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Empirical data: signals / images
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Summary Recently, a growing interest in image processing tools for art analysis has emerged. Here, we

investigate the use of the wavelet leader based multifractal formalism for this purpose, a mathematical tool

for characterizing the regularity properties of homogeneous textures. We apply this tool to a set of digitized

version of authentic drawings by Bruegel and imitations. Multifractal attributes estimated on the paintings

enable us to discriminate the authentic drawings from imitations, give interesting insights into the regularity

properties of their textures and thus show that multifractal analysis is a promising tool for stylometry.

MULTIFRACTAL ANALYSIS OF IMAGES

Multifractal Spectrum
-Local regularity:

locally bounded function X(x), x = (x1, x2)

�⌃ local power law behavior

�⌃ |X(x) � X(x0)| ⇤ C|x � x0|� C > 0, � > 0

�⌃ largest such �: Hölder exponent h(x0)

-Multifractal spectrum:

�⌃ geometric structure of subsets Eh : h(xi) = h

D(h) = dimHausdorff{x : h(x) = h} (1)
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[Van Gogh F752 — within the Image Processing for Art Investigation

(IP4AI) research program (www.digitalpaintinganalysis.org)]

Minimum regularity
D(h), LX: locally bounded functions only!

-Minimum regularity

hm = lim inf
2j⌃0

ln supk |dX(j, k1, k2)|
ln 2j

(2)

�⌃ X locally bounded: hm > 0

-Fractional Integration

- if hm < 0:

�⌃ fractional integral of order ⇥ = max(0,�hm)

�⌃ FI⇥(X) locally bounded

- equivalently: apply multifractal formalism (3-5) to

d
(m),⇥
X (j,k) = 2⇥jd

(m)
X (j,k)

Multifractal Formalism
-Wavelet leaders:

LX(j, k1, k2) = sup
m,⌅�⇧3⌅j,k1,k2

|d(m)
X (⌅�)| (3)

d
(m)
X (j,k) – DWT coe⇥cients of locally bounded function

(2D orthonormal wavelet basis, L1 normalized)

⌅j,k1,k2
– dyadic cube [k12

j, (k1 + 1)2j) ⇥ [k22
j, (k2 + 1)2j)

3⌅j,k1,k2
– union with eight closest neighbors

�⌃ local supremum of wavelet coe�cients

-Multifractal formalism:

Scaling function (S(2j, q) = 1
nj

�
k LX(j, k1, k2)

q) .

⇤(q) = lim inf
2j⌃0

log2 S(2j, q)/ log2 2j (4)

Legendre transform:

L(h) = minq(2 + qh � ⇤(q)) ⌅ D(h) (5)

�⌃ upper bound for multifractal spectrum

Cumulant expansion
Polynomial expansion around q = 0:

- ⇤(q) =
⇥

p⌅1

cp
qp

p!

-L(h) ⌥ 2 � (h � c1)
2/(2|c2|) + · · ·

.

c1 – position of maximum

c2 – typical width

c3 – asymmetry

-Cp(2
j) – p-th cumulant of lnLX(j,k)

Cp(2
j) = c0

p + cp ln 2j (6)

Estimation
Eqs. (2), (4), (6) �⌃ linear regressions (cf. e.g. [1,2])

TRUE BRUEGEL VS. FORGERIES

Fractal & Scaling Properties
-Analysis: grey level intensity images

3 patches 1024 ⇥ 1024 pixel per drawing

N⇧ = 2, ⇥ = 0.75

�⌃ estimates consistent for di�erent patches of single drawing

-Power law behaviors:

�⌃ scales 16 ⇥ 16 to 128 ⇥ 128 pixel (3 octaves)

�⌃ fine scales
�⌃ hand style of artist

Multifractal Projections
projections on sub-spaces of multifractal attributes

-Results: imitations have

�⌃ globally more regularity (c1 and hmin larger).

�⌃ less regularity fluctuations along space (|c2| smaller).

�⌃ stylometry
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�⌃ consistent with results on Princeton experiment:

. paintings – original/copy by same artist .

Classification
Quadratic Discriminant Analysis: 3-tuple {c1, c2, hmin}.

�⌃ joint Gaussian – di�erent means / covariance per class

�⌃ classification: log-likelihood ratio

-Results:

�⌃ perfect detection of forgeries

�⌃ misclassification of 7 out 8 · 3 = 24 authentic patches

�⌃ one single false detection for patch averages

individual patches patch averages

0

misclassification [Brueghel, Forgery]:

[0.29, 0]

1 2 3 4 5 6 7 8 9 10 11 12

0

1 2 3 4 5 6 7 8 9 10 11 12

misclassification [Brueghel, Forgery]:

[0.13, 0]

�⌃ use any pair {c1, c2}, {c1, hmin}, {c2, hmin} instead:

decreased performance

Drawings courtesy of NY Metropolitan Museum of Art.

ICASSP 2012 — Kyoto — Japan
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Part 1: Multifractal analysisg Éy

Multifractal spectrum

I Local regularity of X (t) at t0

Hölder exponent
h(t0) , supα{α : |X (t)− X (t0)| < C |t − t0|α} 0 < α

I Multifractal Spectrum D(h) : Fluctuations of regularity h(t)

h(t0)→ 1⇒ smooth, very regular,
h(t0)→ 0⇒ rough, very irregular

D(h) , dimH{t : h(t) = h}

X(t)

tt
0

D(h)

h0

d
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I Multifractal Spectrum D(h) : Fluctuations of regularity h(t)

h(t0)→ 1⇒ smooth, very regular,
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Multifractal spectrum

I Local regularity of X (t) at t0

Hölder exponent
h(t0) , supα{α : |X (t)− X (t0)| < C |t − t0|α} 0 < α

I Multifractal Spectrum D(h) : Fluctuations of regularity h(t)

h(t0)→ 1⇒ smooth, very regular,
h(t0)→ 0⇒ rough, very irregular
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Multifractal spectrum

I Local regularity of X (t) at t0

Hölder exponent
h(t0) , supα{α : |X (t)− X (t0)| < C |t − t0|α} 0 < α

I Multifractal Spectrum D(h) : Fluctuations of regularity h(t)

h(t0)→ 1⇒ smooth, very regular,
h(t0)→ 0⇒ rough, very irregular

D(h) , dimH{t : h(t) = h}

h(t
0
) = 0.6

t
0

D(h)

h0

d
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Multifractal spectrum

I Local regularity of X (t) at t0

Hölder exponent
h(t0) , supα{α : |X (t)− X (t0)| < C |t − t0|α} 0 < α

I Multifractal Spectrum D(h) : Fluctuations of regularity h(t)
- Set of points that share same regularity {ti |h(ti ) = h}
- Fractal (or Haussdorf) Dimension of each set:

D(h) , dimH{t : h(t) = h}

t
i

X(t)

t

D(h)

h0

d
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Hölder exponent
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- Set of points that share same regularity {ti |h(ti ) = h}
- Fractal (or Haussdorf) Dimension of each set:
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t
i

h(t
i
) = 0.2
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Multifractal spectrum

