
THÈSETHÈSE
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Résumé du manuscrit :
Intégration de connaissances de haut-niveau dans un système d’apprentissage

par réseau neuronal pour la classification d’images

Les réseaux neuronaux ont permis de réaliser des avancées dans des tâches réputées difficiles
pour des ordinateurs (voire même pour des humains), comme la classification automatique à partir
d’images ou le traitement du langage naturel. Toutefois, leur nature de boîte noire limite leur expli-
cabilité et entrave leur capacité à exploiter des connaissances extérieures aux données. Cette thèse a
pour but d’explorer et de proposer des techniques d’intégration des connaissances dans les réseaux
neuronaux afin d’améliorer leurs performances, leurs interprétabilités et leur adaptabilités.

La première partie de la thèse est centrée sur l’intégration de connaissances aux données d’en-
trée d’un réseau. Son premier chapitre s’adresse à la préparation des données. On y propose une
formalisation du prétraitement afin de permettre la transparence et la reproductibilité de cette étape.
Cette formalisation nous permet d’étudier l’impact de la data augmentation : pour caractériser ce
qu’est une bonne préparation des données, et l’état informatif d’un dataset, un ensemble de me-
sures et de principes est proposé, ensuite des protocoles expérimentaux sont conçus afin d’évaluer
ces principes sur le dataset BreakHis. La technique "layer-wise relevance propagation" a permis de
visualiser l’impact de la data augmentation.

Le deuxième chapitre de cette partie s’adresse à l’exploitation de connaissances haut-niveau pour
l’établissement d’un ordre de présentation des données au réseau. Nous introduisons l’apprentissage
par curriculum incrémental sur l’ordre de passage des données en entrée. Les résultats obtenus amé-
liorent l’exactitude et la vitesse de convergence. Bien que cette étude soit menée sur le dataset
BreakHis, nous pensons qu’elle est généralisable à des datasets contenant d’autres données que des
images et d’autre connaissances que la résolution.

La deuxième partie est centrée sur l’intégration de connaissances au sein de l’archi-tecture d’un
réseau et au niveau de sa sortie. Dans ce cadre, nous nous sommes intéressés à la classification
multi-label hiérarchique, pour laquelle nous avons formalisé les connaissances représentant le lien
hiérarchique. Pour cela nous avons introduit deux contraintes représentant pour l’une le fait qu’un
objet ne peut être affecté qu’à une seule classe à un niveau donné de la hiérarchie, et l’autre imposant
que l’affectation globale d’un objet respecte la hiérarchie de classe (par exemple, on interdit d’avoir
un élément qui soit classé abeille et mammifère car il faudrait plutôt le classer comme abeille et
insecte).

Nous avons conçu une architecture et une fonction de perte qui imposent ces contraintes hiérar-
chiques durant l’apprentissage. L’architecture se distingue des travaux de l’état de l’art par le fait
qu’un seul réseau est utilisé pour prédire simultanément les labels des différents niveaux : toutes
les couches sont responsables de la prédiction du n-uplet des classes. Plusieurs variantes du ré-
seau ont été expérimentées sur cinq jeux de données (BreakHis, PrimeMNIST, Fashion-MNIST,
DeepFashion, HZoo) et les résultats confirment l’efficacité de la prise en compte des contraintes
hiérarchiques soutenant ainsi l’importance de la prise en compte de connaissances externes.

Afin de raffiner les résultats de cette classification hiérarchique, nous avons introduit un méca-
nisme d’abstention grâce auquel le réseau donne une prédiction au niveau de spécificité le plus précis
possible sur lequel sa confiance est suffisante, et s’abstient sinon. Nous avons défini différents seuils
de confiance et proposé différentes contraintes sur les seuils relatives à la hiérarchie des classes.
Pour évaluer ce mécanisme, de nouvelles métriques de classification prenant en compte l’absten-
tion (le taux de classifications correctes ignorées et le taux de classifications incorrectes évitées) ont
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été définies. Nous avons mené des expérimentations sur les mêmes jeux de données et les résultats
ont montré l’intérêt de l’abstention, et la nécessité de définir un seuil expérimental adapté à chaque
dataset.

Pour conclure, les travaux de cette thèse soulignent l’intérêt d’exploiter des connaissances ex-
ternes dans le domaine des réseaux de neurones ceci au niveau des trois composantes d’un système
d’apprentissage profond : en entrée pendant la préparation des données, dans la structure du réseau
(architecture et fonction de perte) et au niveau de la sortie lors de la prise de décision de classifica-
tion.
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Introduction (en français)

Pour introduire nos travaux qui traitent à la fois d’apprentissage automatique sur des données
et de raisonnement sur des connaissances, nous nous basons sur la distinction classique établie par
Kahneman et Tversky dans le domaine de la psychologie. La théorie de Kahneman et Tversky [52]
a profondément influencé la compréhension des processus de raisonnement et de prise de décision
humaine. Leur travail émet l’hypothèse que les processus décisionnels humains sont régis par deux
système complémentaires : le système 1 (S1) et le système 2 (S2). Le système 1 est un système intui-
tif, automatique et rapide qui fonctionne par association, inconsciemment et sans effort. Il s’appuie
sur les raccourcis mentaux pour évaluer rapidement les situations et porter des jugements. Tandis
que le système 2 est un système délibéré, conscient et lent qui nécessite des efforts et des ressources
mentales pour fonctionner. Il se caractérise par une pensée réfléchie et analytique, impliquant un
raisonnement logique et des processus cognitifs plus profonds. S2 permet de prendre des décisions
plus complexes, de résoudre des problèmes et de mettre en œuvre une pensée critique.

Dans le cadre des recherches en intelligence artificielle, l’objectif est entre autre de simuler le
raisonnement et la prise de décision humaine au moyen d’outils informatiques. On peut diviser les
sous-domaines de l’intelligence artificielle en deux courants en accord avec la théorie de Kahneman
et Tversky, Le premier courant couvre la partie analytique et procédurale basée sur l’explicitation
des raisonnements et des connaissances (ce courant est connu sous le nom de Représentation des
Connaissances et du Raisonnement ou IA fondamentale (en anglais Knowledge Representation and
Reasoning KRR). Le deuxième courant consiste à simuler les capacités d’évaluation rapide des si-
tuations grâce à la mise en place de mécanismes d’association : c’est le courant de l’apprentissage
automatique (en anglais Machine Learning ML).

L’intelligence artificielle fondamentale s’appuie sur la logique et la représentation des connais-
sances pour mieux comprendre et formaliser comment les systèmes intelligents peuvent raisonner
et prendre des décisions. Le domaine KRR est donc un domaine assez vaste. Parmi ses axes prin-
cipaux, nous citons, dans le cadre de cette thèse, trois axes majeurs : le premier axe s’intéresse à
l’encodage explicite des connaissances, plusieurs formalismes sont utilisés, entre autre, la logique
classique et ses extensions et les représentations graphiques (comme les ontologies, les graphes
d’argumentation, les réeseaux bayésiens, etc.). Le deuxième axe s’articule autour de l’étude algo-
rithmique des systèmes de résolution de problèmes, on y trouve les problèmes de satisfaction de
contraintes (en anglais Constraint Satisfaction Problem CSP), les problèmes de satisfaisabilité boo-
léenne SAT, qui, étant donné une formule en logique propositionnelle, déterminent s’il existe une
valuation des variables qui la satisfasse. Aussi, les problèmes de planification qui s’interessent à la
génération de plans d’action permettant de réaliser un but depuis un état initial. Un troisième axe
important du domaine KRR est l’aide à la décision, où l’on dispose de préférences (ou utilités) en
plus des connaissances incertaines sur l’évolution du monde, on peut citer par exemple, l’aide à
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la décision multi-critères. Notons que les connaissances au cœur du domaine KRR représentant la
pièce maîtresse de ce premier courant, peuvent être imparfaites. Ces imperfections peuvent surgir
de la source de connaissance comme de sa représentation. Parmi ces imperfections, on peut citer
l’incohérence qui dénote des connaissances contradictoires. L’incertitude qui dénote un doute sur la
validité des connaissances (dû par exemple à une source incomplète et/ou non fiable). L’imprécision
qui correspond à une difficulté dans l’énoncé des connaissances (connaissances incomplètement ou
vaguement spécifiées). Plusieurs approches ont été développées afin de pallier à ces imperfections,
telles la logique floue, et le raisonnement sous incertitude.

L’apprentissage automatique, quant à lui, est le deuxième courant de l’IA dans lequel on s’in-
téresse à faire apprendre à la machine la réalisation d’une tâche donnée, soit à partir de bases
d’exemples (apprentissage supervisé, non-supervisé et semi-supervisé), soit en fournissant des ré-
compenses ou des pénalités selon les réponses (apprentissage par renforcement).

