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ABSTRACT

Classical within-subject analysis in functional Magnetic Resonance
Imaging (fMRI) relies on a detection step to localize which parts
of the brain are activated by a given stimulus type. This is usually
achieved using model-based approaches. Here, we propose an al-
ternative exploratory scaling analysis. By nature, scaling analysis
requires the use of long enough signals, with high frequency sam-
pling rates. Recently, 3D Echo Volumar Imaging (EVI) techniques
have emerged in fMRI allowing the very fast acquisition of succes-
sive brain volumes. The originality of this contribution is twofold:
A new scaling analysis based on multifractal models instead of self-
similarity ones and on wavelet Leaders instead of wavelet coeffi-
cients is introduced ; It is applied to high temporal resolution EVI
data acquired both in resting state and during a visual paradigm. We
estimate voxel-based multifractal attributes for both kinds of data
and bring evidence confirming the existence of true scaling as op-
posed to superimposed non stationaries. Also, combining these es-
timates together with paired statistical tests, we observe significant
scaling parameter changes between ongoing and evoked brain activ-
ity, which clearly validate an increase in long memory and suggest a
global multifractality decrease effect.

Index Terms— Biomedical signal detection, Magnetic resonance
imaging, Multifractal analysis, Wavelet Leaders.

1. MOTIVATION: SCALING IN fMRI

Within-subject analysis in fMRI aims at detecting and localizing spe-
cific brain regions involved in the performance of cognitive or behav-
ioral tasks. Classical approaches assume a linear and time-invariant
relationship between the fMRI signals and the experimental design
and rely therefore on a General Linear Model (GLM) and statistical
tests to achieve this goal. fMRI time series are known to have a col-
ored noise structure, the majority of which occurs at low frequency.
Preliminary evidence that fMRI time series have long memory in
time or 1/f spectral properties has been demonstrated on “resting
state” motion-corrected datasets [1, 2]. Previous studies had shown
that head movement is a common source of long memory noise
caused by slow rotation or translation of subject’s head through an
imperfectly homogeneous magnetic field. Physiological factors such
as cardiac beat or breathing cycle may also contribute to this scal-
ing phenomenon since they may contaminate the Blood Oxygenated
Level Dependent (BOLD) signal with properties depending on the
sampling period of data (i.e., short/long time of repetition (TR)) [3].
Early investigations therefore considered these space-varying low

frequency components as noise, which are responsible for poten-
tial non stationarities. Hence, to fulfill the assumptions underlying
the classical GLM implementation, most neuropsychologist resort to
high-pass filtering to remove these trends. In the last few years, the
GLM estimation method has been extended to account for 1/f (or
fractional Gaussian) noise using wavelet decomposition [4].

However, other authors have pointed out that the BOLD sig-
nal itself contains power at virtually all frequencies, notably in ran-
domized event-related designs [5]. Interestingly, recent studies have
reported that low-frequency spatial fluctuations in cortical BOLD
signals may be indicative of synchronized long memory neuronal
oscillations rather than merely noise [6, 7]. Concomitantly, greater
persistence or higher predictability summarized in terms of scaling
exponent has been found in patients with Alzheimer disease or with
major depressive disorder, especially in brain regions implicated in
the early stages of the degeneracy process [6, 8]. This confirms that
high-pass filtering may potentially remove part of the signal of in-
terest. A first attempt to identify stimulus-induced signal changes
from scaling parameters has been proposed in [9]. These authors
have developed a voxel-based exploratory multifractal (MF) analy-
sis of fMRI time series relying on the continuous wavelet transform.
Scale invariance is associated with the intuition that no characteris-
tic frequency (or scale of time) can be singled out in the data within
a wide range of frequencies. In the present contribution, we make
use of a new scaling analysis, which replaces long memory models
with multifractal ones and wavelet coefficients with wavelet Leaders,
quantities that bring significant gains in estimation performance.

Irrespective of the retained approach, analysis of scaling implies
studying long enough time series. In [9], the authors tested MF
analysis on Echo Planar Imaging (EPI) fMRI data, which tempo-
ral resolution was decreased down to 200ms for partial brain volume
acquisition to get up to 1500 time points. Here we resort to a new
imaging technique, called 3D parallel localized Echo Volumar Imag-
ing (EVI), recently validated on the human brain [10], which will be
able to cover the whole brain at very high magnetic field (e.g., 7.T).
To date, this imaging procedure enables a very high temporal reso-
lution (one volume every 225ms) and thus permits acquisition of a
larger number of brain volumes in a given period of time (here 2210
scans), without requiring subsequent slice-timing correction. This
offers the possibility to perform reliable scaling analyses. This pa-
per therefore aims at exploring the benefit of this new Leader based
MF analysis in combination with EVI brain images.