I Local regularity of X (t) at t0

Hölder exponent
h(t0) , supα{α : |X (t)− X (t0)| < C |t − t0|α} 0 < α

I Multifractal Spectrum D(h) : Fluctuations of regularity h(t)
- Set of points that share same regularity {ti |h(ti ) = h}
- Fractal (or Haussdorf) Dimension of each set:

D(h) , dimH{t : h(t) = h}

t
i

h(t
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) = 0.4
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Multifractal spectrum
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- Set of points that share same regularity {ti |h(ti ) = h}
- Fractal (or Haussdorf) Dimension of each set:
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I Multifractal Spectrum D(h) : Fluctuations of regularity h(t)
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Part 1: Multifractal analysisg Éy

Multifractal formalism

I D(h) in practice → multifractal formalism [Parisi85]

I Multiresolution quantities: wavelet leaders {`(j ·, ·)} [Jaffard04]

`(j , k) , sup
λ′⊂3λj,k

|d(λ′)|, d(j , k) : DWT coefficient

t
i

X(t)

t

Analyse Multifractale LeadersÉy 10 / 50

Formalisme Multifractal : ”Leaders”

! dX (j , k) −→ LX (j , k) :

2
j!2

2
j!1

2
j

...

...

k

d
X
(j, k)L

X
(j,k) = sup

!’" 3 !
 |d

X,!’
|

!’" 3 !

1. Moments q < 0 : ok
2. Singularités ”oscillantes” : ok

A Bayesian estimator for the multifractal analysis of multivariate data 3 / 21-



Part 1: Multifractal analysisg Éy

Multifractal formalism

I D(h) in practice → multifractal formalism [Parisi85]

I Multiresolution quantities: wavelet leaders {`(j ·, ·)} [Jaffard04]

`(j , k) , sup
λ′⊂3λj,k

|d(λ′)|, d(j , k) : DWT coefficient

I Polynomial expansion [Castaing93]

D(h) ≈ 1 +
c2

2!

(
h − c1

c2

)2

− c3

3!

(
h − c1

c2

)3

+ . . .

→ cp tied to cumulants of l(j , k) , ln `(j , k)}
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Multifractal formalism

I D(h) in practice → multifractal formalism [Parisi85]

I Multiresolution quantities: wavelet leaders {`(j ·, ·)} [Jaffard04]

`(j , k) , sup
λ′⊂3λj,k

|d(λ′)|, d(j , k) : DWT coefficient

I Polynomial expansion [Castaing93]

D(h) ≈ 1 +
c2

2!

(
h − c1

c2

)2

− c3

3!

(
h − c1

c2

)3

+ . . .

→ cp tied to cumulants of l(j , k) , ln `(j , k)}

I Multifractality parameter c2

- ∼ fluctuations of regularity
- tied to the variance of log-leaders

Var [ ln `(j , ·) ] = c0
2 + c2 ln 2j

self-similar processes → c2 = 0
multifractal multiplicative cascades → c2 < 0

.

A Bayesian estimator for the multifractal analysis of multivariate data 3 / 21-



Part 1: Multifractal analysisg Éy

Estimation of the multifractality parameter
I Estimation of c2 is challenging

- linear regression-based estimation [Castaing93]

X poor estimation performance −→ need (very) long time series

A Bayesian estimator for the multifractal analysis of multivariate data 4 / 21-
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Estimation of the multifractality parameter
I Estimation of c2 is challenging

- linear regression-based estimation [Castaing93]

X poor estimation performance −→ need (very) long time series

1. Bayesian estimation for c2 for single time series [TIP15,ICASSP16]

- robust semiparametric model for log-leaders

2. Bayesian estimation for c2 for multivariate data
. [IWSSIP16,EUSIPCO16,ICIP16,HW18]

- regularization using Markov field joint prior

Synthetic multiplicative cascades with different c2

III. BAYESIAN MODEL FOR MULTIVARIATE TIME SERIES

A. Likelihood

Based on the likelihood (11) for one single time series
X(t), we now design a joint Bayesian model for the analysis
of multivariate time series. Let Xm, m , (m1, m2, m3),
md = 1, . . . , Md, denote M1 ⇥M2 ⇥M3 discrete time series
(voxels) of length N (as illustrated in Fig. 1). Denote as
ym, µm and vm the Fourier coefficients, latent variables and
parameter vector associated with Xm and as Y , {ym},
M , {µm}, and V , {V 1, V 2} (where V i , {vi,m},
i = 1, 2) the corresponding collections for all voxels {Xm}.
Assuming independence between the vectors ym, the joint
likelihood of Y can be written as

p(Y , M |V ) /
Y

m
p(ym, µm|vm). (12)

B. Gamma Markov random field prior

Inverse-gamma distributions IG(↵i,m,�i,m) are conjugate
priors for the parameters vi,m in (12), and we propose to
specify (↵i,m,�i,m) such that the resulting prior for V i is a
hidden GMRF [15]. A GMRF makes use of a set of positive
auxiliary variables Z = {Z1, Z2}, Zi = {zi,m}, to induce
positive dependence between the neighbooring elements of
V i (and thus spatial regularization) [15]. Specifically, each
vi,m is connected to the eight auxiliary variables zi,m0 >
0, m0 2 Vv(m) , {m + (d1, d2, d3)}d1,d2,d3=0,1 (and
therefore, each zi,m to vi,m0 , m0 2 Vz(m) , {m +
(d1, d2, d3))}d1,d2,d3=�1,0), via edges with weights ⇢i, i =
1, 2, that are hyperparameters and control the amount of
smoothness. It can be shown that this prior for (V i,Zi) is
associated with the density [15]

p(V i, Zi|⇢i) /
Y

k
e(8⇢i�1) log zi,m e�(8⇢i+1) log vi,m

.⇥ e
� ⇢i

vi,m

P
m02Vv(m) zi,m0

. (13)

C. Posterior distribution and Bayesian estimators

Under the assumption of prior independence between
(V 1, Z1) and (V 2, M , Z2), the joint posterior distribution
associated with the proposed model is obtained as

p(V , Z, M |Y , ⇢1, ⇢2) / p(Y |V 2, M) p(M |V 1)

⇥ p(V 1, Z1|⇢1) p(V 2, Z2|⇢2) (14)

using Bayes’ theorem. To infer the parameters of inter-
est V i, we consider the marginal posterior mean (mini-
mum mean square error) estimator, denoted MMSE, which
is defined as V MMSE

i , E[V i|Y , ⇢i], where the expecta-
tion is taken with respect to the marginal posterior den-
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Fig. 1. Illustration of the cube of 32 ⇥ 32 ⇥ 32 voxels of time series (left
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where Nbi is the number of samples of the burn-in period.

D. Gibbs sampler

Here, the GS consists of successively drawing samples
from the conditional distributions that are associated with the
posterior (14) [18]. Simple calculations lead to
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are assumed to be independent and have IG(ci, di) priors
instead of (13) (i.e., no smooth spatial evolution is assumed),
a Bayesian model is obtained that can also be sampled using
the GS steps (16a–16b), with ↵i,m = ci and �i,m = di.