L’apprentissage par renforcement, est utilisé pour apprendre des actions séquentielles dans un
environnement afin de maximiser une récompense cumulative. Le modèle prend des actions, observe
les récompenses associées et ajuste ses décisions pour atteindre un objectif spécifique. Les tâches
courantes incluent les jeux, où l’agent apprend à jouer pour maximiser le score, la robotique, où
l’agent apprend à effectuer des tâches physiques, et la gestion de systèmes complexes, où l’agent
prend des décisions pour optimiser les performances du système. Le Q-Learning est l’un des algo-
rithmes d’apprentissage par renforcement les plus répandus, où l’agent maintient une fonction Q qui
est utilisée pour estimer la récompense future attendue en prenant une certaine action dans un état
donné.

Dans l’apprentissage non supervisé, le modèle traite des données non étiquetées et cherche à
découvrir des structures ou des schémas intrinsèques dans les données. Les tâches courantes in-
cluent le regroupement (ou en anglais clustering), où le mo-dèle identifie des groupes similaires de
données, la réduction de dimensionnalité, où le modèle réduit la complexité des données tout en pré-
servant les caractéristiques importantes, ou encore la détection d’anomalies, où le modèle identifie
des exemples inattendus ou aberrants. Parmi les algorithmes couramment utilisés en apprentissage
non supervisé, on peut citer le k-moyennes (en anglais k-means), où les données sont divisées en k
groupes distincts, l’objectif du modèle étant de minimiser la somme des distances entre chaque point
représentant une donnée et le centre de son groupe attribué. Aussi, nous citons l’analyse en compo-
santes principales (PCA) qui est utilisée pour la réduction de dimensionnalité où les données sont
projetées dans un nouvel espace de dimensions réduites tout en préservant la variance maximale.
la PCA est couramment utilisée pour la visualisation de données et pour l’amélioration les perfor-
mances des modèles en éliminant les caractéristiques redondantes ou peu informatives ou encore les
individus perturbateurs.

Dans cette thèse, nous centrons notre intérêt sur l’apprentissage supervisé, plus de détails sur
l’apprentissage automatique non supervisé peuvent être consultés dans [135]. Dans l’apprentissage
supervisé, le modèle est entraîné sur un ensemble de données étiquetées, où les exemples sont asso-
ciés à des vérités-terrain (étiquettes ou sorties réelles). Les tâches courantes incluent la classification,
où le modèle prédit des catégories discrètes (par exemple, spam/non-spam, chien/chat/lapin/loup),
et la régression, où le modèle prédit des valeurs continues (par exemple, prédiction du prix des
maisons en fonction de leurs caractéristiques). Le mécanisme de ce type d’apprentissage s’articule
autours de l’optimisation de l’écart (souvent calculé grâce à une fonction de perte) entre la sortie
prédite et la sortie réelle. Parmi les algorithmes répandus pour ce type d’apprentissage, nous citons
les Machines à Vecteurs de Support (ou Support Vector Machines en anglais SVMs). Les SVMs
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cherchent à trouver un hyperplan qui sépare les données dans un espace de grande dimension de
manière optimale, maximisant la marge entre les classes. Les SVMs sont plus efficaces pour les
problèmes de classification binaire, mais elles peuvent être étendues à des problèmes multi-classes.
Les arbres de décision (ou Decision trees en anglais), sont un autre type d’algorithmes pour ce type
d’apprentissage, utilisés pour les tâches de classification et de régression. Ils construisent une struc-
ture arborescente où chaque nœud représente une décision basée sur une caractéristique particulière
des données. Bien qu’ils soient faciles à interpréter et à visualiser, ils peuvent être sensibles aux va-
riations et biais. Une autre branche de l’apprentissage supervisé concerne les Forêts aléatoires (ou en
anglais Random Forests), qui sont une extension des arbres de décision. Elles construisent un grand
nombre d’arbres de décision indépendants et combinent leurs prédictions pour obtenir une meilleure
performance globale. Les forêts aléatoires sont plus robustes que les arbres de décision individuels
et ont tendance à produire de meilleurs résultats en termes de précision.

Dans cette thèse, nous mettons la lumière sur l’un des algorithmes les plus utilisés récemment,
qui est l’apprentissage par réseaux de neurones artificiels (ou en anglais Artificial Neural Networks
ANNs, abrégés en NeuralNetworks NNs). Grâce aux progrès matériels et algorithmiques, ces mo-
dèles ont connu des avancées significatives. Les réseaux neuronaux artificiels sont composés d’uni-
tés reliées appelées "neurones artificiels". Ces neurones reçoivent des signaux d’entrée, les traitent
et les transmettent à d’autres neurones connectés. Leur architecture est composée de couches in-
terconnectées de neurones artificiels, où chaque neurone est une unité de traitement qui reçoit des
entrées, effectue des calculs sur ces entrées, puis produit une sortie (le Chapitre 1 traite en détails du
fonctionnement des NNs).

Les réseaux neuronaux convolutifs (en anglais Convolutional Neural Networks CNNs) sont un
type de réseaux neuronaux artificiels spécialement conçus par bio-mimétisme à partir de la vision
humaine pour analyser des données visuelles, telles que des images. Bien que les CNNs aient fait
preuve d’avancées remarquables, ces réseaux restent considérés comme des “boîtes noires” en rai-
son du manque de leur d’interprétabilité et de leur dépendance exclusive aux données pour prendre
des décisions. L’explicabilité et l’interpretabilité des CNNs est un domaine émergent qui suscite de
plus en plus l’intérêt de la communauté scientifique. Certaines approches sont basées sur la logique
classique afin de générer des formules logiques d’explication d’une décision, où la participation
d’une caractéristique est attestée si elle satisfait la formule. D’autres approches sont proposées pour
tenter de visualiser et d’interpréter les critères sur lesquels s’est basé le réseau pour prendre sa déci-
sion. Certaines techniques visuelles comme la LRP [9], mettent la lumière sur les zones saillantes de
l’image qui ont conduit à la prédiction finale. Ces cartes de caractéristiques peuvent être considérées
comme mettant en avant une certaine génération de “connaissance” du fonctionnement du réseau.
Cependant, le domaine est encore bourgeonnant, et aucune méthode ne permet une explicitation
tangible et intelligible de façon complète. Les CNNs sont également sujets à plusieurs imperfec-
tions, à commencer par les données d’entrées qui constituent la matière première des CNNs, mais
souffrent souvent de plusieurs problèmes tels que le manque de données étiquetées, les problèmes
d’étiquetage, le bruit et les biais, etc. De plus, plusieurs paramètres peuvent affecter la qualité d’ap-
prentissage, telles que la conception du réseau et les contraintes matérielles. Les biais des données et
la qualité de l’apprentissage conditionnent donc considérablement les prédictions de classification.
En outre, les CNNs standards ne prennent malheureusement pas compte des connaissances externes
existantes sur les données labelisées, comme par exemple les liens hiérarchiques entre les étiquettes,
ou les connaissances expertes sur des données.

Inspirée de ces motivations, cette thèse propose une approche qui vise à intégrer à un CNN
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(considéré comme un genre de système S1) des mécanismes de raisonnements sur les connaissances
(considéré comme un système S2). Nous explorons la possibilité d’intégrer ses connaissances à
différents niveaux : en entrée en prenant en compte les connaissances externes, au niveau de la
conception de l’archi-tecture et le paramétrage de la fonction de perte et au niveau de la sortie en
raffinant les résultats des prédictions.

La Figure 1 récapitule le contexte de cette thèse et situe les chapitres la composant.

FIGURE 1 – Summary diagram of the thesis context

Après une partie préliminaire rappelant les principes fondamentaux à l’œuvre dans les réseaux
de neurones, introduisant les travaux faisant intervenir des connaissances dans ce type de réseaux
et expliquant les ensembles de données sur lesquels les expéritmentations ont étés menées, cette
thèse est constituée de deux parties fondamentales. La première partie met l’accent sur l’intégration
de connaissances dans les données d’entrée du réseau. Son premier chapitre se focalise sur la pré-
paration des données, une étape clé, mais peu explicitée dans la majorité des travaux scientifiques
actuels. Pour cela, nous mettons en place une formalisation du prétraitement des données afin d’as-
surer la transparence et fournir les détails nécessaires pour pouvoir reproduire les expérimentations.
Nous nous sommes également intéressé à l’augmentation des données (ou en anglais data augmen-
tation, une technique largement adoptée, mais en raison de l’opacité des CNNs, l’explication de son
apport fructueux reste toujours méconnue. Pour cela, nous avons proposé une approche basée sur
la méthode de la "Layerwise Relevance Propagation (LRP)", qui est une méthode de visualisation
des pixels saillants, pour exhiber la différence entre les pixels saillants d’une image originale, et
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de sa transformation par data augmentation, après passage dans le réseau. Nous présentons égale-
ment un ensemble de mesures et de principes, suivis de protocoles expérimentaux élaborés pour
évaluer l’informativité du dataset après préparation. Le deuxième chapitre de cette première partie
se penche sur l’exploitation de connaissances de haut-niveau pour déterminer l’ordre de présenta-
tion des données au réseau. Pour cela, nous introduisons l’apprentissage par curriculum incrémental
pour ordonnancer l’introduction des données d’entraînement. Les résultats obtenus sur le dataset
BreakHis permettant d’augmenter l’exactitude et la vitesse de convergence, et encouragent donc la
considération de cette approche, qui reste généralisable pour tout autre dataset.