For ease of interpretation, we implemented a slow event-related
paradigm which studies occipital responses to the presentation of
alternative contrast checkerboard. However, this can be extended to
more complex experiments aiming at studying cognitive systems.



2. DATA ACQUISITION

Echo-Volumar Imaging technique. The principle of EVI has been
introduced in [11]. Faster than EPI, EVI allows 3D single-shot ac-
quisition of whole volumes of interest at very high scanning rates.
Nevertheless, this acquisition technique requires very high perfor-
mances from the MR hardware and is also more sensitive toB0 inho-
mogeneities because of long echo train durations. Thus, only a few
attempts at using EVI in fMRI have been performed until now, focus-
ing mainly on small and very anisotropic brain volumes [12,13]. Due
to improved gradient hardware and magnet homogeneity, and espe-
cially to the application of parallel acquisition and reconstruction,
we demonstrated the feasibility to acquire an important isotropic part
of the brain with EVI, at usual fMRI spatial resolution, in about 200
ms [14]. As summarized in Fig. 1(a) « Localized Parallel EVI »
relies on the use of outer volume suppression pulses and parallel
acquisition with undersampling by a factor of 2 along two direc-
tions, in order to reduce the echo train durations. Consequently,
an 80× 80× 100mm3 brain volume can be acquired in 225 ms,
with a level of distorsions comparable to EPI. Parallel reconstruc-
tion was performed using a home-made 2D SENSE reconstruction
algorithm, which also requires one sensitivity map for each of the
coils. Detection of cerebral functional activation using localized par-
allel EVI has already been demonstrated, both in block and event-
related cognitive paradigms [10]. The results of these studies are
currently compared with conventional 2D EPI acquisition using the
same paradigm. First results suggest that the BOLD contrast to
noise could be more important in EVI than in EPI, due to differ-
ence in acquisition parameters and T1 weightings. All experiments
were performed on a 1,5 T GEHC scanner (40 mT/m, 150T/m/s
slew rate gradient, 8 channel head coil array). EVI acquisitions have
been performed using the following parameters: orientation= sagit-
tal plane, TE/TR = 40/225 ms, flip angle (FA) = 35◦, BW = 62.5
kHz, FOV = 80×80×100 mm3, acquired/reconstructed matrices =
20×10×10/20×20×20, echo train duration = 60.5 ms. Sensitivity
maps: sagittal plane, TE/TR = 10/500 ms, FA = 30◦, BW = 62.5
kHz, FOV = 240×240×100 mm3, matrix 60×60×20.
fMRI expriment. The five healthy subjects gave their written in-
formed consent and this study was approved by a local ethical com-
mittee for biomedical research. Two sessions of a slow visual event-
related paradigm were acquired for each subject. The stimulus was
a black and white contrast reversing checkerboard with a 20-ms pe-
riod, which appears during 80 ms, followed by a 24.67-ms rest pe-
riod (ISI = 24.75 s). One session consisted of 20 trials of the stimu-
lus. All series were corrected for subject motion with SPM2 (www.
fil.ion.ucl.ac.uk). No spatial smoothing was performed. Response
magnitudes for each voxel were estimated using a general linear
model with a canonical Hemodynamic Response Function (HRF)
and its first derivative as regressors. A Fisher (F) test was performed
to assess significance. 3D superimpositions with anatomical data
were obtained with Anatomist (http://brainvisa.info). As illustrated
in Fig. 1(b) for one subject, activations were detected both in occip-
ital cortex and cerebellum. Fig. 1(c) shows voxel-based HRF esti-
mates that have been computed in voxels eliciting an activation from
the raw time courses. These raw data were first corrected from low-
frequency drifts, then smoothed using a temporal Gaussian kernel
(σ2 = 1.5 s) and finally, averaged over the stimulus repetitions.