IV. NUMERICAL EXPERIMENTS

We compare the performance of the proposed estimator
(denoted as GMRF) with its counterpart with an IG prior
(denoted as IG) and with the linear regression estimator (3)
(denoted as LF, with weights as in [7]) by applying it to
100 independent realizations of a cube of 323 voxels of
length N = 512. Each voxel is an independent realization
of MRW, with prescribed values c2 2 {�0.01,�0.03,�0.06}
as illustrated in Fig. 1. MRW belongs to the class of MMC
processes and possesses multifractal properties similar to those
of Mandelbrot’s multiplicative log-normal cascades, with scal-
ing exponents ⇣(q) = (H � c2)q + c2q
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TABLE I
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std 0.0800 0.0255 0.0020

rmse 0.0819 0.0262 0.0094

where Nbi is the number of samples of the burn-in period.

D. Gibbs sampler

Here, the GS consists of successively drawing samples
from the conditional distributions that are associated with the
posterior (14) [18]. Simple calculations lead to

p(µ | Y ,V )⇠ CN
⇣
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v y,
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where the subscript m has been omitted for notational con-
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16c) are standard laws that can be sampled efficiently, without
MHG steps. Finally, note that when the parameters vi,m

are assumed to be independent and have IG(ci, di) priors
instead of (13) (i.e., no smooth spatial evolution is assumed),
a Bayesian model is obtained that can also be sampled using
the GS steps (16a–16b), with ↵i,m = ci and �i,m = di.

IV. NUMERICAL EXPERIMENTS

We compare the performance of the proposed estimator
(denoted as GMRF) with its counterpart with an IG prior
(denoted as IG) and with the linear regression estimator (3)
(denoted as LF, with weights as in [7]) by applying it to
100 independent realizations of a cube of 323 voxels of
length N = 512. Each voxel is an independent realization
of MRW, with prescribed values c2 2 {�0.01,�0.03,�0.06}
as illustrated in Fig. 1. MRW belongs to the class of MMC
processes and possesses multifractal properties similar to those
of Mandelbrot’s multiplicative log-normal cascades, with scal-
ing exponents ⇣(q) = (H � c2)q + c2q

2/2, cf., [19] for details
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(voxels) of length N (as illustrated in Fig. 1). Denote as
ym, µm and vm the Fourier coefficients, latent variables and
parameter vector associated with Xm and as Y , {ym},
M , {µm}, and V , {V 1, V 2} (where V i , {vi,m},
i = 1, 2) the corresponding collections for all voxels {Xm}.
Assuming independence between the vectors ym, the joint
likelihood of Y can be written as

p(Y , M |V ) /
Y

m
p(ym, µm|vm). (12)

B. Gamma Markov random field prior

Inverse-gamma distributions IG(↵i,m,�i,m) are conjugate
priors for the parameters vi,m in (12), and we propose to
specify (↵i,m,�i,m) such that the resulting prior for V i is a
hidden GMRF [15]. A GMRF makes use of a set of positive
auxiliary variables Z = {Z1, Z2}, Zi = {zi,m}, to induce
positive dependence between the neighbooring elements of
V i (and thus spatial regularization) [15]. Specifically, each
vi,m is connected to the eight auxiliary variables zi,m0 >
0, m0 2 Vv(m) , {m + (d1, d2, d3)}d1,d2,d3=0,1 (and
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(d1, d2, d3))}d1,d2,d3=�1,0), via edges with weights ⇢i, i =
1, 2, that are hyperparameters and control the amount of
smoothness. It can be shown that this prior for (V i,Zi) is
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Under the assumption of prior independence between
(V 1, Z1) and (V 2, M , Z2), the joint posterior distribution
associated with the proposed model is obtained as
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⇥ p(V 1, Z1|⇢1) p(V 2, Z2|⇢2) (14)

using Bayes’ theorem. To infer the parameters of inter-
est V i, we consider the marginal posterior mean (mini-
mum mean square error) estimator, denoted MMSE, which
is defined as V MMSE

i , E[V i|Y , ⇢i], where the expecta-
tion is taken with respect to the marginal posterior den-
sity p(V i|Y , ⇢i). The direct computation of V MMSE

i is not
tractable since it requires integrating the posterior (14) over
the variables Z and M and computation of the expectation.
Instead, by considering a Gibbs sampler (GS) generating
samples ({V
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i }, M (q), {Zi

(q)})Nmc
q=0 that are asymptotically

distributed according to (14), it can be approximated as [18]
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where Nbi is the number of samples of the burn-in period.

D. Gibbs sampler

Here, the GS consists of successively drawing samples
from the conditional distributions that are associated with the
posterior (14) [18]. Simple calculations lead to

p(µ | Y ,V )⇠ CN
⇣
v1F̃��1

v y,
⇣
(v1F̃ )�1+(v2G̃)�1

⌘�1
⌘

(16a)

p(vi | Y ,M ,Zi) ⇠ IG(NY+↵i,⌅i+�i) (16b)
p(zi | V i) ⇠ G(↵i, �i) (16c)

where the subscript m has been omitted for notational con-
venience and where ⌅1 = ||µ||

F̃
�1 , ⌅2 = ||y�µ||

G̃
�1 with

||x||⇧ , xH⇧x, ↵i,m = 8⇢i, �i,m = ⇢i

P
m02Vv(m) zi,m0

and �i,m = (⇢i

P
m02Vz(m) v�1

i,m0)�1. All conditionals (16a–
16c) are standard laws that can be sampled efficiently, without
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are assumed to be independent and have IG(ci, di) priors
instead of (13) (i.e., no smooth spatial evolution is assumed),
a Bayesian model is obtained that can also be sampled using
the GS steps (16a–16b), with ↵i,m = ci and �i,m = di.
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We compare the performance of the proposed estimator
(denoted as GMRF) with its counterpart with an IG prior
(denoted as IG) and with the linear regression estimator (3)
(denoted as LF, with weights as in [7]) by applying it to
100 independent realizations of a cube of 323 voxels of
length N = 512. Each voxel is an independent realization
of MRW, with prescribed values c2 2 {�0.01,�0.03,�0.06}
as illustrated in Fig. 1. MRW belongs to the class of MMC
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where Nbi is the number of samples of the burn-in period.
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instead of (13) (i.e., no smooth spatial evolution is assumed),
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100 independent realizations of a cube of 323 voxels of
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Part 2: Bayesian model for single time seriesg Éy

Gaussian random field model for log-leaders
I Marginal distributions: log-Normal always good fit for

multiscale histograms of multifractal cascades [Mandelbrot90]

−→ log-leaders well approximated by Gaussian [ICASSP13,TIP15]

l(j , k) = ln `(j , k) ∼ N (E[l(j , k)],Var [l(j , k)])

log-leaders l(2, ·) log-leaders l(3, ·) log-leaders l(4, ·)

empirical marginals (qq-plots)

Multifractal random walk (MRW) [Bacry01,Robert10]
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Log-Poisson Cascade [Mandelbrot]
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Part 2: Bayesian model for single time seriesg Éy