La dernière partie de cette thèse se concentre sur l’intégration de connaissances externes dans
la conception du modèle. Comme cas particulier, nous nous sommes situé dans la cadre de la clas-
sification multi-label hiérarchique, où la connaissance externe que nous avons pris en compte est
représentée par le lien hiérarchique reliant les étiquettes. Dans ce contexte, nous formalisons les
connaissances représentant les liens hiérarchiques en introduisant deux contraintes essentielles. La
première contrainte impose qu’un objet doit être affecté à une classe unique par niveau hiérarchique
et la deuxième contrainte impose que l’affectation globale respecte le lien hiérarchique reliant les
classes, afin d’éviter l’occurrence de violations hiérarchiques. Pour cela, un réseau de neurones spé-
cial a été conçu, avec une fonction de perte sur mesure pour la prise en compte des contraintes. Cinq
jeux de données ont été sélectionnés pour les expérimentations et les résultats obtenus montrent
l’impact positif de la considération des connaissances externes.

Pour améliorer la robustesse de ce réseau hiérarchique, nous introduisons ensuite un mécanisme
d’abstention, permettant au réseau de s’abstenir si la confiance de prédiction est au dessous d’un
seuil de confiance prédéfini. Afin d’évaluer ce mécanisme, nous introduisons de nouvelles métriques
de classification prenant en compte l’abstention, telles que le taux de classifications correctes igno-
rées et le taux de classifications incorrectes évitées. Ce mécanisme est testé sur les mêmes cinq jeux
de données.

Cette thèse est un premier travail exploratoire pour étudier l’intérêt de l’intégration des connais-
sances haut-niveau dans les CNNs, ce document décrit cette étude et les avancées produites et ouvre
l’horizon à d’autres pistes citées en perspective.
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Introduction (In english)

To introduce our work that deals with both machine learning on data and reasoning on knowl-
edge, we base ourselves on the classical distinction established by Kahneman and Tversky in the
field of psychology. The theory of Kahneman and Tversky [52] has deeply influenced the under-
standing of human reasoning and decision-making processes. Their work postulates that human
decision-making processes are governed by two complementary systems: System 1 (S1) and Sys-
tem 2 (S2).

On one hand, S1 is an intuitive, automatic and fast system that works by association, uncon-
sciously and effortlessly. It relies on mental shortcuts to quickly assess situations and make judg-
ments. On the other hand, S2 is a deliberate, conscious and slow system that requires effort and
mental resources to operate. It is characterized by reflective and analytical thinking, involving logi-
cal reasoning and deeper cognitive processes. S2 enables more complex decision-making, problem-
solving and critical thinking.

In the context of research in artificial intelligence, one of the objectives is to simulate human
reasoning and decision-making using computer tools. We can divide the fields of artificial intel-
ligence into two streams in line with Kahneman and Tversky’s theory. The first stream covers
the analytical and procedural part based on the explicitation of the representation of reasoning and
knowledge (known as Knowledge Representation and Reasoning (KRR) or Fundamental AI). The
second stream is the Machine learning (ML) stream, which consists of simulating the ability to
assess situations quickly, thanks to the implementation of association mechanisms. Fundamental ar-
tificial intelligence relies on logic and knowledge representation to better understand and formalize
how intelligent systems can reason and make decisions. The KRR field is therefore quite vast. In the
context of this thesis, we have identified three main lines of research: the first focuses on the explicit
encoding of knowledge, using a variety of formalisms, including classical logic and its extensions,
and graphical representations (such as ontologies, argumentation graphs, Bayesian networks, etc.).
The second axis focuses on the algorithmic study of problem-solving systems, including constraint
satisfaction problems (CSP) and Boolean satisfiability problems (SAT), which, given a propositional
logic formula, determine whether there is a variable valuation that satisfies it. Also, planning prob-
lems, which are concerned with generating action plans to achieve a goal from an initial state. A
third major focus of the KRR domain is decision support, where preferences (or utilities) are avail-
able in addition to uncertain knowledge about the evolution of the world, e.g. multi-criteria decision
support. It’s worth noting that the knowledge at the kernel of the KRR domain, representing the
centerpiece of this first stream, may be imperfect. These imperfections can arise both from the
knowledge source and from its representation. Among these imperfections are: incoherence, which
denotes contradictory knowledge. Uncertainty, which denotes doubt about the validity of knowledge
(due, for example, to an incomplete and/or unreliable source). Imprecision, which corresponds to a
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difficulty in stating knowledge (incompletely or vaguely specified knowledge). Several approaches
have been developed to overcome these imperfections, such as fuzzy logic and reasoning under
uncertainty.

Machine learning, for its part, is the second stream of AI in which the focus is on teaching the
machine to perform a given task, either from a base of examples (supervised, unsupervised and semi-
supervised learning), or by providing rewards or penalties according to responses (reinforcement
learning).

Reinforcement learning is used to learn sequential actions in an environment in order to maxi-
mize a cumulative reward. The model takes actions, observes the associated rewards and adjusts its
decisions to achieve a specific goal. Common tasks include games, where the agent learns to play
to maximize score, robotics, where the agent learns to perform physical tasks, and the management
of complex systems, where the agent makes decisions to optimize system performance. Q-Learning
is one of the most widespread reinforcement learning algorithms, where the agent maintains a Q-
function which is used to estimate the expected future reward of taking a certain action in a given
state.

In unsupervised learning, the model processes unlabeled data and seeks to discover intrinsic
structures or patterns in the data. Common tasks include clustering, where the model identifies
similar groups of data, dimensionality reduction, where the model reduces the complexity of the data
while preserving important features, or anomaly detection, where the model identifies unexpected
or outlier examples. Algorithms commonly used in unsupervised learning include k-means, where
data are divided into k distinct groups, with the model’s objective being to minimize the sum of the
distances between each point representing a datum and the center of its assigned group. Principal
Component Analysis (PCA) is also used for dimensionality reduction, where data are projected into
a new space of reduced dimensions while preserving maximum variance. PCA is commonly used for
data visualization and for improving model performance by eliminating redundant or uninformative
features or interfering individuals.

In this thesis, we focus our interest on supervised learning, more details on unsupervised machine
learning can be found in [135]. In supervised learning, the model is trained on a labeled dataset,
where samples are associated with ground-truths (labels or actual outputs). Common tasks include
classification, where the model predicts discrete categories (e.g. spam/non-spam, dog/cat/rabbit/wolf),
and regression, where the model predicts continuous values (e.g. predicting house prices based on
their characteristics). The mechanism of this type of learning revolves around optimizing the devi-
ation (often calculated using a loss function) between predicted and real output. Among the most
common algorithms for this type of learning are Support Vector Machines (SVMs). SVMs seek to
find a hyperplane that optimally separates data in a high-dimensional space, maximizing the margin
between classes. SVMs are most effective for binary classification problems but can be extended to
multi-class problems. Decision Trees (DTs) are another type of learning algorithm, used for classifi-
cation and regression tasks. They build a tree structure where each node represents a decision based
on a particular feature of the data. Although easy to interpret and visualize, they can be sensitive to
variation and bias. Another branch of supervised learning concerns Random Forests (RFs), which
are an extension of decision trees. They construct a large number of independent decision trees and
combine their predictions to achieve better overall performance. Random forests are more robust
than individual decision trees and tend to produce better results in terms of sensitivity.

In this thesis, we shed light on one of the most widely In this thesis, we shed light on one of the
most widely used algorithms of recent times, which is artificial neural network learningks (ANNs).
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Thanks to hardware and algorithmic advances, these models have made significant progress. Ar-
tificial Neural Networks consist of interconnected units or nodes called "artificial neurons." These
neurons receive input signals, process them, and transmit them to other connected neurons. Their
architecture is composed of interconnected layers of artificial neurons, where each neuron is a pro-
cessing unit that receives inputs, performs calculations on these inputs, and then produces an output
(Chapter 1 covers the functioning of NNs in detail).

Convolutional Neural Networks (CNNs) are a type of Artificial Neural Network specially de-
signed, inspired by human vision, to analyze visual data such as images. Although CNNs have
shown remarkable advancements, they are still considered "black boxes" due to their lack of in-
terpretability and their exclusive reliance on data for decision-making. Explainability and inter-
pretability of CNNs are an emerging field that is increasingly attracting the interest of the scientific
community. Some approaches are based on formal logic to generate logical explanation formulas
for a decision, where the involvement of a feature is confirmed if it satisfies the formula. Other
approaches attempt to visualize and interpret the criteria on which the network makes its decision.
Some visual techniques highlight salient regions of the images that led to the final prediction. These
feature maps can be considered as generating knowledge from the network. However, the field is
still budding, and no method allows a complete and tangible explanation.

