Enhancing temporal segmentation by nonlocal self-similarity

${\rm Mariella}\ {\rm Dimiccoli}^1,\ {\rm Herwig}\ {\rm Wendt}^2$

¹ Institut de Robòtica i Informàtica Industrial, CSIC-UPC, Barcelona, Spain
² CNRS, IRIT, University of Toulouse, Toulouse, France

ICIP 2019, Taipei

Introduction

Motivation and Goal

- Temporal segmentation of untrimmed image sequences
 - unconstrained videos (youtube)
 - remotely sensed data (land cover)

- Egocentric photo stream event segmentation
 - very low frame rate (2fpm)

Introduction

Motivation and Goal

- Temporal segmentation of untrimmed image sequences
 - unconstrained videos (youtube)
 - remotely sensed data (land cover)

- Egocentric photo stream event segmentation
 - very low frame rate (2fpm)

Temporal Segmentation of videos and photostreams

- 1. Feature extraction
- 2. Actual segmentation
- Videos
 - semantic features
 - motion features
- Egocentric photostreams
 - \rightarrow no motion information
 - ightarrow abrupt appearance changes even in adjacent frames
 - semantic features
 - learnt event representations (NN, LSTM) state-of-the-art

[Dias19,Molino18]

Temporal Segmentation of videos and photostreams

- 1. Feature extraction
- 2. Actual segmentation

Videos

- semantic features
- motion features
- Egocentric photostreams
 - ightarrow no motion information
 - ightarrow abrupt appearance changes even in adjacent frames
 - semantic features
 - learnt event representations (NN, LSTM) state-of-the-art

[Dias19,Molino18]

Temporal Segmentation of videos and photostreams

- 1. Feature extraction
- 2. Actual segmentation

Videos

- semantic features
- motion features

Egocentric photostreams

- \rightarrow no motion information
- \rightarrow abrupt appearance changes even in adjacent frames
 - semantic features
 - learnt event representations (NN, LSTM) state-of-the-art

Dias19, Molino18]

Temporal Segmentation of videos and photostreams

- 1. Feature extraction
- 2. Actual segmentation

Videos

- semantic features
- motion features

Egocentric photostreams

- \rightarrow no motion information
- \rightarrow abrupt appearance changes even in adjacent frames
 - semantic features
 - learnt event representations (NN, LSTM) state-of-the-art

[Dias19, Molino18]

Temporal Segmentation of videos and photostreams

- 1. Feature extraction \rightarrow nonlocal temporal self-similarity
- 2. Actual segmentation

Videos

- semantic features
- motion features

Egocentric photostreams

- \rightarrow no motion information
- \rightarrow abrupt appearance changes even in adjacent frames
 - semantic features
 - learnt event representations (NN, LSTM) state-of-the-art

[Dias19, Molino18]

Model assumptions and intuitions

- \blacktriangleright photostream \sim stationary random process
 - \blacktriangleright small temporal segment \rightarrow similar segments in same sequence

Model assumptions and intuitions

- photostream \sim stationary random process
 - \blacktriangleright small temporal segment \rightarrow similar segments in same sequence

- intuitively true for semantic representations
 - ▶ e.g. contextual features, objects, concepts, ...

Pedestrian crossing, people, cars, bikes, traffic light, building, trees

Temporal nonlocal self-similarity: Definition

quantify similarity between a temporal patch centered at kand a temporal patch centered at j

• time
$$k = 1, \ldots, K$$
:

•
$$u(k) \in \mathbb{R}^{P}$$
 - image feature vector

• temporal patch $u(\mathcal{N}_k)$ $\mathcal{N}_k = \{k - M, \dots, k - 1, k + 1, \dots, k + M\}$

temporal self-similarity function of u(k)

$$S^{NL}(k,j) = \frac{1}{\mathcal{Z}(k)} \exp\left(-\frac{d(u(\mathcal{N}_k), u(\mathcal{N}_j))}{h}\right)$$

- $d(u(\mathcal{N}_k), u(\mathcal{N}_j)) = \sum_{i=1}^{2M} ||u(\mathcal{N}_k(i)) u(\mathcal{N}_j(i))||^2$
- h: bandwidth parameter
- $\mathcal{Z}(k)$: normalization s.t. $\sum_{j} S^{NL}(k,j) = 1$
 - \rightarrow conditional probability of u(j) given $u(\mathcal{N}_k)$

Temporal nonlocal self-similarity: Definition

quantify similarity between a temporal patch centered at kand a temporal patch centered at j