Gaussian random field model for log-leaders

I Mean
E[l(j , k)] = c0

1 + jc1 ln 2 (discarded below)

I Variance-covariance

- asymptotic covariance decay: [Arneodo98]

→ linear in log(∆k)
→ controlled by c2

→ piecewise logarithmic model %j ,(c2,c0
2 )(∆k) [ICASSP15,TIP15]

with parameters (c2, c
0
2 ) −→ Covariance matrix Σj ,(c2,c0

2 )
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Part 2: Bayesian model for single time seriesg Éy

From a standard likelihood. . .
I Likelihood w.r.t. (c2, c

0
2 )

– log-leaders at scale j : lj , (l(j , 1), l(j , 2), . . . )

p(lj |(c2, c
0
2 )) ∝ (det Σj ,(c2,c0

2 ))−
1
2 exp

(
−(lTj Σ−1

j ,(c2,c0
2 )
lj)/2

)

empirical marginals (qq-plot) and covariance

X inversion of Σj ,(c2,c0
2 ) prohibitive→ Whittle approximation

X constraints: Σj ,(c2,c0
2 ) p.d. → reparametrization

X conjugacy of priors for θ → data augmentation
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Part 2: Bayesian model for single time seriesg Éy

. . . to a Data Augmented Likelihood [TIP15,ICASSP16]

1. Whittle approximation =⇒ Fourier transform (DFT) of centered log-leaders lj

y j = DFT (lj) −→ p(lj |(c2, c
0
2 )) ∝ f −1

j,(c2,c0
2 ) exp

( y∗j y j

f j,(c2,c0
2 )

)

−→ ≈ diagonal covariance F (c2,c0
2 )

2. Reparametrization =⇒ independent positivity constraints on parameters

v = ψ((c2, c
0
2 )) ∈ R+2

? −→ separable F (c2,c0
2 ) = v1F 1 + v2F 2

. F 1, F 2 diagonal, positive definite, known and fixed

3. Data augmentation =⇒ hidden mean µj for y j

=⇒ complex Gaussian model for y = [yT
j1
, ..., yT

j2
]T

{
y |µ, v2 ∼ CN (µ, v2F 2) observed data

µ|v1 ∼ CN (0, v1F 1) hidden mean

p(lj |(c2, c
0
2 ))

−→ p(lj |v) −→ p(y ,µ|v) ∝ p(y |µ, v2) p(µ|v1)
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Part 2: Bayesian model for single time seriesg Éy

Augmented likelihood based Bayesian model [ICASSP16]

I Augmented likelihood w.r.t. v = ψ((c2, c
0
2 ))

p(y ,µ|v) ∝ v2
−NY exp

(
− 1

v2
(y−µ)HF−1

2 (y−µ)
)
× v1

−NY exp
(
− 1

v1
µHF−1

1 µ
)

I Prior distribution for parameters
vi as variance of Gaussian → conjugate inverse-gamma prior IG(αi , βi )

I Posterior distribution

p(v ,µ|y) ∝ p(y ,µ|v)p(v1)p(v2)

I Bayesian estimators

→ marginal posterior mean estimator (MMSE) vMMSE = E[v |y ]

I Gibbs sampler
p(µ|v , y) closed-form Gaussian distribution .
p(v i |v j 6=i ,µ, y) closed-form inverse-gamma distributions .

all standard distributions → no Metropolis-Hasting moves
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Part 2: Bayesian model for single time seriesg Éy

Estimation: Markov Chain Monte Carlo Algorithm

I Performance for synthetic data (further details later)
– N = 512, c2 = −0.01, . . . ,−0.08
– estimation performance improved by factor up to ∼ 4
– about 5 to 2 times slower than linear regression

LF IG

|b| 0.0158 0.0051

std 0.0800 0.0255

rmse 0.0819 0.0262
.

III. BAYESIAN MODEL FOR MULTIVARIATE TIME SERIES

A. Likelihood

Based on the likelihood (11) for one single time series
X(t), we now design a joint Bayesian model for the analysis
of multivariate time series. Let Xm, m , (m1, m2, m3),
md = 1, . . . , Md, denote M1 ⇥M2 ⇥M3 discrete time series
(voxels) of length N (as illustrated in Fig. 1). Denote as
ym, µm and vm the Fourier coefficients, latent variables and
parameter vector associated with Xm and as Y , {ym},
M , {µm}, and V , {V 1, V 2} (where V i , {vi,m},
i = 1, 2) the corresponding collections for all voxels {Xm}.
Assuming independence between the vectors ym, the joint
likelihood of Y can be written as

p(Y , M |V ) /
Y

m
p(ym, µm|vm). (12)

B. Gamma Markov random field prior

Inverse-gamma distributions IG(↵i,m,�i,m) are conjugate
priors for the parameters vi,m in (12), and we propose to
specify (↵i,m,�i,m) such that the resulting prior for V i is a
hidden GMRF [15]. A GMRF makes use of a set of positive
auxiliary variables Z = {Z1, Z2}, Zi = {zi,m}, to induce
positive dependence between the neighbooring elements of
V i (and thus spatial regularization) [15]. Specifically, each
vi,m is connected to the eight auxiliary variables zi,m0 >
0, m0 2 Vv(m) , {m + (d1, d2, d3)}d1,d2,d3=0,1 (and
therefore, each zi,m to vi,m0 , m0 2 Vz(m) , {m +
(d1, d2, d3))}d1,d2,d3=�1,0), via edges with weights ⇢i, i =
1, 2, that are hyperparameters and control the amount of
smoothness. It can be shown that this prior for (V i,Zi) is
associated with the density [15]

p(V i, Zi|⇢i) /
Y

k
e(8⇢i�1) log zi,m e�(8⇢i+1) log vi,m

.⇥ e
� ⇢i

vi,m

P
m02Vv(m) zi,m0

. (13)

C. Posterior distribution and Bayesian estimators

Under the assumption of prior independence between
(V 1, Z1) and (V 2, M , Z2), the joint posterior distribution
associated with the proposed model is obtained as

p(V , Z, M |Y , ⇢1, ⇢2) / p(Y |V 2, M) p(M |V 1)

⇥ p(V 1, Z1|⇢1) p(V 2, Z2|⇢2) (14)

using Bayes’ theorem. To infer the parameters of inter-
est V i, we consider the marginal posterior mean (mini-
mum mean square error) estimator, denoted MMSE, which
is defined as V MMSE

i , E[V i|Y , ⇢i], where the expecta-
tion is taken with respect to the marginal posterior den-
sity p(V i|Y , ⇢i). The direct computation of V MMSE

i is not
tractable since it requires integrating the posterior (14) over
the variables Z and M and computation of the expectation.
Instead, by considering a Gibbs sampler (GS) generating
samples ({V

(q)
i }, M (q), {Zi

(q)})Nmc
q=0 that are asymptotically

distributed according to (14), it can be approximated as [18]

V MMSE
i ⇡ (Nmc � Nbi)

�1
XNmc

q=Nbi

V
(q)
i (15)

1 256 512

c2=-0.06

t

c2=-0.03

c2=-0.01

Fig. 1. Illustration of the cube of 32 ⇥ 32 ⇥ 32 voxels of time series (left
panel) with prescribed multifractal properties c2 2 {�0.01,�0.03,�0.06}
(indicated as green, yellow, dark blue, respectively); the slices correspond to
those analyzed in Fig. 2. Single realizations of time series corresponding to
3 voxels with different value of c2 (right panel).