Standard CNNs are also subject to several imperfections, starting with the input data that consti-
tutes the raw material for CNNs but often suffers from various issues such as lack of labeled data,
mislabeling problems, noise, and biases, etc. Furthermore, several parameters can affect the qual-
ity of learning, such as network design and hardware constraints. Data biases and learning quality
significantly influence classification predictions. Additionally, standard CNNs unfortunately do not
take external knowledge into account that may be present in labeled data, such as hierarchical links
between labels or expert knowledge about the data.

Inspired by these motivations, in this thesis, we propose an approach that aims to integrate
knowledge reasoning mechanisms (considered as a System S2) into a CNN (considered as a System
S1). We explore the possibility of integrating this knowledge at different levels: at the input level by
considering expert knowledge about data, at the design of the architecture and the customization of
the loss function, and at the output level by refining prediction results.

The Figure 1 summarizes the context of this thesis and the positioning of its chapters.
This thesis consists of two fundamental parts. The first part focuses on integrating knowledge

into the input data of the network. The first chapter deals with data preprocessing, a essential but
often nonclarified step in the majority of current scientific works. To address this, we establish a
formalization of preprocessing to ensure transparency and provide the necessary details for exper-
iment reproducibility. We also investigate data augmentation, a widely adopted technique, but due
to the opacity of CNNs, the explanation of its fruitful contribution remains unclear. To address this,
we propose an approach based on the "Layerwise Relevance Propagation (LRP)" method, a visual-
ization method for exhibiting the difference between the salient pixels of an original image and its
transformation after passing through the network. We also present a set of measures and principles,
along with elaborated experimental protocols, to assess dataset informativeness. The second chapter
of this first part focuses on leveraging high-level knowledge to determine the order of presenting data
to the network. To achieve this, we introduce incremental curriculum learning to order the training
set. The results show increased accuracy and convergence speed, encouraging the consideration of
this approach, which is generalizable to other datasets.

The second part of this thesis concentrates on integrating external knowledge into the model’s
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design. As a particular case, we situate ourselves in the context of hierarchical multi-label clas-
sification, where external knowledge is represented by the hierarchical links between labels. We
formalize two contextual constraints: the first constraint imposes that an object must be assigned to
a unique class per hierarchical level, and the second constraint ensures that the global assignment
respects the hierarchical link between classes, thereby avoiding hierarchical violations. To achieve
this, we design a special neural network with a customized loss function to accommodate these con-
straints. We select five datasets for experimentation, and the results demonstrate the positive impact
of considering external knowledge.

To improve the robustness of this hierarchical network, we then introduce an abstention mecha-
nism, allowing the network to abstain if the prediction confidence is below a predefined confidence
threshold. To evaluate this mechanism, we introduce new abstention-aware classification metrics,
such as the rate of correct classifications ignored and the rate of incorrect classifications avoided.
This mechanism is tested on the same five datasets.

This thesis is a first exploratory work to study the interest of high-level knowledge integration
in CNNs, this document describes this study and the advances produced and opens the horizon to
other tracks cited in perspective.
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Part I

Preamble
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Dans cette partie composée de trois chapitres, nous présentons un aperçu des concepts fonda-
mentaux des réseaux neuronaux qui nous seront utiles tout au long de ce manuscrit. En effet, les
réseaux neuronaux (et plus spécifiquement les réseaux de neurones convolutifs) occupent une place
primordiale au sein de cette thèse, vu qu’ils simulent le système S1. Nous les avons choisis pour
leur grande efficacité et leur utilisation répandue. Les CNNs sont spécialement conçus pour la clas-
sification d’images, et il est essentiel de détailler leurs mécanisme, afin de pouvoir ultérieurement
intégrer des connaissances dans ces réseaux. Dans le premier chapitre, nous evoquons les concepts
nécessaires à la compréhension du fonctionnement général d’un réseau de neurones. Entre autre
l’architecture globale et les couches standard et les fonctions d’activation et de décision. À la fin de
ce chapitre, nous présentons une formalisation probabiliste des réseaux neuronaux, qui servira de
socle à la conception notre solution de classification hiérarchique.

Ensuite, il nous a paru important de répertorier les différentes connaissances de haut-niveau
pouvant interagir avec les NNs, nous avons donc distingué, dans le deuxième chapitre, des types de
connaisses : des connaissances humaines provenant d’un expert et des "connaissances" boîte-noire
provenant de la machine. Nous presentons certains exemples de la litterature evoquant ces formes de
connaissances et comment elles peuvent interagir avec les réseaux neuronaux. En outre, nous avons
mentionné les connaissances que les réseaux neuronaux peuvent produire en tant que modèles "boîte
noire" par le biais de méthodes d’explicabilité et d’interprétabilité. L’objectif de cette thèse n’étant
pas d’étayer ces approches, nous n’avons fait que présenter une seule méthode qui sera egalement
utilisée dans les chapitres 4 et 5. Enfin, le troisième chapitre présente les différents ensembles de
données utilisés pour les expériences menées dans le cadre de cette thèse. Le caractère principal de
ces ensembles de données réside dans leur nature hiérarchique, et ils ont été soigneusement choisis
pour cette raison, car ils contiennent des connaissances supplémentaires sous la forme de relations
hiérarchiques. Tous ces ensembles sont publiquement accessibles. Les deux premiers ensembles de
données sont intrinsèquement hiérarchiques. Il s’agit notamment de l’ensemble de données "Brea-
kHis", composé d’images histopathologiques de cancers du sein, étiquetées avec le type et le sous-
type de la tumeur. Les deuxième et troisième ensembles de données sont des ensembles d’articles de
garde robe (vêtements, chaussures, accessoires),organisés de manière hiérarchique, à savoir "Deep
Fashion Kaggle" et "Fashion-MNIST". Les deux derniers ensembles ont specialement été modifiés
en creant des niveaux d’hiearchie, il s’agit de "Prime-MINST" et "HZOO".

In this part, composed of three chapters, we present an overview of the fundamental concepts
of neural networks, which will be useful throughout this manuscript. Neural networks (and more
specifically convolutional neural networks) play a key role in this thesis, as they simulate the S1
system. We have chosen them for their high efficiency and widespread use. CNNs are specifically
designed for image classification, and it is essential to detail their mechanism so that knowledge
can be integrated into these networks at a later stage. In the first chapter, we describe the concepts
required to understand the general operation of a neural network. These include the overall architec-
ture and standard layers, as well as activation and decision functions. At the end of this chapter, we
present a probabilistic formalization of neural networks, which will serve as the basis for the design
of our hierarchical classification solution.
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Next, we considered it important to list the different types of high-level knowledge that can inter-
act with NNs, In the second chapter, we distinguish between types of knowledge: human knowledge
coming from an expert and black-box "knowledge" coming from a machine. We present some ex-
amples from the literature evoking these forms of knowledge and how they can interact with neural
networks. In addition, we have mentioned the knowledge that neural networks can produce "black-
box" models through methods of explicability and interpretability. As the aim of this thesis is not to
support these approaches, we have only presented one method, which will also be used in Chapters
4 and 5. Finally, the third chapter presents the different datasets used for the experiments carried out
in this thesis. The main character of these datasets lies in their hierarchical nature, and they have
been carefully chosen for this reason, as they contain additional knowledge in the form of hierarchi-
cal relationships. All these datasets are publicly accessible. The first three datasets are intrinsically
hierarchical. These include the "BreakHis" dataset, composed of histopathological images of breast
cancers, labeled with tumor type and subtype. The second and third datasets are hierarchically
organized sets of wardrobe items (clothing, shoes, accessories), namely "Deep Fashion Kaggle"
and "Fashion-MNIST". The last two sets have been specially modified to create hierarchy levels:
"Prime-MINST" and "HZOO".
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Chapter 1

Image classification in NNs:
background and formalization

Résumé en français du Chapitre 1 : "Classification d’image dans les NNs : concepts de base
et formalisation"

Les réseaux de neurones (NNs) sont réputés par leur performances remarquables dans la réalisation
de nombreuses tâches dans divers domaines.
Dans ce chapitre, nous abordons les notions essentielles intervenant dans leour mécanisme. Nous
commençons par présenter les couches standard d’un réseau de neurones, ainsi que la couche convo-
lutionnelle spécifique aux réseaux convolutifs. Ensuite, nous présentons la phase de préparation des
données, le mécanisme d’apprentissage, certaines techniques de régularisation et enfin les princi-
pales métriques d’évaluation de la classification. A la fin de ce chapitre, nous proposons une forma-
lisation d’un classifieur en termes de probabilités. Cette formalisation nous servira de socle pour la
conception de notre solution dans les chapitres suivants.
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1.1 Basics about Neural Networks (NNs) . . . . . . . . . . . . . . . . . . . . . . 21

1.1.1 The standard architecture of a NN . . . . . . . . . . . . . . . . . . . . 21

1.1.2 Data preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.1.2.1 Data splitting . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.1.2.2 Data balancing and augmentation . . . . . . . . . . . . . . . 25

1.1.2.3 Data normalization . . . . . . . . . . . . . . . . . . . . . . . 26

1.1.3 The learning process . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.1.4 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.1.5 Regularization techniques . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.1.6 Main standard architectures . . . . . . . . . . . . . . . . . . . . . . . . 30

1.2 Formalizing the probabilistic view of a NN . . . . . . . . . . . . . . . . . . 32
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In recent years, machine learning has made significant advances, notably with the development
of neural networks, which have demonstrated impressive performance in numerous tasks and fields.
They are designed to mimic the behavior of the human brain. They consist of interconnected nodes,
called “neurons”, organized in layers. Each neuron receives input data, processes it through math-
ematical operations, and produces an output, which is then transmitted to other neurons in the net-
work. The strength of the connections between neurons, represented by numerical weights, enables
the network to adapt and learn from the data. Learning in neural networks takes place through an
iterative process known as “training”. During training, the network adjusts its weights according
to the labeled training data, comparing the predicted value with the actual value, in order to mini-
mize the prediction error. This allows the network to generalize and produce accurate predictions on
new data it has never encountered before. Figure 1 illustrates the standard architecture of a neural
network.