• time
$$k = 1, \ldots, K$$
:

u(k) ∈ ℝ^P - image feature vector
temporal patch u(N_k)

$$\mathcal{N}_k = \{k - M, \dots, k - 1, k + 1, \dots, k + M\}$$

temporal self-similarity function of u(k)

$$S^{NL}(k,j) = \frac{1}{\mathcal{Z}(k)} \exp\left(-\frac{d(u(\mathcal{N}_k), u(\mathcal{N}_j))}{h}\right)$$

- $d(u(\mathcal{N}_k), u(\mathcal{N}_j)) = \sum_{i=1}^{2M} ||u(\mathcal{N}_k(i)) u(\mathcal{N}_j(i))||^2$
- h: bandwidth parameter
- $\mathcal{Z}(k)$: normalization s.t. $\sum_{j} S^{NL}(k,j) = 1$ \longrightarrow conditional probability of u(j) given $u(\mathcal{N}_k)$

Nonlocal temporal self-similarity features

▶ replace features u(k) with new set of N nonlocal features

$$u^{NL}(k) = \{S^{NL}(k,j)\}_{j=k\pm 1,2,...} \in \mathbb{R}^{N},$$

5 / 10

 $(N = K - 1 \rightarrow \text{similarity with all other temporal patches})$

- similarity of $u^{NL}(k)$ and $u^{NL}(k')$:
 - large if k and k' belong to the same event
 - small if k and k' belong to two different events

ightarrow suitable for temporal segmentation

Nonlocal temporal self-similarity features

▶ replace features u(k) with new set of N nonlocal features

$$u^{NL}(k) = \{S^{NL}(k,j)\}_{j=k\pm 1,2,...} \in \mathbb{R}^{N},$$

 $(N = K - 1 \rightarrow \text{similarity with all other temporal patches})$

- similarity of $u^{NL}(k)$ and $u^{NL}(k')$:
 - large if k and k' belong to the same event
 - small if k and k' belong to two different events

 \rightarrow suitable for temporal segmentation

Dataset and performance evaluation

- EDUB-Seg dataset:
 - wearable photo-camera image sequences (2 fpm)
 - subset of ten sequences for five different users
 - ground truth event segmentation

Dataset and performance evaluation

- EDUB-Seg dataset:
 - wearable photo-camera image sequences (2 fpm)
 - subset of ten sequences for five different users
 - ground truth event segmentation
- Event segmentation performance:
 - structured hierarchical clustering algorithm
 - ► F-measure (tolerance ±5 frames)
 - number of temporal segments chosen to maximize F-measure

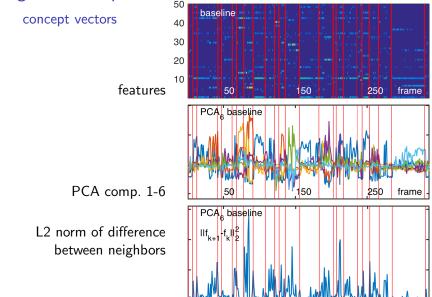
Features for event segmentation

- Local state of the art features:
 - Concept vectors: CNN-based indicator vectors for concepts detected in images
 - NNF: simple feed-forward NN autoencoder
 - ► NNFB: forward-backward NN autoencoder temporal depths n = 1, 2, 3, 4
 - LSTM: LSTM autoencoder
- Nonlocal self-similarity features
 - temporal patch size ± 2 frames
 - 6 main principal components used

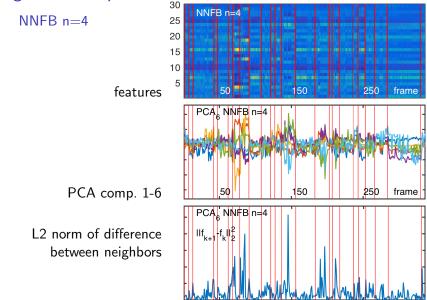
Features for event segmentation

- Local state of the art features:
 - Concept vectors: CNN-based indicator vectors for concepts detected in images
 - NNF: simple feed-forward NN autoencoder
 - ► NNFB: forward-backward NN autoencoder temporal depths n = 1, 2, 3, 4
 - LSTM: LSTM autoencoder
- Nonlocal self-similarity features
 - temporal patch size ± 2 frames
 - 6 main principal components used

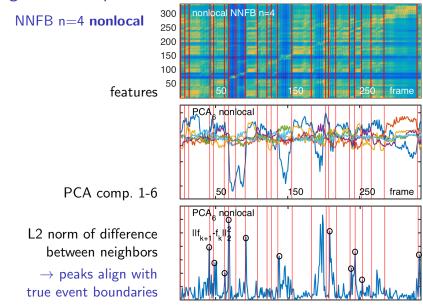
Segmentation performance for a single user