3. SCALING AND MULTIFRACTAL ANALYSIS

Scaling: self-similarity and wavelets. Data is said to possess a
scale invariance, or scaling, property when their analysis does not
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Fig. 1. (a): Sketch summarizing the Localized Parallel EVI se-
quence. (b): Localized volume acquired using the EVI sequence
shown in white box and hot spots illustrating visual activations su-
perimposed on anatomical data. (c): corresponding HRF estimates

enable the identification of any characteristic scale over a wide range
of time scales. Equivalently, this means that all time scales are
equally characteristic.
To analyze scale invariance, it is now commonly admitted that wavelet
transforms constitute ideal tools [15]. Let dX(j, k) = 〈ψj,k, X〉 de-
note the discrete wavelet transform coefficients of X , where ψ0(t)
stands for the mother-wavelet and the {ψj,k(t) = 2−jψ0(2

−jt−k)}
a collection of templates dilated and translated on the dyadic grid.
The mother wavelet is characterized by a fast exponential decay and
a strictly positive integer N ≥ 1, the number of vanishing moments,
defined as ∀k = 0, 1, . . . , N − 1,

R
R t

kψ0(t)dt ≡ 0.
To model scale invariance, self-similarity (SS) provides us with a
mathematically well-grounded framework. A process X is said to
be self similar, with stationary increments, when it satisfies ∀c >
0, {X(t), t ∈ R} d

= {cHX(t/c), t ∈ R}, where d
= means equal-

ity of all finite dimensional distributions [16]. The SS parameter
H is restricted to H ∈ (0, 1). The increments Y of X possess
a 1/f -spectrum: ΓY (f) ' C|f |−γ with γ = 2H − 1. When
1/2 < H < 1, Y is characterized by a long-range dependence
property [16]. This explains why 1/f and long-range dependent pro-
cesses are often incorrectly confused with the broader class of self-
similar ones. In the wavelet framework, self-similarity implies that
law behaviours hold, for all scales 2j and all orders q ∈ (−1,+∞):
Sd(j, q)

∆
= 1

nj

Pnj

k=1 |dX(j, k)|q = Cd
q 2jqH (with nj the number

of dX(j, k) at scale 2j). Therefore, the logscale diagrams (LDs),
log2 S

d(j, q) vs j = log2 2j , constitute central quantities for assess-
ment of self-similarity (power-laws are turned into straight lines) and
estimation of the parameter H (by linear regressions). Real fMRI
data examples and the corresponding LDs are shown in Fig. 2.
Contribution. Both self-similar (and long range dependent) pro-
cesses and wavelet tools have already been commonly used in the
context of fMRI time series analysis [4, 6]. In the present work, we
add two major stones. First, to model scaling, we use multifractal
stochastic processes instead of self-similar ones, the major benefit
being the versatility brought by the use of a collection of scaling ex-
ponents instead of the single self-similarity parameterH . Second, to
analyze scaling, we replace wavelet coefficients by wavelet Leaders,
which possess better theoretical properties for MF analysis [15] and
those statistical estimation performance are improved by an order of
magnitude (see e.g., [17]).
Wavelet Leaders and Multifractal. In a nutshell, a wavelet Leader
replaces a given wavelet coefficient by the largest wavelet coeffi-
cients existing in its (very) narrow time neighborhood at all finer
scales j′ 6 j. Technically, let ψ0(t) have compact support and
let us define dyadic intervals as λ = λj,k =

ˆ
k2j , (k + 1)2j

´
and

3λ = 3λj,k = λj,k−1 ∪ λj,k ∪ λj,k+1. Following [15], the wavelet
Leaders are defined as: LX(j, k) ≡ Lλ = supλ′⊂3λ |dλ′ |.
For the sake of simplicity, we only propose a practical introduction to
multifractality. For a mathematical definition, the reader is referred



to [15]. A process X is said to be multifractal if, for a range of pos-
itive and negative statistical orders q and a range of scales a = 2j ,
its structure functions SL(j, q) exhibit power law behaviours with
respect to scales [15]:

SL(j, q)
∆
=

1
nj

njX
k=1

LX(j, k)q = CL
q 2jζ(q). (1)

The ζ(q) are referred to as the scaling exponents. They can be ex-
panded as ζ(q) =

