A Bayesian estimator for the multifractal analysis of multivariate data

H. Wendt ${ }^{1}$
Collaborations: P. Abry ${ }^{3}$, Y. Altmann ${ }^{2}$, S. Combrexelle ${ }^{1}$,
N. Dobigeon ${ }^{1}$, S. McLaughlin ${ }^{2}$, J.-Y. Tourneret ${ }^{1}$
${ }^{1}$ CNRS, IRIT, University of Toulouse, France
${ }^{2}$ Heriot-Watt University, Edinburgh, Scotland
${ }^{3}$ CNRS, Physics Lab., Ecole Normale Supérieure de Lyon, France

GdR ISIS, 8 Feb. 2018

Empirical data: signals / images

Empirical data: signals / images

Human Heart Rate

Collab. Y. Yamamoto (U Tokyo) and K. Kiyono (U. Osaka)

Van Gogh's Painting

Collab. Van Gogh Museum, Amsterdam

Collab. P. Ciuciu (CEA)

Part 1: Multifractal analysis

Multifractal spectrum

- Local regularity of $X(t)$ at t_{0}

Hölder exponent

$$
h\left(t_{0}\right) \triangleq \sup _{\alpha}\left\{\alpha:\left|X(t)-X\left(t_{0}\right)\right|<C\left|t-t_{0}\right|^{\alpha}\right\} \quad 0<\alpha
$$

$h\left(t_{0}\right) \rightarrow 1 \Rightarrow$ smooth, very regular, $h\left(t_{0}\right) \rightarrow 0 \Rightarrow$ rough, very irregular

Part 1: Multifractal analysis

Multifractal spectrum

- Local regularity of $X(t)$ at t_{0}

Hölder exponent

$$
h\left(t_{0}\right) \triangleq \sup _{\alpha}\left\{\alpha:\left|X(t)-X\left(t_{0}\right)\right|<C\left|t-t_{0}\right|^{\alpha}\right\} \quad 0<\alpha
$$

$h\left(t_{0}\right) \rightarrow 1 \Rightarrow$ smooth, very regular, $h\left(t_{0}\right) \rightarrow 0 \Rightarrow$ rough, very irregular

Part 1: Multifractal analysis

Multifractal spectrum

- Local regularity of $X(t)$ at t_{0}

Hölder exponent

$$
h\left(t_{0}\right) \triangleq \sup _{\alpha}\left\{\alpha:\left|X(t)-X\left(t_{0}\right)\right|<C\left|t-t_{0}\right|^{\alpha}\right\} \quad 0<\alpha
$$

$h\left(t_{0}\right) \rightarrow 1 \Rightarrow$ smooth, very regular, $h\left(t_{0}\right) \rightarrow 0 \Rightarrow$ rough, very irregular

Part 1: Multifractal analysis

Multifractal spectrum

- Local regularity of $X(t)$ at t_{0}

Hölder exponent

$$
h\left(t_{0}\right) \triangleq \sup _{\alpha}\left\{\alpha:\left|X(t)-X\left(t_{0}\right)\right|<C\left|t-t_{0}\right|^{\alpha}\right\} \quad 0<\alpha
$$

$h\left(t_{0}\right) \rightarrow 1 \Rightarrow$ smooth, very regular, $h\left(t_{0}\right) \rightarrow 0 \Rightarrow$ rough, very irregular

Part 1: Multifractal analysis

Multifractal spectrum

- Local regularity of $X(t)$ at t_{0}

Hölder exponent

$$
h\left(t_{0}\right) \triangleq \sup _{\alpha}\left\{\alpha:\left|X(t)-X\left(t_{0}\right)\right|<C\left|t-t_{0}\right|^{\alpha}\right\} \quad 0<\alpha
$$

$h\left(t_{0}\right) \rightarrow 1 \Rightarrow$ smooth, very regular, $h\left(t_{0}\right) \rightarrow 0 \Rightarrow$ rough, very irregular

Part 1: Multifractal analysis

Multifractal spectrum

- Local regularity of $X(t)$ at t_{0}

Hölder exponent

$$
h\left(t_{0}\right) \triangleq \sup _{\alpha}\left\{\alpha:\left|X(t)-X\left(t_{0}\right)\right|<C\left|t-t_{0}\right|^{\alpha}\right\} \quad 0<\alpha
$$

- Multifractal Spectrum $\mathcal{D}(h)$: Fluctuations of regularity $h(t)$
- Set of points that share same regularity $\left\{t_{i} \mid h\left(t_{i}\right)=h\right\}$
- Fractal (or Haussdorf) Dimension of each set:

$$
\mathcal{D}(h) \triangleq \operatorname{dim}_{H}\{t: h(t)=h\}
$$

Part 1: Multifractal analysis

Multifractal spectrum

- Local regularity of $X(t)$ at t_{0}

Hölder exponent

$$
h\left(t_{0}\right) \triangleq \sup _{\alpha}\left\{\alpha:\left|X(t)-X\left(t_{0}\right)\right|<C\left|t-t_{0}\right|^{\alpha}\right\} \quad 0<\alpha
$$

- Multifractal Spectrum $\mathcal{D}(h)$: Fluctuations of regularity $h(t)$
- Set of points that share same regularity $\left\{t_{i} \mid h\left(t_{i}\right)=h\right\}$
- Fractal (or Haussdorf) Dimension of each set:

$$
\mathcal{D}(h) \triangleq \operatorname{dim}_{H}\{t: h(t)=h\}
$$

Part 1: Multifractal analysis

Multifractal spectrum

- Local regularity of $X(t)$ at t_{0}

Hölder exponent

$$
h\left(t_{0}\right) \triangleq \sup _{\alpha}\left\{\alpha:\left|X(t)-X\left(t_{0}\right)\right|<C\left|t-t_{0}\right|^{\alpha}\right\} \quad 0<\alpha
$$

- Multifractal Spectrum $\mathcal{D}(h)$: Fluctuations of regularity $h(t)$
- Set of points that share same regularity $\left\{t_{i} \mid h\left(t_{i}\right)=h\right\}$
- Fractal (or Haussdorf) Dimension of each set:

$$
\mathcal{D}(h) \triangleq \operatorname{dim}_{H}\{t: h(t)=h\}
$$

Part 1: Multifractal analysis

Multifractal spectrum

- Local regularity of $X(t)$ at t_{0}

Hölder exponent

$$
h\left(t_{0}\right) \triangleq \sup _{\alpha}\left\{\alpha:\left|X(t)-X\left(t_{0}\right)\right|<C\left|t-t_{0}\right|^{\alpha}\right\} \quad 0<\alpha
$$

- Multifractal Spectrum $\mathcal{D}(h)$: Fluctuations of regularity $h(t)$
- Set of points that share same regularity $\left\{t_{i} \mid h\left(t_{i}\right)=h\right\}$
- Fractal (or Haussdorf) Dimension of each set:

$$
\mathcal{D}(h) \triangleq \operatorname{dim}_{H}\{t: h(t)=h\}
$$

Part 1: Multifractal analysis

Multifractal spectrum

- Local regularity of $X(t)$ at t_{0}

Hölder exponent

$$
h\left(t_{0}\right) \triangleq \sup _{\alpha}\left\{\alpha:\left|X(t)-X\left(t_{0}\right)\right|<C\left|t-t_{0}\right|^{\alpha}\right\} \quad 0<\alpha
$$

- Multifractal Spectrum $\mathcal{D}(h)$: Fluctuations of regularity $h(t)$
- Set of points that share same regularity $\left\{t_{i} \mid h\left(t_{i}\right)=h\right\}$
- Fractal (or Haussdorf) Dimension of each set:

$$
\mathcal{D}(h) \triangleq \operatorname{dim}_{H}\{t: h(t)=h\}
$$

Part 1: Multifractal analysis

Multifractal formalism

- $D(h)$ in practice \rightarrow multifractal formalism
- Multiresolution quantities: wavelet leaders $\{\ell(j, \cdot)\}$

$$
\ell(j, k) \triangleq \sup _{\lambda^{\prime} \subset 3 \lambda_{j, k}}\left|d\left(\lambda^{\prime}\right)\right|, \quad d(j, k): \text { DWT coefficient }
$$

Part 1: Multifractal analysis

Multifractal formalism

- $D(h)$ in practice \rightarrow multifractal formalism
- Multiresolution quantities: wavelet leaders $\{\ell(j, \cdot)\}$

$$
\ell(j, k) \triangleq \sup _{\lambda^{\prime} \subset 3 \lambda_{j, k}}\left|d\left(\lambda^{\prime}\right)\right|, \quad d(j, k): \text { DWT coefficient }
$$

