the Ex-
ample [33] we discuss in detail in Section [§}-that is not captured by the other works
mentioned above.

For a given signature (H, ), we are interested in (Id + H)-algebras (T, «). For
such an algebra, the natural transformation « : Id + HT' — T decomposes into two
[C,Cl-morphisms 0 : |d = T, 7: HT — T defined by

(5.1) n=aoinlggr and T=awoinng gr -

The pair (T,7) is an object in the category of pointed functors (see Definition .

Intuitively, in the case where C = Set, the transformation 7 corresponds to
viewing variables x : X as “terms”, that is, as elements of T X whereas 7: HT — T
represents the recursive constructors specified by H.

Definition 13 (Def. 5 of [23], Heterogeneous substitution system of a signature).
We call (T, «) a heterogeneous substitution system (or “hss” for short) for (H, ),
if, for every Ptd(C)-morphism f : (Z,e) — (T,n), there exists a unique [C,C]-
morphism h: T - Z — T, denoted {f}, satisfying

a-Z n-Z 77

Z+(HT) Z—22 ~T.7 ie, Z T-Z (HT)- Z
id+67,(2,.0) | VO, (z.0)
Z+H(T - Z) h ) n H(T- Z)
id+Hh| . . VR
Z+HT —————=T T HT

For a substitution system (T, «,{—}), we call T its carrier, thus extending the
convention of Definition [l

Notice that the quantification is implicitly also over all pointed endofunctors
(Z,e) on C.

In the following, we sometimes omit the word “heterogeneous” when talking
about heterogeneous substitution systems.

Remark 14. Being equipped with a “bracket” operation {—} is a proposition on
(Id + H)-algebras.
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Notice that we call the operation a bracket operation although we write it with
braces, to distinguish it from the bracket notation used for parallel substitution in
the introduction.

The statement of the following lemma is mentioned, but not proven in [23]:

Lemma 15. The operation {—} is a natural transformation
Ptd(_v (T7 7])) - [C7C](T U—, T) :

Note that the substitution operation given by the bracket is not categorical in
the sense that it is not given by a universal property. This is due to the fact
that we prefer an operational point of view, where things actually compute, over
a categorical one. Having substitution given as an operation rather than via a
universal property is also crucial for obtaining a monad, that is, for the main
theorem of [23, Thm. 10].

Definition 16 (Category of substitution systems). Given (H,#) as before, the
category hss(H,0) has, as objects, heterogeneous substitution systems as in Def-
inition A morphism of substitution systems is an algebra morphism that is
compatible with the bracket {} on either side. In terms of n and 7 as defined in
Equation (5.1)), a morphism from (T,n,7,{}) to (T",n’,7',{}’) is a natural trans-
formation 8 : T — T such that the following diagrams commute:

4" ar—-—-7 7.z p

Nl e

T HT ——=T' T -7 ——T
™ {Bof}

Here, the first and second diagram express the property of 8 being an algebra
morphism, and the third diagram expresses compatibility of 8 with substitution on
either side.

Note that the composite So f in the last diagram is the composite in the category
of pointed endofunctors, that is, the definition of that composite uses commuta-
tivity of the first diagram.

Remark 17. Similarly to Remark [[4] being compatible with the brackets on either
side is a proposition on algebra morphisms.

We now study the category hss(H, ) of substitution systems associated to a
signature in more detail, in particular with respect to the particular foundations
we are working in. The main objective of the rest of the section is Theorem [20} the
category hss(H,#) is univalent if the base category C is.

Remarks|14) and (17| together show that the category of hss(H, 8) can be obtained
as a subcategory of the category of (Id + H)-algebras in the following sense:

Definition 18. A subcategory of a category C is given by a predicate P : Cy —
Prop and a family of predicates P, : P(a) x P(b) x C(a,b) — Prop that is closed
under identity and composition in the sense that
e for any a : Cy satisfying P, have a proof of P, ,(id(a)) and
e for any a, b, c: Cy satisfying P, and for any f : C(a,b) and g : C(b, ¢), have
amap Pop(f) = Poc(9) = Paclgo f).
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We suppress the arguments of type P(a) and P(b) when discussing the predicate
P, (f), since those arguments are unique.