Convolutional neural networks (CNNs) are particular artificial neural networks specifically de-
signed to analyze visual data, such as images. CNNs are inspired by the biological visual cortex, the
part of the brain responsible for processing visual information in humans and animals. The visual
cortex is composed of a complex arrangement of interconnected neurons in a hierarchical organi-
zation. Similarly, CNNs are made up of several layers of artificial neurons that learn to extract and
analyze visual features from input data. The key component of a CNN is the convolutional layer,
which performs convolutions on input data using learnable filters. These filters mimic the receptive
fields of the visual cortex, enabling the network to detect local patterns and features in the input data.
By using clustering layers, CNNs reduce the spatial dimensions of feature maps while preserving
important information. This clustering operation is reminiscent of the neural mechanisms that en-
able the visual cortex to summarize and reduce the sampling of visual information. In addition, in
CNNs the same set of filters is applied to the entire layer, which helps to achieve translational invari-
ance, enabling them to recognize patterns regardless of their position in the input. Similarly to the
visual cortex, lower layers of a CNN learn basic visual features, such as edges and textures, while
higher layers progressively learn more complex and abstract features. By combining these biologi-
cal inspirations with powerful learning algorithms and hardware advances, CNNs have become the
cornerstone of modern computer vision tasks, including classification, object detection, and image
segmentation.

Among the most demanding tasks that neural networks can perform, we mention:
— Image classification: it involves classifying images into predefined categories. CNNs have

been highly successful in this kind of task. We mention as an example, the seminal work
on using neural networks for image classification [56]. The authors introduced the AlexNet
architecture, which achieved a significant breakthrough in the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) in 2012.

— Object detection: it involves identifying and localizing objects within an image. The task not
only aims to recognize the presence of objects but also to provide the coordinates of their
bounding boxes. Faster R-CNN, introduced in [35], has been a revolutionary approach in
this field.

— Semantic segmentation: it involves assigning pixel-level labels to an image, enabling detailed
understanding of the scene. The U-Net model proposed in [93] is one of the most famous
semantic segmentation architectures.

— Synthetic data generation: it aims at producing new data similar to the real data. The Gener-
ative Adversarial Networks (GANs) introduced in [39] are considered as a groundbreaking
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Figure 1.1 – Biological neuron in comparison to an artificial neural network: (a) human neuron; (b)
artificial neuron; (c) biological synapse; and (d) ANN synapses [71].

model for this task.
— Natural Language Processing (NLP): it aims at understanding, interpreting, and generating

human language in a way that is both meaningful and useful. With the rise of transformer-
based models, starting by BERT (Bidirectional Encoder Representations from Transformers)
model, introduced in [29], NLP has undergone a major evolution and a huge success with
the achievement of generative bot like chatGPT.

— Speech Recognition: aims at enabling computers to accurately convert spoken language into
written text allowing various applications such as transcription services, voice assistants,
voice-controlled, etc. Recurrent Neural Networks (RNNs) and Transformer-based models
have revolutionized speech recognition. DeepSpeech, proposed in [47] is considered as a
seminal RNN for this purpose.

— Reinforcement Learning tasks: NNs have also been used for Reinforcement Learning tasks
with the introduction of Deep Q-Networks (DQNs) in [74]. They are neural networks that
serve as function approximators for a Q-table, generally used when the state-action space is
excessively large to encode the reward function within a traditional Q-table representation.

In this thesis, our focus is on the task of image classification with convolutional neural net-
works. Specifically, we explore methods to integrate high-level knowledge into them to enhance the
classification task.

In this chapter we presents the fundamental notions about the neural networks (NNs) mechanism.
It covers the standard layers, the data preparation, the learning process, and the evaluation metrics.
At the end of the chapter, we propose a probabilistic view of a neural network, which is useful for
establishing Corollaries 6.3.1 and 6.3.2 in Chapter 6 and propositions and Equation 7.4 in Chapter
7.

Note that this chapter is based on the following documents: [37], [120], [17] and [43].
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1.1 Basics about Neural Networks (NNs)

Let us consider a classification problem with k classes c1, c2, . . . , ck. Let D = (X,Y ) be the
labeled dataset containing N samples s1, s2, . . ., sN . X is the set of images and Y is the set of their
corresponding labels. Each sample si is a couple (xi, yi) of labeled images, where yi represents the
ground-truth label of the input xi. yi is a binarized vector of dimension k, which contains k − 1

zeros and a unique one at the position of the corresponding class of the sample xi. A CNN classifier
aims at mapping each image to its corresponding label, by estimating a predicted label ŷi that should
be the closest possible to yi. In other terms the predicted class ĉi must correspond to the groud-truth
class ci. In this section, we present the essential elements of the NNs mechanism of classification.

1.1.1 The standard architecture of a NN

The main layers of a NN are:

The fully connected layer: (also known as a dense layer), is a type of layer where each neuron or
node in the current layer is connected to every neuron in the previous layer. Suppose we have two
consecutive layers in a neural network Li−1 with ni−1 neurons and Li with ni neurons. Each neuron
in layer Li−1 is connected to eaLi by a weight. These weights are typically organized into a weight
matrix wi. This weight matrix of dimension ni × ni−1 contains the weights for each connection
between neurons in Li−1 and Li. Each row of wi corresponds to a neuron in Li, and each column
corresponds to a neuron in Li−1. The output zi of the fully connected layer is given by:

zi = f(wi × zi−1) + bi

where: bi is the bias vector of shape (ni, 1) and zi−1 is the input vector of the layer Li−1. "×" refers
to the matrix product and "f" is the activation function (described below) of the layer Li.

The fully connected layer performs a linear transformation of the input followed by a bias ad-
dition, making it capable of learning complex relationships between features in the data. Note that
the weights and biases depend on each layer and will be updated during the learning phase, the
activation function f is fixed for each layer.

We mention the most common activation functions:
— The sigmoid activation function: reduces the input to a value between 0 and 1. It is com-

monly used in binary classification and regression problems at the end of the neural network,
or as a gate in recurrent neural networks. However, it is less popular in hidden layers of deep
neural networks due to potential vanishing gradients. It is defined as:

sigmoid(x) =
1

1 + e−x

— The ReLU (Rectified Linear Unit) activation function: outputs the input directly if it is pos-
itive and sets it to zero otherwise. ReLU is widely used in deep neural networks as it helps
with gradient propagation and addresses the vanishing gradient problem. It is particularly
effective in image classification and object detection tasks. It is defined as:

ReLU(x) = max(0, x)

— The Leaky ReLU activation function is a modified version of ReLU that introduces a small
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slope for negative inputs. This helps alleviate the “dying ReLU” problem, where neurons
can get stuck in a state of zero activation. Leaky ReLU is often used as an alternative to
ReLU in scenarios where a small amount of negative activation is desirable.

LeakyReLU(x) =

x if x > 0

αx otherwise

where α is a small positive constant.
— The hyperbolic tangent (Tanh) activation function reduces the input to a value between -1 and

1. Tanh is often used in recurrent neural networks (RNNs) or as an alternative to sigmoid. It
is useful in cases where the input has negative values and it is effective for capturing complex
dependencies.

tanh(x) =
ex − e−x

ex + e−x

— The softmax activation function is commonly used in the output layer for multi-class clas-
sification problems. It outputs a probability distribution over multiple classes, ensuring that
the sum of the probabilities is equal to 1. Softmax is useful when you need to assign a
probability to each class and make mutually exclusive predictions.

softmax(xi) =
exi∑k
j=1 e

xj

where xi is the input for class i, and k is the total number of classes.