- Polynomial expansion

$$
D(h) \approx 1+\frac{c_{2}}{2!}\left(\frac{h-c_{1}}{c_{2}}\right)^{2}-\frac{c_{3}}{3!}\left(\frac{h-c_{1}}{c_{2}}\right)^{3}+\ldots
$$

$\rightarrow c_{p}$ tied to cumulants of $\left.I(j, k) \triangleq \ln \ell(j, k)\right\}$

Part 1: Multifractal analysis

Multifractal formalism

- $D(h)$ in practice \rightarrow multifractal formalism
- Multiresolution quantities: wavelet leaders $\{\ell(j, \cdot)\}$

$$
\ell(j, k) \triangleq \sup _{\lambda^{\prime} \subset 3 \lambda_{j, k}}\left|d\left(\lambda^{\prime}\right)\right|, \quad d(j, k): \text { DWT coefficient }
$$

- Polynomial expansion

$$
D(h) \approx 1+\frac{c_{2}}{2!}\left(\frac{h-c_{1}}{c_{2}}\right)^{2}-\frac{c_{3}}{3!}\left(\frac{h-c_{1}}{c_{2}}\right)^{3}+\ldots
$$

$\rightarrow c_{p}$ tied to cumulants of $\left.I(j, k) \triangleq \ln \ell(j, k)\right\}$

- Multifractality parameter c_{2}
- ~ fluctuations of regularity
- tied to the variance of log-leaders

$$
\operatorname{Var}[\ln \ell(j, \cdot)]=c_{2}^{0}+c_{2} \ln 2^{j}
$$

self-similar processes $\rightarrow c_{2}=0$ multifractal multiplicative cascades $\rightarrow c_{2}<0$

Part 1: Multifractal analysis

Estimation of the multifractality parameter

- Estimation of c_{2} is challenging
- linear regression-based estimation
X poor estimation performance \longrightarrow need (very) long time series

Part 1: Multifractal analysis

Estimation of the multifractality parameter

- Estimation of c_{2} is challenging
- linear regression-based estimation
X poor estimation performance \longrightarrow need (very) long time series

1. Bayesian estimation for c_{2} for single time series

- robust semiparametric model for log-leaders

Synthetic multiplicative cascades with different c_{2}

Part 1: Multifractal analysis

Estimation of the multifractality parameter

- Estimation of c_{2} is challenging
- linear regression-based estimation
X poor estimation performance \longrightarrow need (very) long time series

1. Bayesian estimation for c_{2} for single time series

- robust semiparametric model for log-leaders

2. Bayesian estimation for c_{2} for multivariate data [IWSSIP16,EUSIPCO16,ICIP16,HW18]

- regularization using Markov field joint prior

Synthetic multiplicative cascades with different c_{2}

Bayesian model for single time series

Part 2: Bayesian model for single time series

Gaussian random field model for log-leaders

- Marginal distributions: log-Normal always good fit for multiscale histograms of multifractal cascades
\longrightarrow log-leaders well approximated by Gaussian

$$
I(j, k)=\ln \ell(j, k) \sim \mathcal{N}(\mathbb{E}[/(j, k)], \operatorname{Var}[/(j, k)])
$$

Multifractal random walk (MRW) [Bacry01,Robert10]

Part 2: Bayesian model for single time series

Gaussian random field model for log-leaders

- Marginal distributions: log-Normal always good fit for multiscale histograms of multifractal cascades
\longrightarrow log-leaders well approximated by Gaussian

$$
I(j, k)=\ln \ell(j, k) \sim \mathcal{N}(\mathbb{E}[/(j, k)], \operatorname{Var}[/(j, k)])
$$

Log-Poisson Cascade [Mandelbrot]

Part 2: Bayesian model for single time series
Gaussian random field model for log-leaders

- Mean

$$
\mathbb{E}[/(j, k)]=c_{1}^{0}+j c_{1} \ln 2
$$

(discarded below)

- Variance-covariance
- asymptotic covariance decay:
\rightarrow linear in $\log (\Delta k)$
\rightarrow controlled by c_{2}

Part 2: Bayesian model for single time series
Gaussian random field model for log-leaders

- Mean

$$
\mathbb{E}[/(j, k)]=c_{1}^{0}+j c_{1} \ln 2
$$

(discarded below)

- Variance-covariance
- asymptotic covariance decay:
\rightarrow linear in $\log (\Delta k)$
\rightarrow controlled by c_{2}

\rightarrow piecewise logarithmic model $\varrho_{j,\left(c_{2}, c_{2}^{0}\right)}(\Delta k)$
[ICASSP15,TIP15]
with parameters $\left(c_{2}, c_{2}^{0}\right) \quad \longrightarrow$ Covariance matrix $\Sigma_{j,\left(c_{2}, c_{2}^{0}\right)}$

Part 2: Bayesian model for single time series

From a standard likelihood. . .

- Likelihood w.r.t. $\left(c_{2}, c_{2}^{0}\right)$
- log-leaders at scale $j: \quad \boldsymbol{l}_{j} \triangleq(I(j, 1), I(j, 2), \ldots)$

$$
p\left(l_{j} \mid\left(c_{2}, c_{2}^{0}\right)\right) \propto\left(\operatorname{det} \Sigma_{j,\left(c_{2}, c_{2}^{0}\right)}\right)^{-\frac{1}{2}} \exp \left(-\left(l_{j}^{T} \Sigma_{j,\left(c_{2}, c_{2}^{0}\right)}^{-1} l_{j}\right) / 2\right)
$$

empirical marginals (qq-plot) and covariance

Part 2: Bayesian model for single time series

From a standard likelihood. . .

- Likelihood w.r.t. $\left(c_{2}, c_{2}^{0}\right)$
- log-leaders at scale j :

$$
\boldsymbol{l}_{j} \triangleq(I(j, 1), I(j, 2), \ldots)
$$

$$
p\left(\boldsymbol{l}_{j} \mid\left(c_{2}, c_{2}^{0}\right)\right) \propto\left(\operatorname{det} \Sigma_{j,\left(c_{2}, c_{2}^{0}\right)}\right)^{-\frac{1}{2}} \exp \left(-\left(\boldsymbol{l}_{j}^{T} \Sigma_{j,\left(c_{2}, c_{2}^{0}\right)}^{-1} \boldsymbol{l}_{j}\right) / 2\right)
$$

empirical marginals (qq-plot) and covariance
X inversion of $\Sigma_{j,\left(c_{2}, c_{2}^{0}\right)}$ prohibitive \rightarrow Whittle approximation
X constraints: $\Sigma_{j,\left(c_{2}, c_{2}^{0}\right)}$ p.d.
\rightarrow reparametrization
X conjugacy of priors for θ
\rightarrow data augmentation

Part 2: Bayesian model for single time series
... to a Data Augmented Likelihood

1. Whittle approximation \Longrightarrow Fourier transform (DFT) of centered log-leaders \boldsymbol{l}_{j}

$$
\begin{aligned}
\boldsymbol{y}_{j}=\operatorname{DFT}\left(\boldsymbol{l}_{j}\right) & \longrightarrow p\left(\boldsymbol{l}_{j} \mid\left(c_{2}, c_{2}^{0}\right)\right) \propto \boldsymbol{f}_{j,\left(c_{2}, c_{2}^{0}\right)}^{-1} \exp \left(\frac{\boldsymbol{y}_{j}^{*} \boldsymbol{y}_{j}}{\boldsymbol{f}_{j,\left(c_{2}, c_{2}^{0}\right)}}\right) \\
& \longrightarrow
\end{aligned}
$$

$p\left(l_{j} \mid\left(c_{2}, c_{2}^{0}\right)\right)$

Part 2: Bayesian model for single time series
... to a Data Augmented Likelihood

1. Whittle approximation \Longrightarrow Fourier transform (DFT) of centered log-leaders \boldsymbol{l}_{j}

$$
\begin{aligned}
\boldsymbol{y}_{j}=\operatorname{DFT}\left(\boldsymbol{l}_{j}\right) & \longrightarrow p\left(\boldsymbol{l}_{j} \mid\left(c_{2}, c_{2}^{0}\right)\right) \propto \boldsymbol{f}_{j,\left(c_{2}, c_{2}^{0}\right)}^{-1} \exp \left(\frac{\boldsymbol{y}_{j}^{*} \boldsymbol{y}_{j}}{\boldsymbol{f}_{j,\left(c_{2}, c_{2}^{0}\right)}}\right) \\
& \longrightarrow
\end{aligned}
$$