TABLE I
ESTIMATION PERFORMANCE FOR 100 INDEPENDENT REALIZATIONS.

LF IG GMRF
|b| 0.0158 0.0051 0.0092
std 0.0800 0.0255 0.0020

rmse 0.0819 0.0262 0.0094

where Nbi is the number of samples of the burn-in period.

D. Gibbs sampler

Here, the GS consists of successively drawing samples
from the conditional distributions that are associated with the
posterior (14) [18]. Simple calculations lead to

p(µ | Y ,V )⇠ CN
⇣
v1F̃��1

v y,
⇣
(v1F̃ )�1+(v2G̃)�1

⌘�1
⌘

(16a)

p(vi | Y ,M ,Zi) ⇠ IG(NY+↵i,⌅i+�i) (16b)
p(zi | V i) ⇠ G(↵i, �i) (16c)

where the subscript m has been omitted for notational con-
venience and where ⌅1 = ||µ||

F̃
�1 , ⌅2 = ||y�µ||

G̃
�1 with

||x||⇧ , xH⇧x, ↵i,m = 8⇢i, �i,m = ⇢i

P
m02Vv(m) zi,m0

and �i,m = (⇢i

P
m02Vz(m) v�1

i,m0)�1. All conditionals (16a–
16c) are standard laws that can be sampled efficiently, without
MHG steps. Finally, note that when the parameters vi,m

are assumed to be independent and have IG(ci, di) priors
instead of (13) (i.e., no smooth spatial evolution is assumed),
a Bayesian model is obtained that can also be sampled using
the GS steps (16a–16b), with ↵i,m = ci and �i,m = di.

IV. NUMERICAL EXPERIMENTS

We compare the performance of the proposed estimator
(denoted as GMRF) with its counterpart with an IG prior
(denoted as IG) and with the linear regression estimator (3)
(denoted as LF, with weights as in [7]) by applying it to
100 independent realizations of a cube of 323 voxels of
length N = 512. Each voxel is an independent realization
of MRW, with prescribed values c2 2 {�0.01,�0.03,�0.06}
as illustrated in Fig. 1. MRW belongs to the class of MMC
processes and possesses multifractal properties similar to those
of Mandelbrot’s multiplicative log-normal cascades, with scal-
ing exponents ⇣(q) = (H � c2)q + c2q

2/2, cf., [19] for details
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i , E[V i|Y , ⇢i], where the expecta-
tion is taken with respect to the marginal posterior den-
sity p(V i|Y , ⇢i). The direct computation of V MMSE

i is not
tractable since it requires integrating the posterior (14) over
the variables Z and M and computation of the expectation.
Instead, by considering a Gibbs sampler (GS) generating
samples ({V

(q)
i }, M (q), {Zi

(q)})Nmc
q=0 that are asymptotically

distributed according to (14), it can be approximated as [18]

V MMSE
i ⇡ (Nmc � Nbi)
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XNmc

q=Nbi

V
(q)
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Fig. 1. Illustration of the cube of 32 ⇥ 32 ⇥ 32 voxels of time series (left
panel) with prescribed multifractal properties c2 2 {�0.01,�0.03,�0.06}
(indicated as green, yellow, dark blue, respectively); the slices correspond to
those analyzed in Fig. 2. Single realizations of time series corresponding to
3 voxels with different value of c2 (right panel).

TABLE I
ESTIMATION PERFORMANCE FOR 100 INDEPENDENT REALIZATIONS.

LF IG GMRF
|b| 0.0158 0.0051 0.0092
std 0.0800 0.0255 0.0020

rmse 0.0819 0.0262 0.0094

where Nbi is the number of samples of the burn-in period.

D. Gibbs sampler

Here, the GS consists of successively drawing samples
from the conditional distributions that are associated with the
posterior (14) [18]. Simple calculations lead to

p(µ | Y ,V )⇠ CN
⇣
v1F̃��1

v y,
⇣
(v1F̃ )�1+(v2G̃)�1

⌘�1
⌘

(16a)

p(vi | Y ,M ,Zi) ⇠ IG(NY+↵i,⌅i+�i) (16b)
p(zi | V i) ⇠ G(↵i, �i) (16c)

where the subscript m has been omitted for notational con-
venience and where ⌅1 = ||µ||

F̃
�1 , ⌅2 = ||y�µ||

G̃
�1 with

||x||⇧ , xH⇧x, ↵i,m = 8⇢i, �i,m = ⇢i

P
m02Vv(m) zi,m0

and �i,m = (⇢i

P
m02Vz(m) v�1

i,m0)�1. All conditionals (16a–
16c) are standard laws that can be sampled efficiently, without
MHG steps. Finally, note that when the parameters vi,m

are assumed to be independent and have IG(ci, di) priors
instead of (13) (i.e., no smooth spatial evolution is assumed),
a Bayesian model is obtained that can also be sampled using
the GS steps (16a–16b), with ↵i,m = ci and �i,m = di.

IV. NUMERICAL EXPERIMENTS

We compare the performance of the proposed estimator
(denoted as GMRF) with its counterpart with an IG prior
(denoted as IG) and with the linear regression estimator (3)
(denoted as LF, with weights as in [7]) by applying it to
100 independent realizations of a cube of 323 voxels of
length N = 512. Each voxel is an independent realization
of MRW, with prescribed values c2 2 {�0.01,�0.03,�0.06}
as illustrated in Fig. 1. MRW belongs to the class of MMC
processes and possesses multifractal properties similar to those
of Mandelbrot’s multiplicative log-normal cascades, with scal-
ing exponents ⇣(q) = (H � c2)q + c2q

2/2, cf., [19] for details
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Part 3: Bayesian model for multivariate time seriesg Éy

Hierarchical Bayesian model

for volumetric time series (voxels), Xm, m , (m1,m2,m3), of length N
(other data structures possible)

1. Augmented likelihood p(ym,µm|vm)

- ym: Fourier coefficients
. of log-leaders of Xm .

- µm: latent variables
- vm: parameter vector

2. Prior independence between voxels

p(Y ,M |V ) ∝
∏

m
p(ym,µm|vm)

- Y , {ym}
- M , {µm}
- V , {V 1,V 2} (V i , {θi,m}, i = 1, 2)

3. Design of regularizing priors on V

.

Xm

t
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Hierarchical Bayesian model

for volumetric time series (voxels), Xm, m , (m1,m2,m3), of length N
(other data structures possible)

1. Augmented likelihood p(ym,µm|vm)

- ym: Fourier coefficients
. of log-leaders of Xm .