The convolutional layer: is the key piece of a CNN. It applies a set of learnable filters (also
known as kernels or feature maps) to the input data. Each filter performs a convolution operation.
The output zi of the ith convolutional layer Li is called a feature map and is defined as follows:

zi = f(zi−1 ⋆ wi + bi)

where ⋆ is the convolutional operator. Roughly speaking, the convolutional operator ⋆ is such that a
M ×N image I is downsampled thanks to a m× n kernel filter K, to obtain a new matrix C with
the size (M −m+ 1)× (N − n+ 1) defined by:

C(i, j) = (I ⋆ K) =

m∑
k=1

n∑
l=1

I(i+ k − 1, j + l − 1)×K(k, l)

wi and bi are the convolutional weight tensor and the matrix biases respectively.
Figure 1.1.1 illustrates an example of the convolutional operator ⋆ between two matrixes.
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Figure 1.2 – Example of the convolutional operation.

Pooling layer: this layer generally follows a convolutional layer and aims at reducing the size
of the feature map by downsampling the matrix (either taking the maximum, the minimum, or the
average of the associated feature map area).

The output layer Ll: gives the predicted label ŷi. For example, in the case of multi-class classifi-
cation, this layer is often a softmax output layer connected to the last fully connected layer (zl−1 in
the following formula) with k neurons. The final output is:

zl[i] =
exp(zl−1[i])∑k
j=1 exp(z

l−1[j])
for all i ∈ {1, ..., k}

Finally, the predicted vector ŷ of dimension k is defined by ŷ = (zl[1], zl[2], . . . , zl[k]). Based on
this output, the assignment is done using a decision function g to select the predicted class ĉ. We
present below the standard decision policies usually used in neural networks:

— Argmax function: it returns the index of the maximal value in a vector. In the case of
multiple maxima, it conventionally returns the first index. It is commonly used for multi-
class classification tasks, to determine the class label with the highest confidence score. It is
often used after a final softmax activation function. Given the vector ŷ associated to a sample
s, using the argmax decision function, the predicted class is:

ĉ(s) = cj , with j = argmax(ŷ)

— threshold-based function: it is often used in binary classification tasks to convert confidence
scores into binary decisions. It uses a threshold value, and any score above the threshold is
classified in the positive class, while scores below are classified in the negative class. It is
often used with a final sigmoid function. Given an output layer of k sigmoid neurons, ŷj ,
the confidence score of the jth class, the sample s is assigned to cj only if its score is higher
than the threshold τ :

ĉj(s) =

{
cj if ŷj ≤ τ

∅ otherwise.

— Top-λ function: it is used in multi-class classification tasks when we want to consider the
top λ, (λ ≤ k) predicted classes with the highest confidence scores.
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ĉ(s) = {ci1, ci2, . . . , ciλ} where {i1, i2, . . . , iλ} = nargmax(ŷ, λ)

nargmax(array, λ) being the function that returns the λ max elements of the array.
— Majority Voting function: In ensemble models, where a set of several classifiers are used

to evaluate the prediction, each individual model makes its own prediction, and the final
prediction is determined by the prediction that is given by the majority.

The NN classifier objective is to learn the optimal set of weights for its layers by minimizing
the difference between the predicted labels and the ground-truth labels according to the chosen loss
function. This is achieved through back-propagation and gradient-based optimization algorithms
(described below).

1.1.2 Data preparation

Data preparation is a crucial step in building NNs, as it ensures the input data is in a suitable
format for training the network and allows it to learn meaningful patterns and features. Effective
data preparation involves three key aspects: data splitting, data balancing, and data augmentation.
Before augmenting, the dataset is split into a training set, which will be augmented, a validation,
and a test set described below. More samples are generated into the training dataset in order to
balance the training dataset which may enhance the learning accuracy (as explored in Chapter 4).
This generation is based on the original images, the transformed images are only used for training
and not for testing, otherwise the same image (in an augmented version) could belong to both the
test set and to the training set which would give overestimated accuracy results.

1.1.2.1 Data splitting

Let us first define the three notions that we are going to use, namely “Training”, “Validation”
and “Test”, in the following we explain these notions and define the splitting rates that are used.

— Training and Validation: In the training phase, the network’s weights are updated at each
iteration (an iteration corresponds to the learning of the weights by the network on one batch
of samples 1 thanks to the back-propagation mechanism. The validation phase is done during
the training on a different part of the dataset with no weight update mechanism. Its goal is
to validate the new weights of the network on a set of samples that the CNN had not seen
before, hence to appreciate the network ability to classify correctly novel data.

— Test: When the training is finished, the weights of the network are fixed and the network is
ready to be tested on new data. The test phase is decisive because it determines how the final
network deals with any data. It is essential to differentiate this phase from the validation one
because the validation is internal to the learning process while the test is done with the final
network whose weights cannot change anymore. A second difference is that the validation
dataset is a small part of the data which is less representative and is used only to guide the
learning process in terms of optimization.

Several data-splitting strategies can be used for CNNs, we mention the most common ones:
— Holdout Validation: The holdout validation strategy involves splitting the dataset into two

parts: a training set and a validation set. Typically, a percentage of the data, such as 70

1. A "batch" refers to a subset of the training data used during one iteration of training a neural network. Instead of
updating the model’s weights with each individual sample (which can be computationally expensive), training is often done
in batches for efficiency.
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to 80 percent, is used for training, while the remaining portion is used for validation. The
holdout validation strategy does not involve a separate testing set. The model is trained on
the training set and evaluated on the validation set in order to monitor its performance to
tune the hyperparameters and adjust its architecture. However, this strategy may lead to
overfitting 2 if the validation set is too small or not representative of the overall dataset.

— Train-Validation-Test Split: The train-validation-test split strategy involves dividing the dataset
into three parts: a training set, a validation set, and a separate testing set. This strategy al-
lows for a more reliable evaluation of the model performance on unseen data. Typically,
the dataset is divided into approximately 60 to 80 percent for training, 10 to 20 percent for
validation, and 10 to 20 percent for testing. The model is trained on the training set, hyper-
parameters are tuned using the validation set, and the final evaluation is performed on the
testing set. This strategy is renowned for providing a more robust assessment of the model
generalization ability.

— Cross-Validation: Cross-validation is a technique that involves splitting the dataset into mul-
tiple subsets or folds and performing training and validation iteratively. Common cross-
validation methods include k-fold cross-validation and stratified k-fold cross-validation. In
k-fold cross-validation, the dataset is divided into k equally sized subsets. The model is
trained and evaluated k times, with each fold used as a validation set while the remaining
folds are used for training. The results are averaged to obtain a more reliable estimate of
the model’s performance. Stratified k-fold cross-validation ensures that the class distribution
remains consistent across folds, which is important for imbalanced datasets.

The choice of the data splitting strategy depends on various factors such as the size of the dataset,
the availability of labeled data, and the desired level of accuracy for the evaluation.

1.1.2.2 Data balancing and augmentation

According to [38], CNN approaches require that the network is trained on a sufficient amount
of data. One main issue is that the available data is often too small. Data augmentation has been
introduced to address this problem and has become one of the best practices that improve CNN
results. It is a technique used to artificially increase the size and diversity of a dataset by applying
various transformations to the existing data samples. The goal of data augmentation is to enhance
the generalization capability of the model and improve its performance by exposing it to a wider
range of variations and patterns. Also, data augmentation helps in mitigating the risk of overfitting.
By introducing variations through augmentation, the model is less likely to overfit the training set
and can generalize well to unseen examples. Several techniques have been proposed for this data
augmentation. The main standard strategies are based on applying direct transformations on the
existing images, such as:

— Flipping: horizontally or vertically mirroring the image.
— Rotation: rotating the image by a given angle.
— Translation: shifting the image horizontally or vertically.
— Scaling: rescaling the image by a given factor.
— Shearing: applying shear transformations 3 to the image.

2. An overfitting occurs when the model does not learn to generalize from the data, it memorizes the training data set
rather than learning the underlying patterns (see Section 1.1.5 for more details).

3. Shear transformation is an affine transformation that transforms the input image in the horizontal direction or vertical
direction or both
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— Noise Injection: Adding random noise to the image.
— Cropping: Extracting a portion of the image.

With the rise of generative models, data augmentation has undergone a major evolution, thanks to
the ability to generate synthetic data. However, a crucial aspect of data augmentation is the labeling
of these newly generated images. In some critical areas, expert labeling is essential to maintain the
integrity of the dataset. To avoid this problem, people often limit themselves to label-conservative
transformations that ensure that generated images get the same label as the original images.

Moreover, this lack of data can be associated with an unbalanced dataset, in which there is a
considerable difference in the number of samples for one category compared to another. Depending
on the classification task, this unbalanced rate may create a marginalized category during the training
phase. There are several common ways to balance the dataset [101]:

— Over-sampling the minor class: the samples of the minor category are augmented by data
augmentation techniques to get a total number of samples close to the one of the major class.

— Under-sampling the major class: some of the samples of the major category are removed in
order to reach the same size as the minor category.

— Bagging the training set: the probability of selecting a sample in a marginalized category is
raised to a higher level. Instead of augmenting the number of samples the weight of each
sample is increased, which yields a balanced selection probability according to the category.