2. Reparametrization \Longrightarrow independent positivity constraints on parameters

$$
\boldsymbol{v}=\psi\left(\left(c_{2}, c_{2}^{0}\right)\right) \in \mathbb{R}_{\star}^{+2} \quad \longrightarrow \quad \text { separable } \boldsymbol{F}_{\left(c_{2}, c_{2}^{0}\right)}=v_{1} \boldsymbol{F}_{1}+v_{2} \boldsymbol{F}_{2}
$$

$\boldsymbol{F}_{1}, \boldsymbol{F}_{2}$ diagonal, positive definite, known and fixed

$$
p\left(l_{j} \mid\left(c_{2}, c_{2}^{0}\right)\right) \quad \longrightarrow \quad p\left(l_{j} \mid \boldsymbol{v}\right)
$$

Part 2: Bayesian model for single time series
...to a Data Augmented Likelihood

1. Whittle approximation \Longrightarrow Fourier transform (DFT) of centered log-leaders l_{j}

$$
\begin{aligned}
\boldsymbol{y}_{j}=\operatorname{DFT}\left(\boldsymbol{l}_{j}\right) & \longrightarrow p\left(\boldsymbol{l}_{j} \mid\left(c_{2}, c_{2}^{0}\right)\right) \propto \boldsymbol{f}_{j,\left(c_{2}, c_{2}^{0}\right)}^{-1} \exp \left(\frac{\boldsymbol{y}_{j}^{*} \boldsymbol{y}_{j}}{\boldsymbol{f}_{j,\left(c_{2}, c_{2}^{0}\right)}}\right) \\
& \longrightarrow
\end{aligned}
$$

2. Reparametrization \Longrightarrow independent positivity constraints on parameters

$$
\boldsymbol{v}=\psi\left(\left(c_{2}, c_{2}^{0}\right)\right) \in \mathbb{R}_{\star}^{+2} \quad \longrightarrow \quad \text { separable } \boldsymbol{F}_{\left(c_{2}, c_{2}^{0}\right)}=v_{1} \boldsymbol{F}_{1}+v_{2} \boldsymbol{F}_{2}
$$

$\boldsymbol{F}_{1}, \boldsymbol{F}_{2}$ diagonal, positive definite, known and fixed
3. Data augmentation \Longrightarrow hidden mean $\boldsymbol{\mu}_{j}$ for $\boldsymbol{y}_{\boldsymbol{j}}$
\Longrightarrow complex Gaussian model for $\boldsymbol{y}=\left[\boldsymbol{y}_{j_{1}}^{T}, \ldots, \boldsymbol{y}_{j_{2}}^{T}\right]^{T}$

$$
\left\{\begin{array}{lll}
\boldsymbol{y} \mid \boldsymbol{\mu}, v_{2} & \sim \mathcal{C N}\left(\boldsymbol{\mu}, v_{2} \boldsymbol{F}_{2}\right) & \text { observed data } \\
\boldsymbol{\mu} \mid v_{1} & \sim \mathcal{C N}\left(\mathbf{0}, v_{1} \boldsymbol{F}_{1}\right) & \text { hidden mean }
\end{array}\right.
$$

$p\left(\boldsymbol{l}_{j} \mid\left(c_{2}, c_{2}^{0}\right)\right) \longrightarrow p\left(\boldsymbol{l}_{j} \mid \boldsymbol{v}\right) \longrightarrow p(\boldsymbol{y}, \boldsymbol{\mu} \mid \boldsymbol{v}) \propto p\left(\boldsymbol{y} \mid \boldsymbol{\mu}, v_{2}\right) p\left(\boldsymbol{\mu} \mid v_{1}\right)$

Part 2: Bayesian model for single time series

Augmented likelihood based Bayesian model

- Augmented likelihood w.r.t. $\boldsymbol{v}=\psi\left(\left(c_{2}, c_{2}^{0}\right)\right)$
$p(\boldsymbol{y}, \boldsymbol{\mu} \mid \boldsymbol{v}) \propto{v_{2}}^{-N_{Y}} \exp \left(-\frac{1}{v_{2}}(\boldsymbol{y}-\boldsymbol{\mu})^{H} \boldsymbol{F}_{2}^{-1}(\boldsymbol{y}-\boldsymbol{\mu})\right) \times{v_{1}}^{-N_{Y}} \exp \left(-\frac{1}{v_{1}} \boldsymbol{\mu}^{H} \boldsymbol{F}_{1}^{-1} \boldsymbol{\mu}\right)$
- Prior distribution for parameters
v_{i} as variance of Gaussian \rightarrow conjugate inverse-gamma prior $\mathcal{I} \mathcal{G}\left(\alpha_{i}, \beta_{i}\right)$
- Posterior distribution

$$
p(\boldsymbol{v}, \boldsymbol{\mu} \mid \boldsymbol{y}) \propto p(\boldsymbol{y}, \boldsymbol{\mu} \mid \boldsymbol{v}) p\left(v_{1}\right) p\left(v_{2}\right)
$$

- Bayesian estimators
marginal posterior mean estimator (MMSE) $v^{M M S E}=\mathbb{E}[v \mid y]$
\square

Part 2: Bayesian model for single time series
Augmented likelihood based Bayesian model

- Augmented likelihood w.r.t. $\boldsymbol{v}=\psi\left(\left(c_{2}, c_{2}^{0}\right)\right)$
$p(\boldsymbol{y}, \boldsymbol{\mu} \mid \boldsymbol{v}) \propto{v_{2}}^{-N_{Y}} \exp \left(-\frac{1}{v_{2}}(\boldsymbol{y}-\boldsymbol{\mu})^{H} \boldsymbol{F}_{2}^{-1}(\boldsymbol{y}-\boldsymbol{\mu})\right) \times{v_{1}}^{-N_{Y}} \exp \left(-\frac{1}{v_{1}} \boldsymbol{\mu}^{H} \boldsymbol{F}_{1}^{-1} \boldsymbol{\mu}\right)$
- Prior distribution for parameters
v_{i} as variance of Gaussian \rightarrow conjugate inverse-gamma prior $\mathcal{I} \mathcal{G}\left(\alpha_{i}, \beta_{i}\right)$
- Posterior distribution

$$
p(\boldsymbol{v}, \boldsymbol{\mu} \mid \boldsymbol{y}) \propto p(\boldsymbol{y}, \boldsymbol{\mu} \mid \boldsymbol{v}) p\left(v_{1}\right) p\left(v_{2}\right)
$$

- Bayesian estimators
\rightarrow marginal posterior mean estimator (MMSE) $\boldsymbol{v}^{\mathrm{MMSE}}=\mathbb{E}[\boldsymbol{v} \mid \boldsymbol{y}]$
- Gibbs sampler
$p(\boldsymbol{\mu} \mid \boldsymbol{v}, \boldsymbol{y}) \quad$ closed-form Gaussian distribution
$p\left(\boldsymbol{v}_{i} \mid \boldsymbol{v}_{j \neq i}, \boldsymbol{\mu}, \boldsymbol{y}\right) \quad$ closed-form inverse-gamma distributions
all standard distributions \rightarrow no Metropolis-Hasting moves

Part 2: Bayesian model for single time series

Estimation: Markov Chain Monte Carlo Algorithm

- Performance for synthetic data (further details later)
- $N=512, c_{2}=-0.01, \ldots,-0.08$
- estimation performance improved by factor up to ~ 4
- about 5 to 2 times slower than linear regression

	LF	IG
$\|\mathrm{b}\|$	0.0158	0.0051
std	0.0800	0.0255
rmse	0.0819	0.0262

Bayesian model for multivariate time series

Part 3: Bayesian model for multivariate time series
Hierarchical Bayesian model
for volumetric time series (voxels), $X_{\boldsymbol{m}}, \boldsymbol{m} \triangleq\left(m_{1}, m_{2}, m_{3}\right)$, of length N (other data structures possible)

1. Augmented likelihood $p\left(\boldsymbol{y}_{\boldsymbol{m}}, \boldsymbol{\mu}_{\boldsymbol{m}} \mid \boldsymbol{v}_{\boldsymbol{m}}\right)$

- $\boldsymbol{y}_{\boldsymbol{m}}$: Fourier coefficients
of \log-leaders of X_{m}
- $\boldsymbol{\mu}_{\boldsymbol{m}}$: latent variables
- $\boldsymbol{v}_{\boldsymbol{m}}$: parameter vector

Part 3: Bayesian model for multivariate time series

Hierarchical Bayesian model
for volumetric time series (voxels), $X_{\boldsymbol{m}}, \boldsymbol{m} \triangleq\left(m_{1}, m_{2}, m_{3}\right)$, of length N (other data structures possible)

1. Augmented likelihood $p\left(\boldsymbol{y}_{\boldsymbol{m}}, \boldsymbol{\mu}_{\boldsymbol{m}} \mid \boldsymbol{v}_{\boldsymbol{m}}\right)$