P∞
p=1 cp

qp

p!
where the cp are defined from the

cumulants of lnLX(j, k)(see [17]). For SS, ζ(q) = qH , hence
c1 = H and ∀p ≥ 2, cp ≡ 0. Therefore, the signature of MF lies in
the departure of ζ(q) from a linear behaviour in q and hence mostly
in c2 < 0. In the present work, we restrict ourselves to the estima-
tions of c1 and c2, hence to the approximation ζ(q) ' c1q+c2q

2/2.
Practical wavelet Leader based multifractal (WLMF) analysis.
Based on Eq. (1), the Leader logscale diagrams (LLD), log2 S

L(j, q)
vs j = log2 2j , play key roles in assessing multifractal analysis and
estimation. Examples are shown in Fig. 3. From the LX(j, k), a
procedure, which has been fully developed and validated in [17], en-
ables the estimation of the multifractal parameters c1 and c2.

4. RESULTS

Main issues. In the present work, the ensuing goal is twofold: First,
validation of the existence of scaling in the analyzed data and esti-
mation the MF parameters ; Second, differentiation of evoked from
ongoing brain activity in terms of scaling behaviours. This has never
been addressed in the fMRI literature using the WLMF approach.
For doing so, we compare, by means of statistical hypothesis tests,
MF parameters estimated from raw motion-corrected fMRI time se-
ries acquired during activation and resting runs from selected re-
gions of interest (ROI). Importantly, these ROIs have been identi-
fied on each subject separately from the uniquely relevant F-contrast
c = [1, 1, 0] to detect activations in the above mentioned SPM2 anal-
ysis. The extracted SPM clusters have been corrected for multiple
comparisons and thresholded below 5 % in corrected p-value and
above 5 voxels in spatial extent. Note that the number of SPM clus-
ters R varies from one subject to another.
Scaling Analysis. The first issue lies in assessing whether the data
possess scaling or not. Using an adaptive representation, the Empir-
ical Mode Decomposition (EMD) [18] applied to voxel-based time
courses, we observe that the data can be split into 3 components (see
Fig. 2(a)): a very low frequency trend (LF), a medium frequency
signal (mF) and a high frequency noise (HF). Both the LF trend and
the HF noise may either alter the analysis of scaling or be confus-
ingly associated to scaling, as commonly speculated in the literature.
However, the LDs computed from the original time series and from
these 3 components, superimposed in Fig. 2(b), clearly show that the
scaling property of interest is neither caused by the LF trend nor by
the HF noise, but rather entirely due to the mF signal. It is worth not-
ing that EMD is a data driven splitting procedure that hence avoids
the recourse to any rigid a priori chosen high pass filter to remove
non stationarities. Moreover, we checked that the LDs and estimated
scaling parameters remain consistent when the number of vanishing
moments of ψ0 is varied. This observation is a strong empirical
argument indicating the existence of true scaling and constitutes a
major benefit of the wavelet scaling analysis framework. Therefore,
the proposed procedure clearly disentangles true scaling properties
from non stationary superimposed trends or high frequency noise
corruption.
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Fig. 2. Scaling vs Non-Stationarity Analysis. (a): fMRI time series
for an activated voxel (subject 2), and its EMD based separation into
(from top to bottom) low, medium and high frequency components.
(b): the corresponding LDs (time series: ’o’, LF: ’+’, mF: ’�’, HF:
’�’).

In a second step, we apply the WLMF analysis procedure to
the voxel-based mF signal component for all voxels in the identi-
fied SPM clusters. The corresponding LLDs (cf. Fig. 3) yield clear
scaling behaviours holding for 3 6 j 6 6, i.e., for time scales rang-
ing from 1.5 to 15s. A systematic voxel-based estimation of the
multifractal parameters c1 and c2 can thus be conducted. For pa-
rameter c1, we observe that it consistently takes values in the range
0.50 6 c1 6 1 (cf. Table 1), both for on-going and evoked brain ac-
tivity, hence confirming the relevance of the LRD paradigm to char-
acterize fMRI time series correlations. Also, we note that activation
systematically (for all subjects and all ROIs) results in an increase
in c1, from the range 0.50 6 c1 6 0.75 for ongoing activity to the
range 0.70 6 c1 6 0.95 for evoked activity. Activation hence in-
duces an increase of the LRD strength and impact. This is consistent
with findings reported in [9]. For parameter c2, the situation is more
intricate as its estimation is by far more difficult [17]. However, we
observe that, in most cases, activations coincide with an increase in
c2, from negative to close to 0 values, hence with a decrease in mul-
tifractality (cf. Table 1).
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Fig. 3. Leader based Multifractal Analysis. LLDs for q = 2 (a)
and q = −2 (b) show a clear scaling range, from 1.5 to 15s.