- µm: latent variables
- vm: parameter vector

2. Prior independence between voxels

p(Y ,M |V ) ∝
∏

m
p(ym,µm|vm)

- Y , {ym}
- M , {µm}
- V , {V 1,V 2} (V i , {θi,m}, i = 1, 2)

3. Design of regularizing priors on V

.

Xm

t

A Bayesian estimator for the multifractal analysis of multivariate data 11 / 21-



Part 3: Bayesian model for multivariate time seriesg Éy
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Part 3: Bayesian model for multivariate time seriesg Éy

Gamma Markov random field (GaMRF)

−→ smooth evolution of multifractal parameters v
(∼ variances of Gaussians)

I Positive auxiliary variables Z = {Z 1,Z 2}, Z i = {zi,m}
−→ induce dependence between neighboring elements of V i

I vi,m: connected to 8 variables zi,m′∈ Vv (m)

. Vv (m) , {m + (i1, i2, i3)}i1,i2,i3=0,1

via edges with weights ρi , i = 1, 2

I and vice-versa zi,m to vi,m′∈ Vz(m)

. Vz(m) , {m + (i1, i2, i3))}i1,i2,i3=−1,0

Bayesian model for multivariate time seriesg Éy

Likelihood for spatio-temporal data

I Xm, m , (m1, m2, m3)

- discrete time series (voxels), length N
- ym: Fourier coe↵’s of log-leaders of Xm
- µm: latent variables
- vm: parameter vector

I collections for all voxels {Xm}
- Y , {ym}
- M , {µm}
- V , {V 1,V 2} (V i , {✓i,m}, i = 1, 2)

assuming independence between vectors ym:
�! augmented likelihood

p(Y ,M |V ) /
Y

m
p(ym, µm|vm)

.

Xm

t
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associated with density [Dikmen10]
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Part 3: Bayesian model for multivariate time seriesg Éy

Bayesian model with GaMRF prior

I Augmented likelihood

p(Y ,M |V ) = p(Y |V 2,M) p(M |V 1)

I GaMRF prior: associated density [Dikmen10]

p(V i ,Z i |ρi ) ∝
∏

m,n
e(8ρi−1) log zi,m e−(8ρi+1) log vi,m .×e

− ρi
vi,m

∑
m′∈Vvm zi,m′

zi,m|V i ∼ G(8ρi ,
(
ρi
∑

m′∈Vz (m)
v−1
i,k′
)−1

) → gamma conditionals

v i,m|Z i ∼ IG(8ρi , ρi
∑

m′∈Vv (m)
zi,m′) → inverse-gamma conditionals

I Posterior distribution

p(V ,Z ,M |Y , ρ1, ρ2) ∝
p(Y |V 2,M) p(M |V 1)︸ ︷︷ ︸

augmented likelihood

× p(V 1,Z 1|ρ1) p(V 2,Z 2|ρ2)︸ ︷︷ ︸
independent GaMRF priors
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Part 3: Bayesian model for multivariate time seriesg Éy

Gibbs sampler

I Marginal posterior mean estimator

VMMSE
i = E[V i |Y , ρi ] ≈ (Nmc − Nbi )

−1
∑Nmc

q=Nbi

V (q)
i

I Sampling of M and parameters V
p(µm|V ,Y

,Z ,ρ

) closed-form Gaussian distribution

p(v i ,m|V j 6=i ,M ,Y

,Z ,ρ

) closed-form inverse-gamma distributions

I Sampling of auxiliary variables Z
p(zi ,m|V ,M ,Y ,ρ) closed-form gamma distributions

all standard distributions → no Metropolis-Hasting moves

→ efficient sampling scheme, tailored for large datasets

(Hyperparameters ρi fixed manually)
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Part 3: Bayesian model for multivariate time seriesg Éy

Gibbs sampler with independent IG priors

I Marginal posterior mean estimator

VMMSE
i = E[V i |Y , ρi ] ≈ (Nmc − Nbi )

−1
∑Nmc

q=Nbi

V (q)
i

I Sampling of M and parameters V
p(µm|V ,Y

,Z ,ρ

) closed-form Gaussian distribution

p(v i ,m|V j 6=i ,M ,Y

,Z ,ρ

) closed-form inverse-gamma distributions

I Sampling of auxiliary variables Z
p(zi ,m|V ,M ,Y ,ρ) closed-form gamma distributions

all standard distributions → no Metropolis-Hasting moves

→ efficient sampling scheme, tailored for large datasets

(Hyperparameters ρi fixed manually)
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Numerical illustrationsg Éy

Synthetic multifractal time series
I Multifractal Random Walk

∼ Mandelbrot’s celebrated multiplicative cascades

I cube of 323 voxels of length N = 512

- 3 zones with constant c2 ∈ {−0.01,−0.03,−0.06}
III. BAYESIAN MODEL FOR MULTIVARIATE TIME SERIES

A. Likelihood

Based on the likelihood (11) for one single time series
X(t), we now design a joint Bayesian model for the analysis
of multivariate time series. Let Xm, m , (m1, m2, m3),
md = 1, . . . , Md, denote M1 ⇥M2 ⇥M3 discrete time series
(voxels) of length N (as illustrated in Fig. 1). Denote as
ym, µm and vm the Fourier coefficients, latent variables and
parameter vector associated with Xm and as Y , {ym},
M , {µm}, and V , {V 1, V 2} (where V i , {vi,m},
i = 1, 2) the corresponding collections for all voxels {Xm}.
Assuming independence between the vectors ym, the joint
likelihood of Y can be written as

p(Y , M |V ) /
Y

m
p(ym, µm|vm). (12)

B. Gamma Markov random field prior

Inverse-gamma distributions IG(↵i,m,�i,m) are conjugate
priors for the parameters vi,m in (12), and we propose to
specify (↵i,m,�i,m) such that the resulting prior for V i is a
hidden GMRF [15]. A GMRF makes use of a set of positive
auxiliary variables Z = {Z1, Z2}, Zi = {zi,m}, to induce
positive dependence between the neighbooring elements of
V i (and thus spatial regularization) [15]. Specifically, each
vi,m is connected to the eight auxiliary variables zi,m0 >
0, m0 2 Vv(m) , {m + (d1, d2, d3)}d1,d2,d3=0,1 (and
therefore, each zi,m to vi,m0 , m0 2 Vz(m) , {m +
(d1, d2, d3))}d1,d2,d3=�1,0), via edges with weights ⇢i, i =
1, 2, that are hyperparameters and control the amount of
smoothness. It can be shown that this prior for (V i,Zi) is
associated with the density [15]

p(V i, Zi|⇢i) /
Y

k
e(8⇢i�1) log zi,m e�(8⇢i+1) log vi,m

.⇥ e
� ⇢i

vi,m

P
m02Vv(m) zi,m0

. (13)

C. Posterior distribution and Bayesian estimators

Under the assumption of prior independence between
(V 1, Z1) and (V 2, M , Z2), the joint posterior distribution
associated with the proposed model is obtained as

p(V , Z, M |Y , ⇢1, ⇢2) / p(Y |V 2, M) p(M |V 1)