- $\boldsymbol{y}_{\boldsymbol{m}}$: Fourier coefficients
of log-leaders of X_{m}
- $\boldsymbol{\mu}_{\boldsymbol{m}}$: latent variables
- $\boldsymbol{v}_{\boldsymbol{m}}$: parameter vector

2. Prior independence between voxels

$$
\begin{aligned}
& p(\boldsymbol{Y}, \boldsymbol{M} \mid \boldsymbol{V}) \propto \prod_{\boldsymbol{m}} p\left(\boldsymbol{y}_{\boldsymbol{m}}, \boldsymbol{\mu}_{\boldsymbol{m}} \mid \boldsymbol{v}_{\boldsymbol{m}}\right) \\
&-\boldsymbol{Y} \triangleq\left\{\boldsymbol{y}_{\boldsymbol{m}}\right\} \\
&-\boldsymbol{M} \triangleq\left\{\boldsymbol{\mu}_{\boldsymbol{m}}\right\} \\
&-\boldsymbol{V} \triangleq\left\{\boldsymbol{V}_{1}, \boldsymbol{V}_{2}\right\}\left(\boldsymbol{V}_{i} \triangleq\left\{\theta_{i, \boldsymbol{m}}\right\}, i=1,2\right)
\end{aligned}
$$

Part 3: Bayesian model for multivariate time series

Hierarchical Bayesian model
for volumetric time series (voxels), $X_{\boldsymbol{m}}, \boldsymbol{m} \triangleq\left(m_{1}, m_{2}, m_{3}\right)$, of length N (other data structures possible)

1. Augmented likelihood $p\left(\boldsymbol{y}_{\boldsymbol{m}}, \boldsymbol{\mu}_{\boldsymbol{m}} \mid \boldsymbol{v}_{\boldsymbol{m}}\right)$

- $\boldsymbol{y}_{\boldsymbol{m}}$: Fourier coefficients
of log-leaders of X_{m}
- $\boldsymbol{\mu}_{\boldsymbol{m}}$: latent variables
- $\boldsymbol{v}_{\boldsymbol{m}}$: parameter vector

2. Prior independence between voxels

$$
\begin{aligned}
& p(\boldsymbol{Y}, \boldsymbol{M} \mid \boldsymbol{V}) \propto \prod_{\boldsymbol{m}} p\left(\boldsymbol{y}_{\boldsymbol{m}}, \boldsymbol{\mu}_{\boldsymbol{m}} \mid \boldsymbol{v}_{\boldsymbol{m}}\right) \\
&-\boldsymbol{Y} \triangleq\left\{\boldsymbol{y}_{\boldsymbol{m}}\right\} \\
&-\boldsymbol{M} \triangleq\left\{\boldsymbol{\mu}_{\boldsymbol{m}}\right\} \\
&-\boldsymbol{V} \triangleq\left\{\boldsymbol{V}_{1}, \boldsymbol{V}_{2}\right\}\left(\boldsymbol{V}_{i} \triangleq\left\{\theta_{i, \boldsymbol{m}}\right\}, i=1,2\right)
\end{aligned}
$$

3. Design of regularizing priors on \mathbf{V}

Part 3: Bayesian model for multivariate time series Gamma Markov random field (GaMRF)
\longrightarrow smooth evolution of multifractal parameters \mathbf{v}
(\sim variances of Gaussians)

- Positive auxiliary variables $Z=\left\{Z_{1}, Z_{2}\right\}, Z_{i}=\left\{z_{i, m}\right\}$
induce dependence between neighboring elements of \boldsymbol{V}_{i}
- $v_{i, m}$: connected to 8 variables $z_{i, m^{\prime}} \in \mathcal{V}_{v}(\boldsymbol{m})$

$$
\mathcal{V}_{v}(\boldsymbol{m}) \triangleq\left\{\boldsymbol{m}+\left(i_{1}, i_{2}, i_{3}\right)\right\}_{i_{1}, i_{2}, i_{3}=0,1}
$$

via edges with weights $\rho_{i}, i=1,2$
\Rightarrow and vice-versa $z_{i, m}$ to $v_{i, m^{\prime}} \in \mathcal{V}_{z}(\boldsymbol{m})$
$\left.\mathcal{V}_{z}(\boldsymbol{m}) \triangleq\left\{\boldsymbol{m}+\left(i_{1}, i_{2}, i_{3}\right)\right)\right\}_{i_{1}, i_{2}, i_{3}=-1,0}$

Part 3: Bayesian model for multivariate time series

Gamma Markov random field (GaMRF)

\longrightarrow smooth evolution of multifractal parameters \mathbf{v}
(\sim variances of Gaussians)

- Positive auxiliary variables $\boldsymbol{Z}=\left\{\boldsymbol{Z}_{1}, \boldsymbol{Z}_{2}\right\}, \boldsymbol{Z}_{i}=\left\{\boldsymbol{z}_{\boldsymbol{i}, \boldsymbol{m}}\right\}$
\longrightarrow induce dependence between neighboring elements of $\boldsymbol{V}_{\boldsymbol{i}}$
$-v_{i, m}$: connected to 8 variables $z_{i, \boldsymbol{m}^{\prime}} \in \mathcal{V}_{v}(\boldsymbol{m})$
\square via edges with weights $\rho_{i}, i=1,2$ $>$ and vice-versa $z_{i, m}$ to $v_{i, m^{\prime}} \in \mathcal{V}_{z}(\boldsymbol{m})$

Part 3: Bayesian model for multivariate time series

Gamma Markov random field (GaMRF)

\longrightarrow smooth evolution of multifractal parameters \mathbf{v}
(\sim variances of Gaussians)

- Positive auxiliary variables $\boldsymbol{Z}=\left\{\boldsymbol{Z}_{1}, \boldsymbol{Z}_{2}\right\}, \boldsymbol{Z}_{i}=\left\{\boldsymbol{z}_{\boldsymbol{i}, \boldsymbol{m}}\right\}$
\longrightarrow induce dependence between neighboring elements of \boldsymbol{V}_{i}
- $v_{i, \boldsymbol{m}}$: connected to 8 variables $z_{i, \boldsymbol{m}^{\prime}} \in \mathcal{V}_{v}(\boldsymbol{m})$

$$
\mathcal{V}_{v}(\boldsymbol{m}) \triangleq\left\{\boldsymbol{m}+\left(i_{1}, i_{2}, i_{3}\right)\right\}_{i_{1}, i_{2}, i_{3}=0,1}
$$

via edges with weights $\rho_{i}, i=1,2$
\rightarrow and vice-versa $z_{i, m}$ to $v_{i, m^{\prime}} \in V_{z}(\boldsymbol{m})$

Part 3: Bayesian model for multivariate time series

Gamma Markov random field (GaMRF)

\longrightarrow smooth evolution of multifractal parameters \mathbf{v}
(\sim variances of Gaussians)

- Positive auxiliary variables $\boldsymbol{Z}=\left\{\boldsymbol{Z}_{1}, \boldsymbol{Z}_{2}\right\}, \boldsymbol{Z}_{i}=\left\{\boldsymbol{z}_{\boldsymbol{i}, \boldsymbol{m}}\right\}$
\longrightarrow induce dependence between neighboring elements of \boldsymbol{V}_{i}
- $v_{i, \boldsymbol{m}}$: connected to 8 variables $z_{i, \boldsymbol{m}^{\prime}} \in \mathcal{V}_{v}(\boldsymbol{m})$

$$
\mathcal{V}_{v}(\boldsymbol{m}) \triangleq\left\{\boldsymbol{m}+\left(i_{1}, i_{2}, i_{3}\right)\right\}_{i_{1}, i_{2}, i_{3}=0,1}
$$

via edges with weights $\rho_{i}, i=1,2$

- and vice-versa $z_{i, \boldsymbol{m}}$ to $v_{i, \boldsymbol{m}^{\prime}} \in \mathcal{V}_{z}(\boldsymbol{m})$

$$
\left.\mathcal{V}_{z}(\boldsymbol{m}) \triangleq\left\{\boldsymbol{m}+\left(i_{1}, i_{2}, i_{3}\right)\right)\right\}_{i_{1}, i_{2}, i_{3}=-1,0}
$$

Part 3: Bayesian model for multivariate time series

Gamma Markov random field (GaMRF)

\longrightarrow smooth evolution of multifractal parameters \mathbf{v}
(\sim variances of Gaussians)