A subcategory of C is—better, gives rise to—a category Cp; objects are of the
form Z(m:co) P(x), and morphisms (f,py) : Cp((a,pa), (b,pb)) are pairs of a mor-
phism f : C(a,b) of C together with a proof p : P, 5(f).

Given a signature (H, 0), define a subcategory of the category of (Id+ H)-algebras
via the predicates of Remarks[14] and The resulting category is clearly isomor-
phic to hss(H,0) in the sense of [7, Definition 6.9].

Note that isomorphic categories are equal modulo propositional equality [7), Def-
inition 6.16], and hence share all properties definable in type theory. We thus give
up the distinction between the category hss(H, ) and the subcategory of (Id + H)-
algebras it is isomorphic to.

A subcategory is called replete, when it is closed under isomorphism, that is,
when, for f :isoc(a,b) and P(a), it follows that P(b) and P, ;(f).

Lemma 19. The category hss(H, 0) is a replete subcategory of the category of (1d +
H)-algebras.

Proof. Given a substitution system (T, o, {—}), an algebra (T”,a’) and an algebra
isomorphism S : (T,a) = (T",¢'), we define a bracket {—} on (77, ') as follows:
for a given pointed morphism f : (Z,e) — (T',7’), we define {f}’ as the composition

(fY =Bo{floflof™tZ : '« T+ T -Z«T Z
The morphism {f}’ thus defined satisfies the equations of Definition

f=AfYon 2z
{(fYor - Z=1"0cH{fY)o0r (ze ;

the calculation is routine. Concerning the uniqueness of {f}’, suppose h such

that these equations with h in place of {f}’ are satisfied. We have to show that
h=pBo{B tof}opB~t.Z Equivalently, one can show that

(5.2) (B lofy=p""tohop-Z,
which follows from the uniqueness of {—}: it suffices to show that the right-hand
side of satisfies the equations involving 1 and 7. We thus have equipped
(T", ') with a (necessarily unique) substitution operation.

The fact that § is compatible with {—} and {—}’, and hence in the subcategory,
is a routine calculation. O

Theorem 20. The category hss(H, 0) is univalent if C is.

Proof. Combine Lemmas and More precisely, if C is univalent, so is
[C,C], and thus also the category of (Id+ H)-algebras on [C, C]. Finally, the category
hss(H, 6) is univalent as a replete subcategory of that of (Id + H)-algebras. O

The following lemmas state closure properties of the property of being univalent:
Lemma 21. The category of algebras of a functor F : C — C is univalent if C is.

Proof. This lemma is proved in the file CategoryTheory/FunctorAlgebras.v of
the UniMath library. O

The next lemma is originally due to Hofmann and Streicher [19]; and is also
proved in Thm. 4.5 of [7]:
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Lemma 22. The category of functors [C, D] is univalent if the target category D
18.

The category of hss contains all the isomorphisms of the category of (Id + H)-
algebras, for which source and target are substitution systems. This is sufficient to
inherit univalence from the category of algebras:

Lemma 23. Let C be a univalent category and let P : Co — Prop and P,y :
C(a,b) — Prop define a subcategory Cp of C. Then Cp is univalent if, for any
objects (a,pq) and (b, pp) of Cp, and for any isomorphism f : isoc(a,b) from a to b,
we have Py p(f).

In particular, replete subcategories of univalent categories are univalent.

Proof. For (a,p,) and (b, py) objects of Cp, we have

(aapa) —Cp (b7pb) ~ a=cb x~ isoc(a,b) = iSOCP((aapa)v(b’pb))

and this equivalence, from left to right, is equal to idtoiso. ([

This concludes our study of the category of substitution systems associated to a
signature.