⇥ p(V 1, Z1|⇢1) p(V 2, Z2|⇢2) (14)

using Bayes’ theorem. To infer the parameters of inter-
est V i, we consider the marginal posterior mean (mini-
mum mean square error) estimator, denoted MMSE, which
is defined as V MMSE

i , E[V i|Y , ⇢i], where the expecta-
tion is taken with respect to the marginal posterior den-
sity p(V i|Y , ⇢i). The direct computation of V MMSE

i is not
tractable since it requires integrating the posterior (14) over
the variables Z and M and computation of the expectation.
Instead, by considering a Gibbs sampler (GS) generating
samples ({V

(q)
i }, M (q), {Zi

(q)})Nmc
q=0 that are asymptotically

distributed according to (14), it can be approximated as [18]

V MMSE
i ⇡ (Nmc � Nbi)

�1
XNmc

q=Nbi

V
(q)
i (15)

1 256 512

c2=-0.06

t

c2=-0.03

c2=-0.01

Fig. 1. Illustration of the cube of 32 ⇥ 32 ⇥ 32 voxels of time series (left
panel) with prescribed multifractal properties c2 2 {�0.01,�0.03,�0.06}
(indicated as green, yellow, dark blue, respectively); the slices correspond to
those analyzed in Fig. 2. Single realizations of time series corresponding to
3 voxels with different value of c2 (right panel).

TABLE I
ESTIMATION PERFORMANCE FOR 100 INDEPENDENT REALIZATIONS.

LF IG GMRF
|b| 0.0158 0.0051 0.0092
std 0.0800 0.0255 0.0020

rmse 0.0819 0.0262 0.0094

where Nbi is the number of samples of the burn-in period.

D. Gibbs sampler

Here, the GS consists of successively drawing samples
from the conditional distributions that are associated with the
posterior (14) [18]. Simple calculations lead to

p(µ | Y ,V )⇠ CN
⇣
v1F̃��1

v y,
⇣
(v1F̃ )�1+(v2G̃)�1

⌘�1
⌘

(16a)

p(vi | Y ,M ,Zi) ⇠ IG(NY+↵i,⌅i+�i) (16b)
p(zi | V i) ⇠ G(↵i, �i) (16c)

where the subscript m has been omitted for notational con-
venience and where ⌅1 = ||µ||

F̃
�1 , ⌅2 = ||y�µ||

G̃
�1 with

||x||⇧ , xH⇧x, ↵i,m = 8⇢i, �i,m = ⇢i

P
m02Vv(m) zi,m0

and �i,m = (⇢i

P
m02Vz(m) v�1

i,m0)�1. All conditionals (16a–
16c) are standard laws that can be sampled efficiently, without
MHG steps. Finally, note that when the parameters vi,m

are assumed to be independent and have IG(ci, di) priors
instead of (13) (i.e., no smooth spatial evolution is assumed),
a Bayesian model is obtained that can also be sampled using
the GS steps (16a–16b), with ↵i,m = ci and �i,m = di.

IV. NUMERICAL EXPERIMENTS

We compare the performance of the proposed estimator
(denoted as GMRF) with its counterpart with an IG prior
(denoted as IG) and with the linear regression estimator (3)
(denoted as LF, with weights as in [7]) by applying it to
100 independent realizations of a cube of 323 voxels of
length N = 512. Each voxel is an independent realization
of MRW, with prescribed values c2 2 {�0.01,�0.03,�0.06}
as illustrated in Fig. 1. MRW belongs to the class of MMC
processes and possesses multifractal properties similar to those
of Mandelbrot’s multiplicative log-normal cascades, with scal-
ing exponents ⇣(q) = (H � c2)q + c2q

2/2, cf., [19] for details

1 256 512

c
2
=-0.06

t

c
2
=-0.03

c
2
=-0.01

I Comparison of estimators for c2 (Nψ = 2, j ∈ [2, 4])

- LF – univariate linear regression based estimation
- IG – univariate Bayesian estimation
- GaMRF – joint Bayesian estimator
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Illustration for single realization: estimates
estimates for c2

prescribed c2 LF IG GaMRF

HISTOGRAMS
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Illustration for single realization: histogram thresholding
k-means classification
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Scale-free dynamics and infraslow macroscopic brain activity
model 1/f β ⊂ self-similar ⊂ multifractal

analysis Fourier −→ wavelets −→ wavelet leaders
parameters β Hurst H multifractal spectrum D(h)

[Shimizu’04,He’11,Ciuciu’12]

[Ciuciu-EMBC’17]

[Wendt-ISBI’18]

Collab. P. Ciuciu (CEA, NeuroSpin, France), P. Abry (ENS Lyon, France)

A Bayesian estimator for the multifractal analysis of multivariate data 17 / 21-



Numerical illustrationsg Éy

fMRI data: Experimental design and acquisition
Verbal n-back working memory task (n = 3).
– serially presented upper-case letters (displayed 1s, separation 2s)

→ Is letter same as that presented 3 stimuli before?

● N-Back paradigm
➢ Retrieve repeated letters among a sequence

➢ Letters serially presented (1s apart one another)

➢ 4 conditions of increasing difficulty: 

 0-Back         1-Back             2-Back                  3-Back

            A C X F       C D D R          C D E D H          T D E K D Z

➢ Stimulus sequence:

Inst.

0b

Inst.

1b

Session 1 x 4

Inst.

0b

Inst.

2b

Session 2 x 4

Inst.

0b

Inst.

3b

Session 3 x 4

N-back Paradigm

– each run: alternating sequence of 8 blocks
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Data acquisition.
– resting-state fMRI images first: participant at rest, with eyes closed
– 543 scans (9min10s) / 512 scans (8min39s) for rest / task

– fMRI data acquisition at 3 Tesla (Siemens Trio, Germany)
– multi-band GE-EPI (TE=30ms, TR=1s, FA=61, MB=2) sequence
. (CMRR, USA), 3mm isotropic resolution, FOV of 192×192×144mm3

Shown results: (−c2) maps.
– for single subject (arbitrarily chosen from 40 participants).
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Resting-state analysis ((−c2) maps)

Left sagittal Coronal Right sagittal Axial

LF

IG

GaMRF

LF:
- poor estimation (var!)

IG & GaMRF:
- estimation var decrease

- increase of MF in DMN

GaMRF:
- enhanced MF contrast

scale-free dynamics in
DMN for resting-state
fMRI reported before,
but for H only [He JNS’11].

−→ evidence for richer,
MF resting state brain
dynamics

−→ significant MF in default mode network (DMN)
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Task analysis: 3-back run ((−c2) maps)

Left sagittal Coronal Right sagittal Axial
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GaMRF

LF:
- poor estimation (var!)

IG & GaMRF:
- estimation var decrease

overall increase in MF
during task
[Ciuciu FPhys’12]

GaMRF:
- significant MF in
- bilateral parietal re-
gions belonging to WMN
- occipital cortex (visual)
- cerebellum (sensory)
- involved in task

−→ overall MF increase; working memory network (WMN), visual, sensory.
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Task analysis: 3-back run ((−c2) maps)

Left sagittal Coronal Right sagittal Axial

LF

IG

GaMRF

LF:
- poor estimation (var!)

