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Introductiong Éy

Motivation and Goal

I Temporal segmentation of untrimmed image sequences
I unconstrained videos (youtube)
I remotely sensed data (land cover)
I ...

I Egocentric photo stream event segmentation
I very low frame rate (2fpm)

M. Dimiccoli, H. Wendt, Enhancing temporal segmentation by nonlocal self-similarity 1 / 10-



Introductiong Éy
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Related workg Éy

Temporal Segmentation of videos and photostreams

1. Feature extraction

→ nonlocal temporal self-similarity

2. Actual segmentation

I Videos
I semantic features
I motion features

I Egocentric photostreams
→ no motion information
→ abrupt appearance changes even in adjacent frames
I semantic features
I learnt event representations (NN, LSTM) state-of-the-art

. [Dias19,Molino18]
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Proposed approachg Éy

Model assumptions and intuitions

I photostream ∼ stationary random process
I small temporal segment → similar segments in same sequence

I intuitively true for semantic representations
I e.g. contextual features, objects, concepts, . . .

Part II: Encoding and leveraging conceptual knowledge for visual understanding

Research Track 1: Learning semantic representations !Q1: Derive visual representations encoding similarity in meaning?

A supervised framework

Objective: Learn a visual-semantic embedding model in a supervised setting

How: Multilabel classification task

Challenge: Learning jointly visual features and label embedding

Requires object annotations

Mariella Dimiccoli, FBG - University of Barcelona – Competition to fill the tenure-eligible lecturer post UB-LE-308. – 20/35
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Proposed approachg Éy

Temporal nonlocal self-similarity: Definition

quantify similarity between a temporal patch centered at k
and a temporal patch centered at j

I time k = 1, . . . ,K :
I u(k) ∈ RP - image feature vector
I temporal patch u(Nk)
Nk = {k −M, . . . , k − 1, k + 1, . . . , k + M}

I temporal self-similarity function of u(k)

SNL(k, j) =
1

Z(k)
exp

(
−
d(u(Nk), u(Nj))

h

)

- d(u(Nk), u(Nj)) =
∑2M

i=1 ||u(Nk(i))− u(Nj(i))||2
- h: bandwidth parameter
- Z(k): normalization s.t.

∑
j S

NL(k , j) = 1
. −→ conditional probability of u(j) given u(Nk)
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Proposed approachg Éy

Nonlocal temporal self-similarity features

I replace features u(k) with new set of N nonlocal features

uNL(k) = {SNL(k , j)}j=k±1,2,... ∈ RN ,

(N = K − 1 → similarity with all other temporal patches)

I similarity of uNL(k) and uNL(k ′):
I large if k and k ′ belong to the same event
I small if k and k ′ belong to two different events

→ suitable for temporal segmentation
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Experimental settingg Éy

Dataset and performance evaluation

I EDUB-Seg dataset:
I wearable photo-camera image sequences (2 fpm)
I subset of ten sequences for five different users
I ground truth event segmentation

I Event segmentation performance:
I structured hierarchical clustering algorithm
I F-measure (tolerance ±5 frames)
I number of temporal segments chosen to maximize F-measure
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Experimental settingg Éy

Features for event segmentation

I Local state of the art features:
I Concept vectors: CNN-based indicator vectors for concepts

detected in images
I NNF: simple feed-forward NN autoencoder
I NNFB: forward-backward NN autoencoder

. temporal depths n = 1, 2, 3, 4
I LSTM: LSTM autoencoder

I Nonlocal self-similarity features
I temporal patch size ±2 frames
I 6 main principal components used
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Experimental resultsg Éy

Segmentation performance for a single user

concept vectors

features

PCA comp. 1-6

L2 norm of difference
between neighbors

→ peaks align with
true event boundaries
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Experimental resultsg Éy

Average segmentation performance

F-measure

concept NNF NNFB NNFB NNFB NNFB LSTM
vectors n = 1 n = 1 n = 2 n = 3 n = 4 n = 1

L 0.46 0.50 0.54 0.51 0.56 0.49 0.53
NL 0.58 0.52 0.59 0.54 0.52 0.54 0.56
Diff. +0.12 +0.03 +0.05 +0.04 −0.05 +0.04 +0.03

I NL features
→ average improvement of up to 12%

→ better temporal segmentations also for each user individually
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Conclusions and Perspectivesg Éy

Final remarks

I Method to enhance temporal segmentation by nonlocal self-similarity:

I improves feature representations
I based on the nonlocal similarity between temporal patches

I Validated on unconstrained image sequence:

I EDUB-Seg dataset
I nonlocal representations −→ consistent performance improvements

I How to next use nonlocal self-similarity within a neural network based
learning framework
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https://www.iri.upc.edu/people/mdimiccoli/

https://github.com/mdimiccoli/Nonlocal-self-similarity-1D
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Related work: nonlocal self-similarity

local (neighbor frames) → nonlocal temporal context

I Nonlocal means for image denoising [Buades05]

→ image contains many similar patches (upon transformation)

I Spatial nonlocal self-similarity for image segmentation
. [Dimiccoli09]

→ model each pixel by a conditional probability density
→ hierarchical segmentation

little explored for time series [Tracey12]

−→ use to improve event representation
−→ for temporal segmentation
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Structured hierarchical clustering algorithm [Dias19]

I Hierarchical partition
I finest level → initial frames
I root node → entire image sequence

(a) (b) (c) (d)

Fig. 2. (a) BPT: the black nodes represent the regions of the final partition (b) Final partition (c) Associated DG (d) Associated DAG (e)
Hasse diagram resulting from the transitive reduction of the DAG

(a) (b) (c) (d)

Fig. 3. Example of segmentation: (a) Original image (b) T-junction detection (c) Segmentation by the algorithm in [1] (d) Segmentation by
the proposed approach

(a) (b) (c) (d) (e)

Fig. 4. Examples of segmentation and filtering with depth.(a) Original image (b) T-junction detection (c) Segmentation (d) Depth ordering
(e) Filtering

I Tree construction:
I ascending:
I join temporally neighboring nodes with smallest distance

I frame union modeled as average
I distance = Euclidean norm
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