6. FROM SUBSTITUTION SYSTEMS TO MONADS

One of the most important results of Matthes and Uustalu’s work [23] is the
construction of a monad from any substitution system:

Theorem 24 ([23], Thm. 10). If an (Id + H)-algebra (T, @) forms a heterogeneous
substitution system for (H,0) for some 0, then (T,n,{id(r.)}) is a monad.

See Section [9] for some comments on technical challenges we had to overcome for
the formalization of its proof.
It is natural to ask whether this map extends to morphisms, and indeed it does:

Theorem 25. The map from heterogeneous substitution systems to monads defined
in [23], Thm. 10] is the object map of a functor hss(H,0) — Mon(C).

Proof. Given any morphism 8 : (T,n,7,{}) = (T",n',7',{}’) of hss, the underlying
natural transformation 5 : T — T’ needs to be proven compatible with the multi-
plications p” := {id(r,,)} and 1T’ of the monadic structures on 7' and 7" defined
in [23, Thm. 10]. This is an easy consequence of the compatibility of 5 with {} and

{} O

The functor from substitution systems to monads is faithful, but not full. Intu-
itively, the lack of fullness stems from the fact that the axioms of a monad morphism
do not specify compatibility of the mapping with the “inner nodes” of an expression,
but only at the leaves, that is, in the case of a variable.

Lemma 26. The functor of Definition 25 is faithful.

Proof. Two parallel monad morphisms are equal if their underlying natural trans-
formations are, and the analogous statement is true for morphisms of substitution
systems. (I
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Remark 27. The functor of Definition [25]is not full. For instance, choose C = Set,
and take a signature with two copies app and app’ (of the same arity) of an “ap-
plication” constructor, see Definition [31] in Section [8] Take the initial substitution
system associated to that signature (as constructed via Theorems [28|and [29]in Sec-
tion , and define an endomorphism on it that maps app to app’ recursively, and
is the identity on the other constructors. This yields a monad morphism, but not
a morphism of substitution systems; indeed, the second diagram of Def. [I6] does
not commute—any endomorphism on that substitution system must be the identity
morphism.

7. LIFTING INITIALITY THROUGH A FUSION LAW

The starting point of this section is a result from [23], which gives one way
to define substitution systems and which comes from a very specific instance of
Lemma |8 As a first instantiation step, take in that lemma [C,C] for C and D and
the reduction functor — - Z for L, for any endofunctor Z of C. This is the general
situation of the “gfolds” of Bird and Paterson [I3], and (the carriers of) the corre-
sponding initial F-algebras are called “nested datatypes” [11]. As Bird and Paterson
recall, the assumption of having a right adjoint to the reduction functor means that
right Kan extensions along those Z exist. In the context of functional program-
ming with impredicative polymorphism, these right Kan extensions even exist in
a computational way (although the full categorical properties of Kan extensions
are not reflected computationally) [4]. We will not further develop the categorical
semantics of those programming languages. The previous remarks should make it
plausible that the following theorem rests on “reasonable” technical conditions. If
program verification is aimed at in an intensional setting, replacements for the cat-
egorical notions have to be found, and yet different schemes of generalized iteration
have to be studied in order to combine expressivity, termination guarantees and
program verification in the same framework [22] (using Coq very differently from
the UniMath approach).

Theorem 28 ([23], Thm. 15). Let (H,0) be a signature. If [C,C] has an initial
(Id 4+ H)-algebra and a right adjoint for the functor —- Z : [C,C] — [C,C] exists for
every Ptd(C)-object (Z,e), then (T, ) defined by

(Tv a) = (“(M+ H)a inﬂ-l-H)

is a heterogeneous substitution system for (H,0).