- Positive auxiliary variables $\boldsymbol{Z}=\left\{\boldsymbol{Z}_{1}, \boldsymbol{Z}_{2}\right\}, \boldsymbol{Z}_{i}=\left\{\boldsymbol{z}_{\boldsymbol{i}, \boldsymbol{m}}\right\}$
\longrightarrow induce dependence between neighboring elements of $\boldsymbol{V}_{\boldsymbol{i}}$
- $v_{i, \boldsymbol{m}}$: connected to 8 variables $z_{i, \boldsymbol{m}^{\prime}} \in \mathcal{V}_{v}(\boldsymbol{m})$

$$
\mathcal{V}_{v}(\boldsymbol{m}) \triangleq\left\{\boldsymbol{m}+\left(i_{1}, i_{2}, i_{3}\right)\right\}_{i_{1}, i_{2}, i_{3}=0,1}
$$

via edges with weights $\rho_{i}, i=1,2$

- and vice-versa $z_{i, \boldsymbol{m}}$ to $v_{i, \boldsymbol{m}^{\prime}} \in \mathcal{V}_{z}(\boldsymbol{m})$

$$
\left.\mathcal{V}_{z}(\boldsymbol{m}) \triangleq\left\{\boldsymbol{m}+\left(i_{1}, i_{2}, i_{3}\right)\right)\right\}_{i_{1}, i_{2}, i_{3}=-1,0}
$$

Part 3: Bayesian model for multivariate time series
Bayesian model with GaMRF prior

- GaMRF prior: associated density

$$
\begin{aligned}
& p\left(\boldsymbol{V}_{i}, \boldsymbol{Z}_{i} \mid \rho_{i}\right) \propto \prod_{\boldsymbol{m}, n} \mathrm{e}^{\left(8 \rho_{i}-1\right) \log z_{i, m}} \mathrm{e}^{-\left(8 \rho_{i}+1\right) \log \boldsymbol{v}_{i, \boldsymbol{m}}} \times \mathrm{e}^{-\frac{\rho_{i}}{v_{i, m}} \sum_{\boldsymbol{m}^{\prime} \in \mathcal{V}_{v} \boldsymbol{m} z_{i, \boldsymbol{m}^{\prime}}}} \\
& z_{i, \boldsymbol{m}} \mid \boldsymbol{V}_{i} \sim \mathcal{G}\left(8 \rho_{i},\left(\rho_{i} \sum_{\boldsymbol{m}^{\prime} \in \mathcal{V}_{z}(\boldsymbol{m})} v_{i, \boldsymbol{k}^{\prime}}^{-1}\right)^{-1}\right) \quad \rightarrow \text { gamma conditionals } \\
& \boldsymbol{v}_{i, \boldsymbol{m}} \mid \boldsymbol{Z}_{\boldsymbol{i}} \sim \mathcal{I G}\left(8 \rho_{i}, \rho_{i} \sum_{\boldsymbol{m}^{\prime} \in \mathcal{V}_{v}(\boldsymbol{m})} z_{i, \boldsymbol{m}^{\prime}}\right) \quad \rightarrow \text { inverse-gamma conditionals }
\end{aligned}
$$

Part 3: Bayesian model for multivariate time series

Bayesian model with GaMRF prior

- Augmented likelihood

$$
p(\boldsymbol{Y}, \boldsymbol{M} \mid \boldsymbol{V})=p\left(\boldsymbol{Y} \mid \boldsymbol{V}_{2}, \boldsymbol{M}\right) p\left(\boldsymbol{M} \mid \boldsymbol{V}_{1}\right)
$$

- GaMRF prior: associated density

$$
\begin{aligned}
& p\left(\boldsymbol{V}_{i}, \boldsymbol{Z}_{i} \mid \rho_{i}\right) \propto \prod_{\boldsymbol{m}, n} \mathrm{e}^{\left(8 \rho_{i}-1\right) \log \boldsymbol{z}_{i, \boldsymbol{m}}} \mathrm{e}^{-\left(8 \rho_{i}+1\right) \log \boldsymbol{v}_{i, \boldsymbol{m}}} \times \mathrm{e}^{-\frac{\rho_{i}}{\nu_{i}, \boldsymbol{m}} \sum_{\boldsymbol{m}^{\prime} \in \mathcal{V}_{\boldsymbol{v}} \boldsymbol{m} \boldsymbol{z}_{i, \boldsymbol{m}^{\prime}}}} \\
& z_{i, \boldsymbol{m}} \mid \boldsymbol{V}_{i} \sim \mathcal{G}\left(8 \rho_{i},\left(\rho_{i} \sum_{\boldsymbol{m}^{\prime} \in \mathcal{V}_{\boldsymbol{z}}(\boldsymbol{m})} v_{i, \boldsymbol{k}^{\prime}}^{-1}\right)^{-1}\right) \quad \rightarrow \text { gamma conditionals } \\
& \boldsymbol{v}_{i, \boldsymbol{m}} \mid \boldsymbol{Z}_{i} \sim \mathcal{I} \mathcal{G}\left(8 \rho_{i}, \rho_{i} \sum_{\boldsymbol{m}^{\prime} \in \mathcal{V}_{v}(\boldsymbol{m})} z_{i, \boldsymbol{m}^{\prime}}\right) \quad \rightarrow \text { inverse-gamma conditionals }
\end{aligned}
$$

- Posterior distribution

$$
\begin{aligned}
p(\boldsymbol{V}, \boldsymbol{Z}, \boldsymbol{M} \mid \boldsymbol{Y}, & \left.\rho_{1}, \rho_{2}\right) \propto \\
& \underbrace{p\left(\boldsymbol{Y} \mid \boldsymbol{V}_{2}, \boldsymbol{M}\right) p\left(\boldsymbol{M} \mid \boldsymbol{V}_{1}\right)}_{\text {augmented likelihood }} \times \underbrace{p\left(\boldsymbol{V}_{1}, \boldsymbol{Z}_{1} \mid \rho_{1}\right) p\left(\boldsymbol{V}_{2}, \boldsymbol{Z}_{2} \mid \rho_{2}\right)}_{\text {independent GaMRF priors }}
\end{aligned}
$$

Part 3: Bayesian model for multivariate time series

Gibbs sampler

- Marginal posterior mean estimator

$$
\boldsymbol{V}_{i}^{\mathrm{MMSE}}=\mathbb{E}\left[\boldsymbol{V}_{i} \mid \boldsymbol{Y}, \rho_{i}\right] \approx\left(N_{m c}-N_{b i}\right)^{-1} \sum_{q=N_{b i}}^{N_{m c}} \boldsymbol{V}_{i}^{(q)}
$$

all standard distributions \rightarrow no Metropolis-Hasting moves \rightarrow efficient sampling scheme, tailored for large datasets

Part 3: Bayesian model for multivariate time series

Gibbs sampler

- Marginal posterior mean estimator

$$
\boldsymbol{V}_{i}^{\mathrm{MMSE}}=\mathbb{E}\left[\boldsymbol{V}_{i} \mid \boldsymbol{Y}, \rho_{i}\right] \approx\left(N_{m c}-N_{b i}\right)^{-1} \sum_{q=N_{b i}}^{N_{m c}} \boldsymbol{V}_{i}^{(q)}
$$

- Sampling of \boldsymbol{M} and parameters \boldsymbol{V} $p\left(\boldsymbol{\mu}_{\boldsymbol{m}} \mid \boldsymbol{V}, \boldsymbol{Y}, \boldsymbol{Z}, \boldsymbol{\rho}\right) \quad$ closed-form Gaussian distribution $p\left(\boldsymbol{v}_{i, \boldsymbol{m}} \mid \boldsymbol{\boldsymbol { V } _ { j \neq i }}, \boldsymbol{M}, \boldsymbol{Y}, \boldsymbol{Z}, \boldsymbol{\rho}\right) \quad$ closed-form inverse-gamma distributions
- Sampling of auxiliary variables \boldsymbol{Z}
$p\left(z_{i, \boldsymbol{m}} \mid \boldsymbol{V}, \boldsymbol{M}, \boldsymbol{Y}, \boldsymbol{\rho}\right) \quad$ closed-form gamma distributions
all standard distributions \rightarrow no Metropolis-Hasting moves
\rightarrow efficient sampling scheme, tailored for large datasets
(Hyperparameters ρ_{i} fixed manually)

Part 3: Bayesian model for multivariate time series
Gibbs sampler with independent $\mathcal{I G}$ priors

- Marginal posterior mean estimator

$$
\boldsymbol{V}_{i}^{\mathrm{MMSE}}=\mathbb{E}\left[\boldsymbol{V}_{i} \mid \boldsymbol{Y}, \rho_{i}\right] \approx\left(N_{m c}-N_{b i}\right)^{-1} \sum_{q=N_{b i}}^{N_{m c}} \boldsymbol{V}_{i}^{(q)}
$$