It is worth noting that the true impact of data augmentation and balancing is still unknown due
to the black-box nature of neural networks. Additionally, the literature often lacks a well-detailed
presentation of data preparation. One of the main objectives of this thesis is to highlight the impact
of data augmentation and propose a formalization of this crucial step (see Chapter 4).

1.1.2.3 Data normalization

Data normalization, also known as data standardization or feature scaling, is an essential pre-
processing step in machine learning, including CNNs. It involves transforming the input data to a
standardized range to ensure that the samples in the dataset are on a similar scale. Without nor-
malization, features with different ranges or units can lead to biased learning and suboptimal model
performances. It helps to prevent some samples from dominating others due to their larger magni-
tude or scale. There are various normalization techniques, but two commonly used methods are:

— Min-Max Scaling (Rescaling): It scales the data to a specified range, often between 0 and
1. The formula for min-max scaling is:

xnorm =
x− xmin

Xmax − xmin

where x is the original sample, xmin and xmax are the minimum and maximum values in the
dataset, respectively.

— Z-Score Normalization (Standardization): It transforms the data to have a mean of 0 and
a standard deviation of 1. The formula for z-score normalization is:

xnorm =
x− µ

σ

where x is the original value, µ is the mean of the dataset, and σ is the standard deviation.
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1.1.3 The learning process

The learning process consists of computing the weights of the network (the wi and bi of the
previous Section). This process starts with a set of weights (either taken randomly or inherited
from previously trained networks) and consists of optimizing the weights according to a training
dataset. This dataset should be both reliable and big enough, which often requires some form of
data augmentation (see Section 1.1.2), then the learning is done in two phases:

— The forward propagation: for a given state S of the CNN weights and a given input data
associated with a ground truth label y (represented as a k binary vector with only one 1 for
the ground-truth label), the network gives an output vector often denoted ŷ.

— At the end of the forward propagation a loss d(y, ŷ) is calculated to estimate the divergence
between the ground-truth label vector y and the predicted vector label ŷ provided by the
CNN. There are many ways to estimate d. In our study, cross-entropy is chosen:

d(y, ŷ) = −
k∑

i=1

y[i] log(ŷ[i])

— The backward propagation aims at minimizing this objective cost function by updating the
weights. This update is called gradient descent optimization. Several algorithms exist for
this purpose; we make use of the Adam optimizer [53], an iterative method that is recognized
for its smooth convergence toward the objective. During backpropagation, first, the gradient
of the loss function (d) with respect to the activations of the layer (f i) is computed. This step
measures how a change in the layer output affects the overall loss. The specific expression
for ∂d

∂fi depends on the choice of the loss function. Next, the gradient of the activation
function with respect to the pre-activation values (zi) is computed. This step captures how
small changes in the pre-activation values translate to changes in the activations. The form
of ∂fi

∂zi depends on the chosen activation function. To find how the loss d depends on the
pre-activation values (zi), the gradients obtained in the previous steps are combined using
the chain rule:

∂d

∂zi
=

∂d

∂f i
× ∂f i

∂zi

This gradient ∂d
∂zi quantifies the impact of changes in zi on the overall loss. Once we have

the gradient ∂d
∂zi , we can use it to update the weights (wi) of the layer. This update is per-

formed to minimize the loss. The learning rate (η) controls the step size in the weight update,
ensuring that the optimization process converges effectively:

wi ← wi − η · ∂w
∂wi

Similarly, the biases (bi) of the layer using the gradient ∂d
∂zi and the learning rate η are

updated:

bi ← bi − η · ∂d
∂bi

We mention below the most common loss functions d(yi, ŷi) used to estimate the distance
between the predicted label ŷi and its ground truth label yi in a training set of N samples:
— Mean Squared Error (MSE): calculates the average squared difference between the pre-

dicted and target values. It is commonly used in regression tasks and works well when
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the output is continuous and the magnitude of the errors is critical.

MSE(yi, ŷi) =
1

N

N∑
i=1

(yi − ŷi)
2

where N is the number of samples.
— Binary Cross-Entropy (BCE): is used for binary classification problems. It measures

the dissimilarity between the predicted probabilities and the true binary labels. BCE is
suitable when there are only two possible classes and the outputs are independent for
each sample.

BCE(yi, ŷi) = −
1

N

N∑
i=1

yi log(ŷi) + (1− yi) log(1− ŷi)

— Categorical Cross-Entropy (CCE): is commonly used for multi-class classification prob-
lems. It also measures the dissimilarity between the predicted class probabilities and
the true class labels. CCE is appropriate when there are more than two classes and the
outputs are mutually exclusive.

CCE(yi, ŷi) = −
1

N

N∑
i=1

k∑
j=1

yi[j] log(ŷi[j])

where k is the total number of classes.
— Mean Absolute Error (MAE): calculates the average absolute difference between the

predicted and target values. It is commonly used in regression tasks when outliers may
heavily affect the model performance.

MAE(yi, ŷi) =
1

N

N∑
i=1

|yi − ŷi|

Several other loss functions can be designed derived from these standard functions or cus-
tomized according to the task.

The learning phase requires a sufficient number of iterations to allow for a reliable update
of the weights; this number depends on the number of batches and epochs. Indeed, the
learning set is divided into batches of samples (of the same size). An epoch is the stage
during which all the batches are processed successively by the network (for the forward and
backward propagations).

1.1.4 Evaluation metrics

During the training and once it is over, the CNN ability to correctly classify is evaluated on the
validation set and test set respectively. In binary classification with two classes a positive class and
a negative one, these definitions are adopted:

— True Positive (TP): The number of instances correctly classified as positive by the model.
— True Negative (TN): The number of instances correctly classified as negative by the model.
— False Positive (FP): The number of instances incorrectly classified as positive by the model

when they actually belong to the negative class.
— False Negative (FN): The number of instances incorrectly classified as negative by the model
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when they actually belong to the positive class.
Now, we present the most common evaluation metrics based on these notions:

— Accuracy: is a common metric used to measure the overall performance of a classification
model. It represents the ratio of correct predictions to the total number of predictions.

Accuracy =
Number of correct predictions
Total number of predictions

— Precision: measures the proportion of correctly predicted positive instances out of all in-
stances predicted as positive. It is particularly useful when the cost of false positives is high.

Precision =
True Positives

True Positives + False Positives

— Recall (Sensitivity/True Positive Rate): calculates the proportion of correctly predicted pos-
itive instances out of all actual positive instances. It is particularly relevant when the cost of
false negatives is high.

Recall =
True Positives

True Positives + False Negatives

— F1 Score: combines precision and recall into a single metric, providing a balance between
the two. It is the harmonic mean of precision and recall.

F1 Score = 2× Precision× Recall
Precision + Recall

— Specificity (True Negative Rate): measures the proportion of correctly predicted negative
instances out of all actual negative instances. It is useful when the focus is on correctly
identifying negative instances.

Specificity =
True Negatives

True Negatives + False Positives

— AUC-ROC: The Area Under the Receiver Operating Characteristic (ROC) Curve (AUC-
ROC) is a measure of the classifier’s ability to distinguish between positive and negative
instances across different probability thresholds. It provides a single scalar value that sum-
marizes the overall performance of the model. It is computed by plotting the True Positive
Rate (Recall) against the False Positive Rate (1 - Specificity) and computing the area under
the resulting curve.

1.1.5 Regularization techniques

There are three main issues while training a network: overfitting [115]. Overfitting occurs when
the network models too many details and noise from the training data in a way such that general-
ization to novel, unseen data is negatively impacted. The two other issues concern the convergence
of the gradient descent towards the objective. The vanishing gradient problem (initially described
in [50]) occurs when a vanishingly small gradient is obtained after the forward propagation, this
prevents the weights from changing their value and may obstruct further training. The opposite
problem is to avoid drastic changes of the weights, it is called gradient descent divergence [125].
Many regularization techniques are proposed in the literature in order to remediate these problems:

— Loss regularization aims at introducing a penalty term to the loss function in order to counter
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overfitting and avoid vanishing and divergent gradient problems. A particular loss regular-
ization is L2 (also called “Ridge regression”) [119], it is relative to a given state S of the
network weights (wi)i=1..l, namely:

Loss(y, ŷ) = D(y, ŷ) + α

l∑
i=1

(wi)2 (1.1)

where wi is the weight vector of the ith layer (the layers being numbered from 1 to l) and
α ∈]0, 1[ is a penalty factor (the most often used value for α in the literature is 0.01).

— Early stopping aims at identifying the best state of the network weights. It detects the over-
fitting state So, such that So is stable and its associated Loss value computed from Equation
1.1 is minimal for the training batch. The overfitting aspect of So is characterized by the
inability of the network to generalize to other samples than the ones of the training set, i.e., a
low and decreasing accuracy for the validation dataset. The best state is the state So−1 which
is immediately before the overfitting state. As a result, this technique yields the combination
of weights that minimizes the validation error and maximizes the validation accuracy [38].