The proof of this theorem is by identifying, for a given f : (Z,e) — (T,n), the
morphism {f} as an instance of Lemma [8] both for the existence and uniqueness
property. The obvious part of the instantiation is the choice of parameters men-
tioned above, and by setting F' := Id + H. The essential ingredient for getting a
morphism {f} of type uF-Z — T (here, T is even pF) is a natural transformation
V¢ whose typing could sloppily be written as

U, VX [C,CL.(X-Z—T)— (FX-Z—-T) .

The type of ¥ suggests the following problem-solving method: The original prob-
lem is that of finding a morphism of type uF - Z — T. We abstract away from
wF and replace it by an arbitrary endofunctor X : [C,C]. For this arbitrary X, we
have to extend a purported solution for parameter X, hence of type X - Z — T,
to a solution for parameter F'X, hence of type FX - Z — T. Of course, this has
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to be done naturally in X, as required in Lemma [8] So, passing naturally from X
to F'X as parameter, the lemma even yields a (unique) solution for the least fixed-
point of F' as parameter. The continuity properties behind this method already for
(co-)inductive types have been deeply explored by Abel [2] and extended to nested
dataypes later [3].

This is the essence of schemes in Mendler’s style [25]: passing from a solution in
parameter X to a solution in parameter F X uniformly (in Mendler’s original work,
this was plainly universal quantification over a type variable X, in the categorical
setting, this is achieved by naturality), one is guaranteed a solution in parameter
uF. Lemma [§]is an instance of that idea, hence the name generalized iteration in
Mendler-style.

Mendler-style gives great liberty: were are free in choosing Wy of the required
type (implicitly asking for naturality), but there is little guidance in finding the
right one for our purpose. Guidance would, e.g., come from asking for an algebra
structure on the target endomorphism 7. Therefore, we instantiate the lemma
further to obtain what is called “a special case of generalized iteration” by Matthes
and Uustalu [23]E| It consists in requiring an endofunctor F’ on [C,C], a natural
transformation 6’ : (F—)-Z — F'(— - Z) and an F'-algebra ¢ : F'T — T on T,
and in putting them together to obtain

Uy (X)(h:X -Z—T)=¢poFhoby :FX-Z—T .

Its use in our present situation is then with F' := Z + H, 0 := id + 0x (7,
and ¢ := [f, 7], using the datum 6 of the signature and the H-algebra 7 that is
generically derived from « (see before Definition .

We remark that all of this is not optimal from a progammer’s point of view (the
question is then not only of soundness but of efficiency of the traversals through the
data structures) and that there is the more refined notion of “generalized Mendler
iteration” [4] (called GMIt¥) as an efficient way out. The crucial idea is to generalize
the problem further than finding a solution of X - Z — T for parameter X = pF.
An h : X -Z — T consists of morphisms hy : X(ZA) — TA for every A : Co,
and generalized Mendler iteration asks even for operations hy : XB — T'A for any
B :Cyand f: B— ZA. Taking for f the identity morphism on ZA, one gets the
desired components of the solution in the end. The gain in efficiency comes from
the combination of a fold and a map in this scheme—enforced just by these types
in the polymorphic formulation of [4].

Also for generalized Mendler iteration, there is a formulation in more conven-
tional terms of algebras, called “generalized refined conventional iteration” [4], which
captures in particular the efficient folds of Martin, Gibbons and Bayley [2I]. For
generalized Mendler iteration, there is also a means of verification in usual inten-
sional COQ, using category theory only as a motivation and not as the mathematical
framework [22].

We augment the previous theorem by showing that the constructed substitution
system is initial:

Theorem 29. The substitution system (T, o, {}) constructed in Lemmal[2§ is initial
in hss(H,0).

IThe instantiation with — - Z for L can also be formulated in a less homogeneous setting where
not only endofunctor categories intervene [23], Section 2.3].