- Sampling of \mathbf{M} and parameters \mathbf{V}

$$
\begin{array}{lr}
p\left(\boldsymbol{\mu}_{\boldsymbol{m}} \mid \boldsymbol{V}, \boldsymbol{Y}\right. \\
p\left(\boldsymbol{v}_{i, \boldsymbol{m}} \mid \boldsymbol{V}_{j \neq i}, \boldsymbol{M}, \boldsymbol{Y}\right. & \text { closed-form Gaussian distribution }
\end{array}
$$

all standard distributions \rightarrow no Metropolis-Hasting moves
\rightarrow efficient sampling scheme, tailored for large datasets

Part 3: Bayesian model for multivariate time series

Gibbs sampler

- Marginal posterior mean estimator

$$
\boldsymbol{V}_{i}^{\mathrm{MMSE}}=\mathbb{E}\left[\boldsymbol{V}_{i} \mid \boldsymbol{Y}, \rho_{i}\right] \approx\left(N_{m c}-N_{b i}\right)^{-1} \sum_{q=N_{b i}}^{N_{m c}} \boldsymbol{V}_{i}^{(q)}
$$

- Sampling of \boldsymbol{M} and parameters \boldsymbol{V} $p\left(\boldsymbol{\mu}_{\boldsymbol{m}} \mid \boldsymbol{V}, \boldsymbol{Y}, \boldsymbol{Z}, \boldsymbol{\rho}\right) \quad$ closed-form Gaussian distribution $p\left(\boldsymbol{v}_{i, \boldsymbol{m}} \mid \boldsymbol{\boldsymbol { V } _ { j \neq i }}, \boldsymbol{M}, \boldsymbol{Y}, \boldsymbol{Z}, \boldsymbol{\rho}\right) \quad$ closed-form inverse-gamma distributions
- Sampling of auxiliary variables \boldsymbol{Z}
$p\left(z_{i, \boldsymbol{m}} \mid \boldsymbol{V}, \boldsymbol{M}, \boldsymbol{Y}, \boldsymbol{\rho}\right) \quad$ closed-form gamma distributions
all standard distributions \rightarrow no Metropolis-Hasting moves
\rightarrow efficient sampling scheme, tailored for large datasets
(Hyperparameters ρ_{i} fixed manually)

Numerical illustrations

Synthetic multifractal time series

- Multifractal Random Walk
~ Mandelbrot's celebrated multiplicative cascades
- cube of 32^{3} voxels of length $N=512$
- 3 zones with constant $c_{2} \in\{-0.01,-0.03,-0.06\}$

- Comparison of estimators for c_{2}

$\left(N_{\psi}=2, j \in[2,4]\right)$
- LF - univariate linear regression based estimation
- IG - univariate Bayesian estimation
- GaMRF - joint Bayesian estimator

Numerical illustrations

Illustration for single realization: estimates estimates for c_{2}

Numerical illustrations
Illustration for single realization: estimates estimates for c_{2}

A Bayesian estimator for the multifractal analysis of multivariate data

Numerical illustrations

Illustration for single realization: histogram thresholding k-means classification

Scale-free dynamics and infraslow macroscopic brain activity

[Ciuciu-EMBC'17] [Wendt-ISBI'18]

Collab. P. Ciuciu (CEA, NeuroSpin, France), P. Abry (ENS Lyon, France)

Numerical illustrations

fMRI data: Experimental design and acquisition
Verbal n-back working memory task $(n=3)$.

- serially presented upper-case letters (displayed 1s, separation 2s)
\rightarrow Is letter same as that presented 3 stimuli before?

$\begin{aligned} & \text { 0-Back } \\ & \text { A C X F } \end{aligned}$	$\begin{aligned} & \text { 1-Back } \\ & \text { C D D R } \end{aligned}$	2-Back ${ }_{\text {CDEDH }}$

- each run: alternating sequence of 8 blocks

Data acquisition.

- resting-state fMRI images first: participant at rest, with eyes closed
- 543 scans (9 min10s) / 512 scans (8 min39s) for rest / task
- fMRI data acquisition at 3 Tesla (Siemens Trio, Germany)
- multi-band $G E-E P I(T E=30 \mathrm{~ms}$. $T R=1 \mathrm{~s}, F A=61, M B=2)$ sequence
(CMRR, USA), 3 mm isotropic resolution, FOV of $192 \times 192 \times 144 \mathrm{~mm}^{3}$
Shown results: $\left(-C_{2}\right)$ maps.
- for single subject (arbitrarily chosen from 40 participants)

Numerical illustrations

fMRI data: Experimental design and acquisition

Verbal n-back working memory task $(n=3)$.

- serially presented upper-case letters (displayed 1s, separation 2s)
\rightarrow Is letter same as that presented 3 stimuli before?

| 0-Back |
| :---: | :---: |
| ACXF | | 1-Back |
| :---: |
| CDDDR |\quad| 2-Back |
| :---: |
| CDEDH |\quad| 3-Back |
| :---: |
| T DE K D Z |

- each run: alternating sequence of 8 blocks

Data acquisition.

- resting-state fMRI images first: participant at rest, with eyes closed
- 543 scans (9 min 10 s) / 512 scans (8 min 39 s) for rest / task
- fMRI data acquisition at 3 Tesla (Siemens Trio, Germany)
- multi-band GE-EPI (TE=30ms, TR=1s, FA=61, MB=2) sequence
(CMRR, USA), 3 mm isotropic resolution, FOV of $192 \times 192 \times 144 \mathrm{~mm}^{3}$
Shown results: $\left(-C_{2}\right)$ maps.
- for single subject (arbitrarily chosen from 40 participants).

Numerical illustrations

fMRI data: Experimental design and acquisition

Verbal n-back working memory task $(n=3)$.

- serially presented upper-case letters (displayed 1s, separation 2s)
\rightarrow Is letter same as that presented 3 stimuli before?

0-Back				
ACXFF	1-Back CDDDR	2-Back CDEDH		3-Back
:---:				
TDEK				

- each run: alternating sequence of 8 blocks

Data acquisition.

- resting-state fMRI images first: participant at rest, with eyes closed
- 543 scans (9 min 10 s) / 512 scans (8 min 39 s) for rest / task
- fMRI data acquisition at 3 Tesla (Siemens Trio, Germany)
- multi-band GE-EPI (TE=30ms, TR=1s, FA=61, MB=2) sequence
(CMRR, USA), 3 mm isotropic resolution, FOV of $192 \times 192 \times 144 \mathrm{~mm}^{3}$

Shown results: $\left(-c_{2}\right)$ maps.

- for single subject (arbitrarily chosen from 40 participants).

Numerical illustrations

Resting-state analysis

$$
\left(\left(-c_{2}\right) \text { maps }\right)
$$

Left sagittal Coronal Right sagittal Axial c2_LF_rs1_Nmc1600

LF:

- poor estimation (var!)

IG \& GaMRF:

- estimation var decrease

GaMRF:

- enhanced MF contrast

GaMRF

\longrightarrow significant MF in default mode network (DMN)
A Bayesian estimator for the multifractal analysis of multivariate data $19 / 21$

Left sagittal c2_LF_rs1_Nmc1600
 Coronal
 Right sagittal Axial

c2_IG_rs1_Nmc1600_IS10

$\begin{array}{lllll}0 & b & & 0 & 0 \\ N & \vec{N} & 0 & \vec{N} & \text { N } \\ & \end{array}$
LF:

- poor estimation (var!)

IG \& GaMRF:

- estimation var decrease - increase of MF in DMN GaMRF:
- enhanced MF contrast
scale-free dynamics in DMN for resting-state fMRI reported before, but for H only [He Jns'11].
\longrightarrow evidence for richer, MF resting state brain dynamics
\longrightarrow significant MF in default mode network (DMN)

[^0]
Numerical illustrations

Task analysis: 3-back run

Left sagittal
 Coronal
 Right sagittal
 Axial

 c2_LF_nback_3_Nmc1600
c2_IG_nback_3_Nmc1600_IS10

c2_GMRF_nback_3_Nmc1600_IS10_Reg1_g05

\longrightarrow overall MF increase; working memory network (WMN), visual, sensory.

Numerical illustrations

Task analysis: 3-back run

$$
\left(\left(-c_{2}\right) \text { maps }\right)
$$

Left sagittal
 Coronal

 c2_LF_nback_3_Nmc1600
c2_IG_nback_3_Nmc1600_IS10

c2_GMRF_nback_3_Nmc1600_IS10_Reg1_g05

GaMRF

0.11
0.083
0.055
0.028
0
\longrightarrow overall MF increase; working memory network (WMN), visual, sensory.