Region-based hypothesis testing. The next goal consists of assess-
ing the statistical significance of the observed difference in every
cluster Ri between med[bcr

p] and med[bcv
p]. We use nonparamet-

ric tests and robust statistics as there is no evidence that the scal-
ing parameters are normally distributed across voxels for a given
ROI. In such a case, one usually resorts to robust decision statis-
tics (e.g., to the Wilcoxon’s signed rank (WSR) statistic), whose cor-
rect specificity control (control of false positives) in the permutation
testing framework has been developed in [19] on the basis of [20].
Here, robustness means that the influence of outliers on the statistics
remains bounded. Precisely, we perform the following two-sided
tests : Hr 6=v

0,p : med[bcr
p] = med[ĉv

p], ∀ p = 1 or 2, which amounts
to testing whether the difference between the matched samples bcr

p



med[ĉv1 ] med[ĉv2 ] med[ĉr1] med[ĉr2] Hr 6=v
0,1 Hr 6=v

0,2

RVis
1

0.81 −0.005 0.69 −0.006 0.019 0.966
0.86 0.098 0.55 −0.038 0.125 0.125

RVis
2

0.89 −0.013 0.75 −0.019 0.027 0.734
0.75 0.029 0.63 −0.001 0.008 0.312

RVis
3

0.72 −0.02 0.66 −0.01 0.020 0.017
0.80 0.068 0.70 0.005 0.078 0.047

Table 1. Median of the cumulant estimates and corresponding
Wilcoxon’s sign-rank tests. The first column indicates the differ-
ent SPM clusters. In each ROI, the columns provide the median of
the voxel-dependent WLMF estimates bcs

p for p = 1 : 2 and for
visual (left s = v) and rest (right, s = r) sessions, for the sec-
ond and third subjects, (top and bottom rows, respectively). The last
two columns display the corresponding WSR statistic p-values. Red
marks show significant changes at 5%. The number of voxels vi

embedded in Ri typically varies between 5 and 30 voxels.

and bcv
p comes from a distribution whose median med[bcr−v

p ] =
med[bcr

p − bcv
p] is zero. The last two columns of Table 1 show the

corresponding WSR statistic p-values and validate that the observed
increase in c1 is quasi-systematically significant. Again, for c2, re-
sults are less clear, as significance of the changes varies with ROIs
and subjects. However, results, over the entire data sets, that can not
be shown here, indicate a shift tendency in c2 form negative to close
to 0 values, when the test is significant. This confirms a global effect
of reduction of multifractality under activation.

To finish with, let us mention that we observe, in agreement
with [17], that Leader based estimations outperform significantly
wavelet coefficient ones. Notably, the confidence interval sizes for
c2 are decreased by one order of magnitude. This implies that WSR
tests based on wavelet coefficients would miss a number of changes
in c1, despite their being net, and that it is strictly not possible to
detect a change in c2 using such coefficients. Relevant estimations
of c2 therefore constitute the major benefits of the use of Leaders.

5. CONCLUSIONS AND PERSPECTIVES

Making use of EVI fMRI data and of a slow event-related paradigm,
we have shown that MF analysis based on wavelet Leaders enables
to evidence changes under activation in fMRI time series scaling
properties. Activation induces a clear increase in the self-similarity,
which can be associated to random walks and linear filtering while
multifractal is rather related to non-linear mechanisms. Therefore,
parameter c2 that characterizes deviations from SS can be thought as
a measure of the importance of non-linear effects in neurophysiolog-
ical mechanisms. Our results suggest that activation tends to reduce
their impact: this could be expected given the very simple nature of
our paradigm. Future work will investigate the ability to conduct MF
analysis in more complex event-related designs with several stimulus
types. In such cases, we could find out more multifractal situations,
for instance in regions eliciting habituation or learning phenomena.
Last but not least, we are currently exploring whole brain analysis
blind to the use of any a priori model-based detection. We expect
that MF parameters will be primarily influenced in brain regions in-
volved in the experimental paradigm and also that these parameters
remain unchanged in other regions when the comparing the activa-
tion dataset to the resting state one.
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