HETEROGENEOUS SUBSTITUTION SYSTEMS REVISITED 17

In order to prove Theorem [29] it suffices to show that, for any given substitution
system (77, ', {}’), the initial morphism of algebras

(T, o) = (T, ")

is compatible with the operations {} (defined in the proof of Lemma and {}.
That is, we need to show that, for any f : (Z,e) — (T,n),

(7.1) lo{f}={lof} o(-2) .

Using the fusion law (Lemma E[), we show that both sides of (7.1)) are equal to
the application of an iterator. More precisely, we use the fusion law for the left-
hand side, knowing the explicit definition of { f} as an iterator, described above, to
establish equality with Itz # (¥} ), where we define

Ui (X)(h:X-Z—=T):=[of7oHhobx o) : FX-Z =T .

Once the premisses of the fusion law established, we can show equality with the
right-hand side of (7.1)) by verifying that the defining equations of It (¥, ) are
fulfilled by the right-hand side.

8. A WORKED EXAMPLE: FLATTENING OF EXPLICIT SUBSTITUTION

In practice, a signature is often a family of arities, each arity specifying the type
of one term constructor. A typical example is a typeful version of de Bruijn indices
for pure (untyped) A-calculus, where, intuitively, the equation

TA=A+TAxTA+T(1+ A)

has to be solved, giving in T'A the set of A-terms having free variables among
A (cf. the introduction), where the last summand represents A-abstraction that
abstracts the variable corresponding to the extra element of 1 + A. This example
is developed in [23] but originates in [9] 12].

In our formalism (that of [23]), we do not need to distinguish between arities
and signatures. Intuitively, an arity is a signature that is not obtained as a proper
sum of two other signatures. In particular, a single arity constitutes a signature,
and we can “glue” signatures together to obtain a new signature:

Lemma 30 (Sum of signatures). Let (H,0) and (H',0") be two signatures. Then
(H+ H',0+0") is a signature.

This lemma is important for our main example: indeed, we consider two signa-
tures, where one is obtained from the other by extending the language (better: its
signature) by one additional term constructor (better: arity).

To this end, we need the base category C to come equipped with some extra
structure: for the remainder of this section, we assume C to have (specified) prod-
ucts, coproducts and a terminal object. An example of such a category is the
(univalent) category Set of sets (see Section [2), which has all limits and colimits.

We continue the case study in [23] on A-calculus without and with a form of
explicit substitution—*"explicit flattening”. In order to do so, we first present the
functors H and natural transformations 6 corresponding to the arities of applica-
tion, abstraction, and explicit flattening, respectively:

Definition 31 (application). The signature of application is given by pointwise
product, inherited from the base category C:

HAP(T):=T xT .
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The natural transformation §”PP is given pointwise by the identity,

000 (X xX)-Z = (X-Z)x(X-2) .

The fact that the identity suffices here corresponds to the triviality of first-order
operations in substitution (which is plainly homomorphic on those operations).

Definition 32 (abstraction). Abstraction in our context is defined by precompo-
sition with a coproduct, corresponding to “context extension”

H"S(T) := T - option ,

where option(X) := 1+ X represents the context X extended by one distinguished
element inly y(x). The “strength” 6 is defined as

0% 7.0 (A) i= X[erpaoinly g, Zinry 4] : X(1+ ZA) = X(Z(1+ A)) .

The defined strength embodies the usual lifting needed for substitution in de
Bruijn representations of A-abstraction.

Definition 33 (explicit flattening). The flattening signature is defined by selfcom-
position,
HFIatten (T) —T.T
L )
and the corresponding strength requires the unit e of the pointed endofunctor (Z, e)
to be inserted in the right place:

95('3(“261) =X-e-X-Z:X-X-Z—-X-Z2-X-7.

Note that the flattening signature cannot be dealt with in a framework with
a fixed enumeration of variable names and shows, already on the syntactic side,
the most simple case of “true nesting” in nested datatypes (see, e.g., [4]). Notice
that the highly parameterized type already suggests the right definition. For its
mainly used instance 9;'?&‘?%, with T" and n components of the obtained substitution
system, its type T — T* hardly suggests a canonical definition.