Numerical illustrations

Task analysis: 3-back run

Left sagittal
 Right sagittal
 Axial

 c2_LF_nback_3_Nmc1600

0.24
0.12
0
-0.12
-0.24LF:

- poor estimation (var!)

IG \& GaMRF:

- estimation var decrease
c2_IG_nback_3_Nmc1600_IS10

c2_GMRF_nback_3_Nmc1600_IS10_Reg1_g05

overall increase in MF during task
[Ciuciu FPhys'12]
GaMRF:
significant MF in
- bilateral parietal regions belonging to WMN
- occipital cortex (visual)
- cerebellum (sensory) involved in task
\longrightarrow overall MF increase; working memory network (WMN), visual, sensory.

Conclusions and perspectives

Multifractal analysis:

- Bayesian estimation for c_{2} of multivariate time series
- hierarchical Bayesian model with smoothing priors:

$$
\left\{\begin{array}{l}
\text { data augmented Fourier domain likelihood } \quad(\sim \mathcal{C N}) \\
\text { GaMRF joint prior for } c_{2} \text { of different data components }
\end{array}\right.
$$

\rightarrow efficient inference via a Gibbs sampler (large data sets)
\rightarrow significantly improved estimation performance (gain: factor ~ 10)

GaMRF hyperparameter, integral scale; EM algorithm

- Multivariate priors
joint estimation-segmentation in time / space
- Estimation of parameters of multivariate multifractal models

Conclusions and perspectives

Multifractal analysis:

- Bayesian estimation for c_{2} of multivariate time series
- hierarchical Bayesian model with smoothing priors:

$$
\left\{\begin{array}{l}
\text { data augmented Fourier domain likelihood } \quad(\sim \mathcal{C N}) \\
\text { GaMRF joint prior for } c_{2} \text { of different data components }
\end{array}\right.
$$

\rightarrow efficient inference via a Gibbs sampler (large data sets)
\rightarrow significantly improved estimation performance (gain: factor ~ 10)

- Current model:

GaMRF hyperparameter, integral scale; EM algorithm

- Multivariate priors
joint estimation-segmentation in time / space
- Estimation of parameters of multivariate multifractal models

Thank you for your attention

herwig.wendt@irit.fr www.irit.fr/~Herwig.Wendt/

Brief bibliography

- [Arneodo98] A. Arneodo, E. Bacry, and J. F. Muzy. Random cascades on wavelet dyadic trees. J. Math. Phys., 39(8):4142?4164, 1998.
- [Castaing93] B. Castaing, Y. Gagne, M. Marchand, Log-similarity for turbulent flows?, Physica D, 68(34):387-400, 1993.
- [Dikmen10] O. Dikmen, A.T. Cemgil, Gamma Markov random fields for audio source modeling, IEEE T. Audio, Speech, Lang. Proces., 18(3):589-601, 2010.
- [Jaffard04] S. Jaffard, Wavelet techniques in multifractal analysis, in Fractal Geometry and Applications: A Jubilee of Benoît Mandelbrot, Proc. Symp. Pure Math., M. Lapidus et al., Eds., pp. 91-152, AMS, 2004.
- [Mandelbrot90] B. Mandelbrot. Limit lognormal multifractal measures. In E.A. Gotsman, Y. Ne?eman, and A. Voronel, editors, Frontiers of Physics, Proc. Landau Memorial Conf., Tel Aviv, 1988, pages 309-340. Pergamon Press, 1990.
- [Parisi85] U. Frisch, G. Parisi, On the singularity structure of fully developed turbulence; appendix to Fully developped turbulence and intermittency, in Proc. Int. Summer School Phys. Enrico Fermi, North-Holland, pp. 84-88, 1985.
- [Robert05] C. P. Robert and G. Casella, Monte Carlo Statistical Methods, Springer, New York, USA, 2005.

Brief bibliography (2)

- [TIP15] SC.HW.ND.JYT.SMcL.PA, Bayesian Estimation of the Multifractality Parameter for Image Texture Using a Whittle Approximation, IEEE T. Image Process., 24(8):2540-2551, 2015.
- [ICASSP15] SC.HW.PA.ND.SMcL.JYT, "A Bayesian approach for the joint estimation of the multifractality parameter and integral scale based on the Whittle approximation," Proc. ICASSP, Brisbane, Australia, April 2015.
- [ICASSP16] SC.HW.YA.JYT.SMcL.PA, A Bayesian framework for the multifractal analysis of images using data augmentation and a Whittle approximation, Proc. ICASSP, Shanghai, China, March 2016.
- [IWSSIP16] SC.HW.JYT.PA.SMcL.PA, A Bayesian Approach for the Multifractal Analysis of Spatio-Temporal Data, Proc. IWSSIP, Bratislava, Slovakia, May 2016.
- [EUSIPCO16] SC.HW.PA.JYT.SMcL.PA, Bayesian estimation for the local assessment of the multifractality parameter of multivariate time series, Proc. EUSIPCO, Budapest, Hungary, Sept. 2016.
- [ICIP16] SC.HW.YA.JYT.SMcL.PA, Bayesian joint estimation of the multifractality parameter of image patches using Gamma Markov Random Field priors, Proc. ICIP, Phoenix, AZ, USA, Sept. 2016.

Estimation performance for c_{2}

	LF	IG	GaMRF
$\|\mathrm{b}\|$	0.0158	0.0051	0.0092
std	0.0800	0.0255	0.0020
rmse	$\mathbf{0 . 0 8 1 9}$	$\mathbf{0 . 0 2 6 2}$	$\mathbf{0 . 0 0 9 4}$

$$
\mathrm{b}=\widehat{\mathbb{E}}\left[\hat{c}_{2}\right]-c_{2}, \quad \operatorname{std}=\sqrt{\widehat{\operatorname{Var}}\left[\hat{c}_{2}\right]}, \quad \text { rmse }=\sqrt{\mathrm{b}^{2}+\operatorname{std}^{2}}
$$

(100 independent realizations)

Computation time:

Model: time-domain statistical model of log-leaders

1. Marginal distribution of log-leaders approximated by Gaussian

$$
l(j, \cdot, \cdot)=\ln L(j, \cdot, \cdot) \sim \mathcal{N}\left(\cdot, c_{2}^{0}+c_{2} \ln 2^{j}\right)
$$

2. Intra-scale parametric covariance model

$$
\operatorname{Cov}[l(j, k), l(j, k+\Delta r)] \approx \varrho_{j}(\Delta r ; \boldsymbol{v}), \quad \boldsymbol{v}=\left(c_{2}, c_{2}^{0}\right)
$$

- Likelihood of centered log-leaders l_{j} stacked in $l=\left[l_{j_{1}}^{T}, \ldots, l_{j_{2}}^{T}\right]^{T}$
\rightarrow scale-wise product of Gaussian likelihoods

$$
p(\boldsymbol{l} \mid \boldsymbol{v}) \propto \prod_{j=j_{1}}^{j_{2}}\left|\boldsymbol{\Sigma}_{j, \boldsymbol{v}}\right|^{-\frac{1}{2}} \exp \left(-\frac{1}{2} \boldsymbol{l}_{j}^{T} \boldsymbol{\Sigma}_{j, \boldsymbol{v}}^{-1} \boldsymbol{l}_{j}\right), \text { with } \boldsymbol{\Sigma}_{j, \boldsymbol{v}} \text { induced by } \varrho_{j}(\Delta r ; \boldsymbol{v})
$$

X evaluation of $p(l \mid \boldsymbol{v})$ numerically instable

Model: Whittle approximation

- Evaluation of the Gaussian likelihood in the spectral domain

$$
p_{W}(\boldsymbol{l} \mid \boldsymbol{v}) \propto \prod_{j=j_{1}}^{j_{2}}\left|\boldsymbol{\Gamma}_{j, \boldsymbol{v}}\right|^{-1} \exp \left(-\boldsymbol{y}_{j}^{H} \boldsymbol{\Gamma}_{j, \boldsymbol{v}}^{-1} \boldsymbol{y}_{j}\right)
$$

- \boldsymbol{y}_{j} Fourier coefficients of \boldsymbol{l}_{j}
- $\boldsymbol{\Gamma}_{j, v}$ parametric spectral density associated with $\varrho_{j}(\Delta r ; \boldsymbol{v})$
\rightarrow closed-form expression via Hankel transform

$$
\boldsymbol{\Gamma}_{j, \boldsymbol{v}}=c_{2} \mathbf{F}_{1, j}+c_{2}^{0} \mathbf{F}_{2, j}, \quad \mathbf{F}_{i, j}=\operatorname{diag}\left(\mathbf{f}_{i, j}\right)
$$