IG & GaMRF:
- estimation var decrease

overall increase in MF
during task
[Ciuciu FPhys’12]

GaMRF:
- significant MF in
- bilateral parietal re-
gions belonging to WMN
- occipital cortex (visual)
- cerebellum (sensory)
- involved in task

−→ overall MF increase; working memory network (WMN), visual, sensory.

A Bayesian estimator for the multifractal analysis of multivariate data 20 / 21-



g Éy

Conclusions and perspectives

Multifractal analysis:
I Bayesian estimation for c2 of multivariate time series

- hierarchical Bayesian model with smoothing priors:
{

data augmented Fourier domain likelihood (∼ CN )

GaMRF joint prior for c2 of different data components

→ efficient inference via a Gibbs sampler (large data sets)

→ significantly improved estimation performance (gain: factor ∼ 10)

I Current model:

GaMRF hyperparameter, integral scale; EM algorithm

I Multivariate priors

joint estimation-segmentation in time / space

I Estimation of parameters of multivariate multifractal models
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g Éy

A Bayesian estimator for the multifractal analysis of multivariate data 21 / 21-



g Éy

Estimation performance for c2

LF IG GaMRF

|b| 0.0158 0.0051 0.0092

std 0.0800 0.0255 0.0020

rmse 0.0819 0.0262 0.0094

b= Ê[ĉ2]− c2, std=

√
V̂ar[ĉ2], rmse=

√
b2 + std2

(100 independent realizations)

Computation time:

log2N

log2T

−8

−6

−4

−2
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MHG

G
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Model: time-domain statistical model of log-leaders

1. Marginal distribution of log-leaders approximated by Gaussian

l(j , ·, ·) = ln L(j , ·, ·) ∼ N
(
·, c0

2 + c2 ln 2j
)

2. Intra-scale parametric covariance model

Cov[l(j , k), l(j , k + ∆r)] ≈ %j(∆r ; v), v = (c2, c
0
2 )

I Likelihood of centered log-leaders lj stacked in l = [lTj1 , ..., l
T
j2 ]T

→ scale-wise product of Gaussian likelihoods

p(l|v) ∝
j2∏

j=j1

|Σj,v |−
1
2 exp

(
−1

2
lTj Σ−1

j,v lj

)
, with Σj,v induced by %j(∆r ; v)

X evaluation of p(l|v) numerically instable

1 [TIP15]
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Model: Whittle approximation

I Evaluation of the Gaussian likelihood in the spectral domain

pW (l|v) ∝
j2∏

j=j1

|Γj,v |−1 exp
(
−yH

j Γ−1
j,v y j

)

- y j Fourier coefficients of lj

- Γj,v parametric spectral density associated with %j(∆r ; v)

→ closed-form expression via Hankel transform

Γj,v = c2 F1,j + c0
2 F2,j , Fi,j = diag(fi,j)

I Estimation of v embedded in a Bayesian framework

- space-domain likelihood (approximated) + common priors

X non-standard posterior distribution → acceptance/reject moves
1 [TIP15]
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Model: Fourier-domain statistical model
I Whittle approximation

pW (l|v) ∝
j2∏

j=j1

|Γj,v |−1 exp
(
−yH

j Γ−1
j,v y j

)

- y j Fourier coefficients of lj

- Γj,v = c2 F1,j + c0
2 F2,j parametric spectral density

m
I Generative model for y = [yT

j1
, ..., yT

j2
]T

p(y |v) ∝ |Γv |−1 exp
(
−yHΓ−1

v y
)

- complex Gaussian model y ∼ CN (0,Γv )

- Γv = c2F 1 + c0
2F 2 and F i = block(F i,j1 , . . . ,F i,j2 )

X model non-separable in (c2, c
0
2 )
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Model: Reparametrization

I Non-separable constraints on (c2, c
0
2 )

v ∈ A = {(c2, c
0
2 ) ∈ R−? × R+

? |Γv = c2F1 + c0
2 F2 positive-definite}

I Design of a linear diffeomorphism ψ

1 mapping joint constraints into independent positivity constraints

ψ : A → R+2
?

: v 7→ ψ(v) , v
2 yielding more convenient likelihood

p(y |v) ∝ |Γv |−1 exp
(
−yHΓ−1

v y
)

with

for v ∈ R+2
?





Γv = θ̃1F̃ 1 + θ̃2F̃ 2 positive-definite

θ̃i F̃ i positive-definite

→ separability of the likelihood via data augmentation
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Model: Data augmentation

I Definition of an augmented model




y |µ, θ̃2 ∼ CN (µ, θ̃2F̃ 2) observed data

µ|θ̃1 ∼ CN (0, θ̃1F̃ 1) hidden mean

with

p(y |v) =

∫
p(y ,µ|v)dµ

I Virtues of the augmented likelihood p(y ,µ|v)

p(y ,µ|v) ∝ θ̃2
−NY exp

(
− 1

θ̃2

(y−µ)H F̃
−1

2 (y−µ)
)
×θ̃1

−NY exp
(
−1

θ̃1

µH F̃
−1

1 µ
)

√
separable in (θ̃1, θ̃2)

√
conjugate to inverse-gamma priors
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MCMC algorithm

I Strategy of Gibbs sampler

- iterative sampling according to conditional laws

- non-standard conditional laws → Metropolis-within-Gibbs

- computation of acceptance ratio at each iteration

rc2 =

√
det Σ(v (t))

det Σ(v (?))
×

j2∏

j=j1

exp

(
−1

2
lTj

(
Σj,v (v (?))−1 −Σj,v (v (t))−1

)
lj

)
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Time block wise estimation (2D+time)
I Synthetic multifractal time series: Multifractal Random Walk

∼ Mandelbrot’s celebrated multiplicative cascades

I collection of 32× 32 time series of length N = 214

- piece-wise constant c2 ∈ {−0.02,−0.04} along time

X
(m

1
,m

2
)
(t)

0

t

0

0.25

0.5

0.75

1

c
2
(t)

-0.04 -0.02

I Comparison of estimators for c2

I nS = 22,...,6 windows of lengths L = {212, 211, 210, 29, 28}
- LF – univariate linear regression based estimation
- IG – univariate Bayesian estimation [TIP15,ICASSP16]

- GaMRF – joint Bayesian estimator
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g Éy

Time block wise estimation (2D+time)
estimates for c2: temporal evolution at slice m2 = 16

A Bayesian estimator for the multifractal analysis of multivariate data 30 / 21-



g Éy

Time block wise estimation (2D+time)

estimates for c2: spatial cross-section at t = 0.5
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Time block wise estimation (2D+time)

RMSE (50 independent realizations)

nS / L 4 / 212 8 / 211 16 / 210 32 / 29 64 / 28

LF 0.020 0.026 0.037 0.058 0.102
IG 0.011 0.013 0.018 0.024 0.036

GaMRF 0.008 0.008 0.009 0.009 0.013
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