These signatures are now combined, as per Lemma to obtain the signatures
we are mainly interested in:

Definition 34 (A-calculus). The signature A is obtained as the sum of the signa-
tures of Defs. [31] and

Definition 35 (A-calculus with explicit flattening). The signature A* is obtained
as the sum of the signatures of Defs. [34] and [33]

For the purpose of this example, we assume the signatures A and A* to have
initial substitution systems. By Lemma we get those if we assume that their
underlying initial algebras exist. (For a remark on the construction of initial alge-
bras, see Section [10]) We denote the initial substitution systems by (Lam,a, {})
and (Lam*, a*, {}*), respectively. Intuitively, they solve the equation in T" given in
the first paragraph of this section, and the following in T”, respectively:

T'"A=A+T AxT' A+ T (optionA)+T'(T'A) .

Why is Lam* supposed to represent A-calculus with explicit flattening? Coming
back to parallel substitution on T' (= Lam), as mentioned in the introduction, we
may study the substitution rule f := Az7B.z of type TB — TB. Then, up :=
[f] : T(T'B) — TB can be interpreted as doing the following: in a term whose free
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variables have as names terms over B, those names are replaced by themselves,
but now seen as terms that are “integrated” into the result term. In other words,
up removes the “cross section” between the trunk of the term and the term-like
variable leaves. Invoking Theoremfor (Lam, , {}), one obtains p := {id(amn)}
Lam - Lam — Lam as monad multiplication on the monad of A-terms, and the
above-mentioned parallel substitution can then be derived generically, so as to
obtain its components pp with the described behaviour. In other words, the generic
notion of monad multiplication appears to have the behaviour of “flattening” a
nested term structure of type T(T'B) into one of type B (for every B). Now, Lam*
even has a term constructor, corresponding to the injection of the last summand
of the above equation into the left-hand side, and so, the constructor is of type
Lam#* - Lam* — Lam*, which is of the same type as the monad multiplication that
is obtained by invoking Theorem [24] for (Lam*, o* {}*). As a constructor, this
operation does not denote the result of the flattening (here, even for the extended
syntax), but is a formal syntactic element and is thus termed an “explicit flattening”.
Already in [23], it was shown that those explicit flattenings can be resolved by
evaluating any term with explicit flattenings (from Lam*A for some A) into a term
without explicit flattenings (in LamA). We continue this case study by using our
extra categorical structure on substitution systems.

In the following, our goal is to construct a morphism of substitution systems
from Lam* to Lam. This is not quite precise and needs refinement, since a priori,
those two substitution systems are not in the same category. More precisely, we are
going to build a substitution system for the signature A*, the underlying carrier of
which is the carrier Lam. To this end, we need to construct two ingredients: firstly,
we need a natural transformation p-™m : HF2%e"(Lam) — Lam in order to obtain
a structure of Id + A#-algebra on Lam. Secondly, we equip this Id + A*-algebra
with a bracket operation—which, of course, must be shown compatible with the
Id + A#-algebra structure in the sense of the diagram of Definition

Once this is done, we obtain, by initiality, a morphism of hss from the initial
hss of A" to the newly constructed one, the underlying algebra morphism of which
is a morphism from Lam* to Lam that “does the right thing” mapping explicit
substitution to substitution.

Definition 36 (representation of flattening on Lam). Let pt™ : HFlatten(Lam) —

Lam be given by

p-™ = {idiam} : Lam - Lam — Lam .

Lemma 37 (substitution system of A on Lam). The pair (Lam,[ca, u-*™]) is an

Id + A*-algebra. (Here, we have implicitly used associativity of the coproduct.)
We define a bracket operation {}F'3%e" on this algebra by setting, for (Z,e) and
f:(Z,e) = (Lam,n),

{f}FIatten = {f} .