- Estimation of \boldsymbol{v} embedded in a Bayesian framework
- space-domain likelihood (approximated) + common priors
X non-standard posterior distribution \rightarrow acceptance/reject moves

Model: Fourier-domain statistical model

- Whittle approximation

$$
p_{W}(\boldsymbol{l} \mid \boldsymbol{v}) \propto \prod_{j=j_{1}}^{j_{2}}\left|\boldsymbol{\Gamma}_{j, \boldsymbol{v}}\right|^{-1} \exp \left(-\boldsymbol{y}_{j}^{H} \boldsymbol{\Gamma}_{j, \boldsymbol{v}}^{-1} \boldsymbol{y}_{j}\right)
$$

- \boldsymbol{y}_{j} Fourier coefficients of $\boldsymbol{l}_{\boldsymbol{j}}$
- $\boldsymbol{\Gamma}_{j, \boldsymbol{v}}=c_{2} \mathbf{F}_{1, j}+c_{2}^{0} \mathbf{F}_{2, j}$ parametric spectral density

$$
\Uparrow
$$

- Generative model for $\boldsymbol{y}=\left[\boldsymbol{y}_{j_{1}}^{T}, \ldots, \boldsymbol{y}_{j_{2}}^{T}\right]^{T}$

$$
p(\boldsymbol{y} \mid \boldsymbol{v}) \propto\left|\boldsymbol{\Gamma}_{\boldsymbol{v}}\right|^{-1} \exp \left(-\boldsymbol{y}^{H} \boldsymbol{\Gamma}_{\boldsymbol{v}}^{-1} \boldsymbol{y}\right)
$$

- complex Gaussian model $\boldsymbol{y} \sim \mathcal{C N}\left(\mathbf{0}, \boldsymbol{\Gamma}_{\boldsymbol{v}}\right)$
- $\boldsymbol{\Gamma}_{\boldsymbol{v}}=c_{2} \boldsymbol{F}_{1}+c_{2}^{0} \boldsymbol{F}_{2}$ and $\boldsymbol{F}_{i}=\operatorname{block}\left(\boldsymbol{F}_{i, j_{1}}, \ldots, \boldsymbol{F}_{i, j_{2}}\right)$
X model non-separable in $\left(c_{2}, c_{2}^{0}\right)$

Model: Reparametrization

- Non-separable constraints on $\left(c_{2}, c_{2}^{0}\right)$
$\boldsymbol{v} \in \mathcal{A}=\left\{\left(c_{2}, c_{2}^{0}\right) \in \mathbb{R}_{\star}^{-} \times \mathbb{R}_{\star}^{+} \mid \boldsymbol{\Gamma}_{\boldsymbol{v}}=c_{2} \mathbf{F}_{1}+c_{2}^{0} \mathbf{F}_{2}\right.$ positive-definite $\}$
- Design of a linear diffeomorphism ψ

1 mapping joint constraints into independent positivity constraints

$$
\begin{aligned}
\psi & : \mathcal{A} \rightarrow \mathbb{R}_{\star}^{+2} \\
& : \boldsymbol{v} \mapsto \psi(\boldsymbol{v}) \triangleq \boldsymbol{v}
\end{aligned}
$$

2 yielding more convenient likelihood

$$
\begin{aligned}
& p(\boldsymbol{y} \mid \boldsymbol{v}) \propto\left|\boldsymbol{\Gamma}_{\boldsymbol{v}}\right|^{-1} \exp \left(-\boldsymbol{y}^{H} \boldsymbol{\Gamma}_{\boldsymbol{v}}^{-1} \boldsymbol{y}\right) \\
& \text { for } \boldsymbol{v} \in \mathbb{R}_{\star}^{+2}\left\{\begin{array}{cc}
\boldsymbol{\Gamma}_{\boldsymbol{v}}=\tilde{\theta}_{1} \tilde{\boldsymbol{F}}_{1}+\tilde{\theta}_{2} \tilde{\boldsymbol{F}}_{2} & \text { posith } \\
\tilde{\theta}_{i} \tilde{\boldsymbol{F}}_{i} & \text { positive-definite }
\end{array}\right.
\end{aligned}
$$

\rightarrow separability of the likelihood via data augmentation

Model: Data augmentation

- Definition of an augmented model

$$
\begin{cases}\boldsymbol{y} \mid \boldsymbol{\mu}, \tilde{\theta}_{2} \sim \mathcal{C N}\left(\boldsymbol{\mu}, \tilde{\theta}_{2} \tilde{\boldsymbol{F}}_{2}\right) & \text { observed data } \\ \boldsymbol{\mu} \mid \tilde{\theta}_{1} \sim \mathcal{C N}\left(\mathbf{0}, \tilde{\theta}_{1} \tilde{\boldsymbol{F}}_{1}\right) & \text { hidden mean }\end{cases}
$$

with

$$
p(\boldsymbol{y} \mid \boldsymbol{v})=\int p(\boldsymbol{y}, \boldsymbol{\mu} \mid \boldsymbol{v}) d \boldsymbol{\mu}
$$

- Virtues of the augmented likelihood $p(\boldsymbol{y}, \boldsymbol{\mu} \mid \boldsymbol{v})$
$p(\boldsymbol{y}, \boldsymbol{\mu} \mid \boldsymbol{v}) \propto \tilde{\theta}_{2}^{-N_{\boldsymbol{r}}} \exp \left(-\frac{1}{\tilde{\theta}_{2}}(\boldsymbol{y}-\boldsymbol{\mu})^{H} \tilde{\boldsymbol{F}}_{2}^{-1}(\boldsymbol{y}-\boldsymbol{\mu})\right) \times \tilde{\theta}_{1}^{-N_{\boldsymbol{\gamma}}} \exp \left(-\frac{1}{\tilde{\theta}_{1}} \boldsymbol{\mu}^{H} \tilde{\boldsymbol{F}}_{1}^{-1} \boldsymbol{\mu}\right)$
separable in $\left(\tilde{\theta}_{1}, \tilde{\theta}_{2}\right)$
conjugate to inverse-gamma priors

MCMC algorithm

- Strategy of Gibbs sampler
- iterative sampling according to conditional laws
- non-standard conditional laws \rightarrow Metropolis-within-Gibbs
- computation of acceptance ratio at each iteration

$$
r_{c_{2}}=\sqrt{\frac{\operatorname{det} \boldsymbol{\Sigma}\left(\boldsymbol{v}^{(t)}\right)}{\operatorname{det} \boldsymbol{\Sigma}\left(\boldsymbol{v}^{(*)}\right)}} \times \prod_{j=j_{1}}^{j_{2}} \exp \left(-\frac{1}{2} \boldsymbol{l}_{j}^{T}\left(\boldsymbol{\Sigma}_{j, \boldsymbol{v}}\left(\boldsymbol{v}^{(*)}\right)^{-1}-\boldsymbol{\Sigma}_{j, \boldsymbol{v}}\left(\boldsymbol{v}^{(t)}\right)^{-1}\right) \boldsymbol{l}_{j}\right)
$$

Time block wise estimation (2D+time)

- Synthetic multifractal time series: Multifractal Random Walk
\sim Mandelbrot's celebrated multiplicative cascades
- collection of 32×32 time series of length $N=2^{14}$
- piece-wise constant $c_{2} \in\{-0.02,-0.04\}$ along time

- Comparison of estimators for c_{2}
- $n_{S}=2^{2, \ldots, 6}$ windows of lengths $L=\left\{2^{12}, 2^{11}, 2^{10}, 2^{9}, 2^{8}\right\}$
- LF - univariate linear regression based estimation
- IG - univariate Bayesian estimation
[TIP15,ICASSP16]
- GaMRF - joint Bayesian estimator

Time block wise estimation (2D+time)

estimates for c_{2} : temporal evolution at slice $m_{2}=16$

Time block wise estimation (2D+time)

estimates for c_{2} : spatial cross-section at $t=0.5$

Time block wise estimation (2D+time)

RMSE (50 independent realizations)

n_{S} / L	$4 / 2^{12}$	$8 / 2^{11}$	$16 / 2^{10}$	$32 / 2^{9}$	$64 / 2^{8}$
LF	0.020	0.026	0.037	0.058	0.102
IG	0.011	0.013	0.018	0.024	0.036
GaMRF	$\mathbf{0 . 0 0 8}$	$\mathbf{0 . 0 0 8}$	$\mathbf{0 . 0 0 9}$	$\mathbf{0 . 0 0 9}$	$\mathbf{0 . 0 1 3}$

[^0]: A Bayesian estimator for the multifractal analysis of multivariate data