Segmentation performance for a single user



Segmentation performance for a single user



Average segmentation performance

F-measure

	concept	NNF	NNFB	NNFB	NNFB	NNFB	LSTM
	vectors	n = 1	n = 1	<i>n</i> = 2	<i>n</i> = 3	<i>n</i> = 4	n = 1
L	0.46	0.50	0.54	0.51	0.56	0.49	0.53
NL	0.58	0.52	0.59	0.54	0.52	0.54	0.56
Diff.	+0.12	+0.03	+0.05	+0.04	-0.05	+0.04	+0.03

NL features

- ightarrow average improvement of up to 12%
- ightarrow better temporal segmentations also for each user individually

Average segmentation performance

F-measure

	concept	NNF	NNFB	NNFB	NNFB	NNFB	LSTM
	vectors	n = 1	n = 1	<i>n</i> = 2	<i>n</i> = 3	<i>n</i> = 4	n = 1
L	0.46	0.50	0.54	0.51	0.56	0.49	0.53
NL	0.58	0.52	0.59	0.54	0.52	0.54	0.56
Diff.	+0.12	+0.03	+0.05	+0.04	-0.05	+0.04	+0.03

NL features

- $\rightarrow\,$ average improvement of up to 12%
- $\rightarrow\,$ better temporal segmentations also for each user individually

Conclusions and Perspectives

Final remarks

Method to enhance temporal segmentation by nonlocal self-similarity:

- improves feature representations
- based on the nonlocal similarity between temporal patches
- Validated on unconstrained image sequence:
 - EDUB-Seg dataset
 - ▶ nonlocal representations → consistent performance improvements
- How to next use nonlocal self-similarity within a neural network based learning framework

Conclusions and Perspectives

Final remarks

Method to enhance temporal segmentation by nonlocal self-similarity:

- improves feature representations
- based on the nonlocal similarity between temporal patches
- Validated on unconstrained image sequence:
 - EDUB-Seg dataset
 - \blacktriangleright nonlocal representations \longrightarrow consistent performance improvements
- How to next use nonlocal self-similarity within a neural network based learning framework

Conclusions and Perspectives

Final remarks

Method to enhance temporal segmentation by nonlocal self-similarity:

- improves feature representations
- based on the nonlocal similarity between temporal patches
- Validated on unconstrained image sequence:
 - EDUB-Seg dataset
 - \blacktriangleright nonlocal representations \longrightarrow consistent performance improvements
- How to next use nonlocal self-similarity within a neural network based learning framework

https://www.iri.upc.edu/people/mdimiccoli/

https://github.com/mdimiccoli/Nonlocal-self-similarity-1D

Bibliography

- [Dias19] C. Dias et al., *Learning event representations by encoding the temporal context*, Proc. ECCV Workshops, 2019.
- [Molino18] A. Garcia del Molino et al., *Predicting visual context for unsupervised event segmentation in continuous photo-streams*, ACM Multimedia Conference, 2018.
- [Tracey12] B. H. Tracey et al., *Nonlocal means de- noising of ECG signals*, IEEE T. Biomedical Engineering, 2012.
- [Efros99] A. A. Efros et al., *Texture synthesis by non-parametric sampling*, in Proc. IEEE ICCV, 1999.
- [Buades05] A. Buades et al., *A non-local algorithm for image denoising*, in Proc. IEEE CVPR, 2005.
- [Dimiccoli09] M. Dimiccoli et al., *Hierarchical region-based representation for segmentation and filtering with depth in single images*, in Proc. IEEE ICIP, 2009.
- [Dimiccoli17] M. Dimiccoli et al., *Sr-clustering: Semantic regularized clustering for egocentric photo streams segmentation*, Computer Vision and Image Understanding, 2017.

Related work: nonlocal self-similarity

local (neighbor frames) \rightarrow nonlocal temporal context

Nonlocal means for image denoising [Buades05]
→ image contains many similar patches (upon transformation)

 Spatial nonlocal self-similarity for image segmentation [Dimiccoli09]

- $\rightarrow\,$ model each pixel by a conditional probability density
- ightarrow hierarchical segmentation

little explored for time series

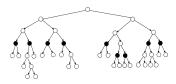
[Tracey12]

10 / 10

$\longrightarrow \text{ use to improve event representation} \\ \text{for temporal segmentation}$

Structured hierarchical clustering algorithm

- Hierarchical partition
 - finest level \rightarrow initial frames
 - \blacktriangleright root node \rightarrow entire image sequence



[Dias19]

- Tree construction:
 - ascending:
 - join temporally neighboring nodes with smallest distance
 - frame union modeled as average
 - distance = Euclidean norm