This assignment yields a bracket operation on that algebra, and hence a substitution
system (Lam, [a, pt2m ], {}F12ten) for the signature A",

Proof. We need to show that {—}Flatten gatisfies the equations of a bracket operation,
see Definition The diagrams can be checked for any “arity” individually, and
for n, App and Abs, the equations to check are exactly those satisfied by Lam as
a substitution system for the signature A. The only non-trivial equation to check
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states that {—}Fl2%en is compatible with p*™; we have to check that
{f}FIatten o MLam .7 = ,uLam o Lam({f}Flatten) o {f}Flatten Lam-Zolam-e-Lam-Z

We omit the details of this calculation here, and refer instead to the formal proof.
O

We thus have two objects in the category hss(A*), an initial object with underly-
ing carrier Lam*, and the object constructed in Lemma[37 with underlying carrier
Lam. By initiality, we obtain a unique morphism of hss in this category.

Definition 38. We call eval : Lam* — Lam the morphism of substitution systems
obtained by initiality. This map sends application and abstraction to themselves,
respectively, and it sends the explicit flattening operator to its “evaluation”, that
is, to a “flattened” term.

This morphism of hss gives rise, via functoriality of the monad construction
(T heorem7 to a monad morphism; it is this morphism that is studied in Example
16 of [23]. Here, we have shown how that monad morphism arises from a morphism
of substitution systems.

9. ABOUT THE FORMALIZATION

Most of the results presented in this article have been formalized, based on the
UniMath library [I]. More precisely, all results except for Theorem [20| and Lemmas
[23] and [I9] are proved in our formalization.

Our formalization started out as an independent repository, but has since been
integrated into UniMath, as a package (subdirectory) called SubstitutionSystems.
The formalization can be inspected by cloning the UniMath repository on Github,
https://github.com/UniMath/UniMath) following the installation procedure de-
scribed there.

The UniMath library being under active development, the organization of the
packages is going to change: some code will be moved to other, more fundamental,
packages. For the purpose of inspection of the package SubstitutionSystems as
described here, it is hence convenient to stick with a particular commit of the git
repository, e.g., commit lead8la. The sections of this article roughly correspond
to files in the formalization:

GenMendlerIteration.v: corresponds to Section [4}
SubstitutionSystems.v: corresponds to Section
MonadsFromSubstitutionSystems: corresponds to Section [6}
LiftingInitial.v: corresponds to Section m

The code corresponding to Section [§]is spread over several files:

SumOfSignatures.v: corresponds to Lemma [30}
LamSignature.v: corresponds to Definitions 31] 32] B3}
Lam.v: corresponds to the rest of Section [§

To account for the evolution that is going to happen in the UniMath library, we
provide an “interface” file
UniMath/SubstitutionSystems/SubstitutionSystems_Summary.v
containing pointers to the most important formalized theorems.
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TABLE 1. Lines of code of the library SubstitutionSystems

spec proof comments
32 59 10 AdjunctionHomTypesWeq.v
90 165 102 Auxiliary.v
28 14 8 EndofunctorsMonoidal.v
70 124 27 FunctorsPointwiseCoproduct.v
70 113 7 FunctorsPointwiseProduct.v
91 116 30 GenMendlerIteration.v
28 21 7 HorizontalComposition.v
79 407 72 LamSignature.v
106 249 57 Lam.v
236 518 61 LiftingInitial.v
123 423 76 MonadsFromSubstitutionSystems.v
26 0 12 Notation.v
15 4 9 PointedFunctorsComposition.v
36 61 11 PointedFunctors.v
42 81 11 ProductPrecategory.v
22 0 10 RightKanExtension.v
82 211 40 Signatures.v
155 326 53 SubstitutionSystems.v
69 170 13 SumOfSignatures.v
1400 3062 616 total

9.1. Statistics. Our library consists of a bit more than 4400 loc, plus 600 lines of
commentg] Details are given in Table[l|-numbers are taken from commit lead81ia.
For comparison, for the same commit, the whole of UniMath, including our library,
consists of about 37000 lines of code:

spec proof comments
15053 22389 3987 total

9.2. About performance: transparency vs. opacity. One important aspect
of computer proof assistants that are based on type theory is computation. Com-
putation enables us to obtain some equalities for free. For instance, in our for-
malization of (co)products in a functor category [C,D] from (co)products in the
target category D, the (co)product of two functors F' and G computes pointwise
to the (co)product of the images, that is, for instance (F ©¢,p) G)(c) = Fc®p Ge.
Here, the notation = denotes definitional equality a.k.a. computation. This is only
true for a specific construction of (co)products in functor categories, of course; in
general, one can only expect (F @©j¢ p)G)(c) ~p Fc®pGe. However, in order to
keep the complexity of our proofs manageable for us, having definitional equality
instead of isomorphism was crucial. We hence had to keep many category-theoretic
constructions, such as (co)products in functor categories, transparent. Techni-
cally, this amounts to closing a proof using Defined. instead of Qed. in the CoQ
proof assistant.

2Note that the organization of the files is going to change over time, due to reorganization of
the library. In particular, contents may get moved to other parts of UniMath in the future.
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This lack of opacification, however, results in terms getting very large, making
type checking more costly for the machine. The transparency vs. opacity issue can
hence be restated as an issue of human vs. machine friendliness.

Our approach to this issue was to opacify all the terms that we could afford
opacifying, either by moving them into lemmas by themselves, closing with Qed.,
or by enclosing the corresponding sequence of tactics producing that term into an
abstract (...) block. The inconvenience of the latter method is that the block
enclosed by abstract must be one tactic (composed using the chaining semicolon),
not a sequence of tactics. This method is hence only feasible for small subproofs.

Our library is quite slow to compile, due to the rather large proof terms arising
when working with rank 2 functors: some Qed. take very long to check. A sig-
nificant speedup was obtained in the file MonadsFromSubstitutionSystems.v by
setting the option Unset Kernel Term Sharing., the workings of which are un-
known to us. However, this option proved useless or even increased compile time in
other files, and is hence only used in that one file. It is unclear to us why this option
is beneficial in that file and only there, and whether there is a guiding principle
saying when this option is useful.

In our library, there is a slight duplication of code: the UniMath library contains
a proof that colimits lift to functor categories from the target category, formal-
ized by Ahrens and Mortberg [8]. This result could in principle be applied to lift
coproducts and products, both of which are formalized as specific colimits. How-
ever, it turned out that this approach made typechecking unfeasibly slow: indeed,
the first files making use of coproducts in functor categories would stop compiling
when that construction of coproducts in functor categories was plugged in. In-
stead, we provide a manual lifting of (co)products into functor categories in the files
FunctorsPointwiseProduct.v and FunctorsPointwiseCoproduct.v, with which
typechecking is reasonably fast. The latter construction applies similar principles
of opacification as the general lifting of colimits; it is hence unclear to us why the
latter does perform so much better than the former. We hope to clarify this issue
in future work [§].

10. CONCLUSIONS

We presented, in a univalent foundation, some new results about the heteroge-
neous substitution systems introduced by Matthes and Uustalu [23], and showed
how to obtain initial substitution systems (such as lambda calculi) from initial
algebras using generalized iteration in Mendler-style.

We have not studied the construction of initial algebras in univalent foundations;
this is the subject of a forthcoming work by Ahrens and Mértberg [g].

Thanks to Paige North for discussion of the subject matter, and to Anders
Moértberg for providing feedback to a draft of this article. Thanks to the rest of
the UniMath team, for providing a sound base for formalization, and, specifically,
to Dan Grayson and Anders Mortberg for helping maintain the code described in
this article.
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