— Dropout is a simple regularization technique in which a proportion of the network neurons is
randomly set to zero during training. This prevents neurons from co-adapting to each other,
which reduces overfitting [110].

1.1.6 Main standard architectures

There are several famous and influential Convolutional Neural Network (CNN) architectures
that have made significant contributions to the field of computer vision. Here, we provide a brief
description of some of the most notable CNN architectures:

— LeNet-5: introduced by Yann LeCun et al. in 1998, was one of the pioneering CNN ar-
chitectures. It consists of several convolutional and subsampling layers, followed by fully
connected layers. LeNet-5 was primarily designed for handwritten digit recognition tasks
and played a crucial role in popularizing the concept of CNN.

— AlexNet: proposed by Alex Krizhevsky et al. in 2012, brought CNNs into the mainstream
by winning the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) in 2012.
AlexNet consists of multiple convolutional layers with large filter sizes, accompanied by
max-pooling layers and fully connected layers. It demonstrated the effectiveness of deep
CNNs in large-scale image classification tasks.

— VGGNet: introduced by the Visual Geometry Group (VGG) at the University of Oxford in
2014, is known for its simplicity and depth. VGGNet consists of multiple convolutional
layers with small filter sizes (3x3), followed by max-pooling layers and fully connected
layers. Its deep architecture with up to 19 weight layers helped establish the importance of
depth in CNNs.

— GoogleNet (Inception v1): proposed by Szegedy et al. in 2014, introduced the concept of
the Inception module, which consists of multiple parallel convolutional layers with different
filter sizes, followed by pooling and concatenation. This architecture enabled efficient use of
computational resources while maintaining strong performance. GoogLeNet also introduced
the idea of network "inception" and paved the way for subsequent versions of the Inception
architecture.

— ResNet: (Residual Network), presented by He et al. in 2015, introduced the concept of resid-
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ual learning. ResNet addressed the challenge of training very deep networks by introducing
skip connections that allowed the network to learn residual functions. This innovation en-
abled the training of networks with hundreds of layers, leading to improved performance and
ease of optimization.

— DenseNet: proposed by Huang et al. in 2016, introduced the concept of dense connec-
tions, where each layer receives feature maps from all preceding layers. This architecture
facilitates feature reuse, enhances information flow, and significantly reduces the number of
parameters. DenseNet achieved leading results on several benchmark datasets.

— MobileNet: introduced by Howard et al. in 2017, aimed to optimize CNN architectures for
mobile and embedded devices with limited computational resources. It employed depthwise
separable convolutions, which separate the spatial and channel-wise convolutions, signifi-
cantly reducing computational complexity while maintaining competitive accuracy.

— EfficientNet: proposed by Tan and Le in 2019, introduced a scalable and efficient CNN
architecture that achieved state-of-the-art performance on ImageNet. EfficientNet uses a
compound scaling method to balance model depth, width, and resolution (dimensions of the
input data) to achieve optimal performance within resource constraints.

These are just a few examples of the most famous CNN architectures that had a significant impact
on the field of computer vision. Each architecture brings unique innovations and insights, for more
details, refer to [37] and [120].

In this thesis, after several attempts, we have chosen the VGG19 model [104] for our experimen-
tations. VGG19 is a pre-trained convolutional network model, with 47 layers. There are 19 layers
with learnable weights: 16 convolutional layers and 3 fully connected layers, with a total of 144M
parameters. Here is a detailed description of its architecture:

— Input layer: VGG19 takes as input RGB images of size 224x224 pixels. The three color
channels (Red, Green, and Blue) are processed separately.

— Convolutional Layers: The network consists of 16 convolutional layers, where each layer
uses 3x3 filters with a stride of one (a stride refers to the step size used when sliding a filter
kernel over an input image when computing the convolutional operation).

— Activation Function: After each convolutional layer, a Rectified Linear Unit (ReLU) activa-
tion function is applied element-wise to introduce non-linearity in the model.

— Max-Pooling Layers: After every two convolutional layers, the network employs max-
pooling layers with a 2x2 window and a stride of two /flp[voir ma remarque plus haut sur
"stride"]. Max-pooling helps reduce the spatial dimensions of the feature maps while retain-
ing the most relevant information.

— Fully Connected Layers: Following the stack of convolutional and max-pooling layers,
VGG19 includes three fully connected layers, each with 4096 neurons.

— Dropout: To prevent overfitting, dropout layers with a dropout rate of 0.5 are applied after
each fully connected layer. Dropout randomly deactivates neurons during training, encour-
aging the network to learn more robust features.

— Softmax Layer: The final layer of VGG19 is a softmax layer, which is responsible for trans-
forming the output of the network into a vector of the predictions to belong to each class.
The number of neurons in the softmax layer corresponds to the number of classes for the
classification task, in the initial version, VGG19 was designed for a multi-class classification
of 1000 classes.

Figure 1.3 illustrates the VGG19 architecture.
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Figure 1.3 – VGG19 architecture [132], Conv i_j are convolutional layers with kernels of size
3× 3, FC1 and FC2 are fully connected layers.

VGG19 was trained for many iterations on millions of images of the ImageNet dataset [51]
(This dataset is described in details in Section 3.2.4 ). This pre-trained network can classify images
into 1000 daily objects categories, such as keyboard, mouse, pencil, and many animals. VGG19
was placed second in classification and first in localization in ILSVRC’2014 competition [94]. The
reason of our choice is also justified by the great success of this network on various other image
classification tasks ( [104] is cited more than 70000 times).

1.2 Formalizing the probabilistic view of a NN

In this section, we consider a multi-class classifier where the number of classes is k. We define
a classifier as a function that associates a sample s with a set of predicted labels denoted ĉ(s). The
final output of the network is denoted ŷ(s) and is obtained by applying the activation function f l

of the last layer l to the outputs zl(s) of the neurons zl of this layer: ŷ(s) = f l(zl(s)). The last
layer zl contains k neurons. The classification decision is an “interpretation” of ŷ(s) which selects
a predicted label ĉ(s) by applying the decision function g to ŷ(s): ĉ(s) = g(ŷ(s)). In this context,
ŷ(s) is called the confidence value of the assignment of s to ĉ(s). According to [84], the most
recommended activation functions used at the last layer for the classification task, are the sigmoid
and the softmax functions (detailed in Section 1.1.1). We explain below how these two functions are
used in the classification task.

— The sigmoid of a real z is defined by: sigmoid(z) = 1
1+exp(−z) . When the activation

function f l is a sigmoid, it is applied to each output zl(s) of the penultimate layer. ŷ(s))

is then a vector of dimension k where each value ŷj(s) = sigmoid(zl(s)j) represents the
confidence with which the sample s can be affected to each class cj from the k classes
{c1 . . . ck}. Its complement, ŷ(s) is a vector of dimension k where each component ŷ(s)j =
1− ŷj(s) represents the confidence with which the sample s does not belong to the class ĉj .
The sample is affected to the class cj only if ŷj(s) ≥ ŷj(s). More formally,

ĉj(s) = g(ŷj(s)) =

{
cj(s) if ŷj(s) ≥ ŷj(s)

∅ otherwise.
(1.2)

Then ĉ(s) is the set of possible classes among the k classes for which the confidence of
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belonging is higher than its complement, hence the predicted class is not necessarily unique.
More generally, it holds that:

0 ≤ |ĉ(s)| ≤ k

Example 1. Consider a problem of multi-class classification of animal images with eight
classes: {lion, cat, dog, bird, fish, snake, horse, panda}. Consider a deep learning classifier
whose output layer is activated by a sigmoid function. The output is then composed of eight
values. We assume that forwarding a sample s to this classifier leads to the output vector
ŷ(s) = (0.6, 0.7, 0.4, 0.8, 0.2, 0.3, 0.1, 0.8). The classification decision gives: ĉ(s) = {lion,
cat, bird, panda }. The sample s is then simultaneously affected by these four classes. This
example demonstrates the absence of uniqueness when using a sigmoid activation function.

— The softmax of a real vector z = (z1, . . . , zk) is defined by: softmax(z) = (s1, . . . sk)

where sj =
exp(zj)∑k

j=1 exp(zj)
. When the activation function of the last layer is a softmax then it

is applied to the vector z(s) where zj(s) is the output of the jth neuron of the penultimate
layer. Each value ŷj(s) of the output vector ŷ(s) is the confidence with which the sample s

can be assigned to the corresponding class cj . In the context of multi-class classification, the
affectation decision is commonly done using a function g based on the argmax and designed
by the user : the sample s is affected to a class with the highest confidence, ĉ(s) is a unique
predicted class such that :

ĉ(s) = g(ŷ(s)) = cj such that j ∈ argmax ŷ(s) (1.3)

where argmax ŷ(s) is (re)designed to return a unique value. It is up to the user to define the
decision policy for argmax in case of equality. For example, in the Caffe library (which is
one of the most common deep learning computational frameworks) in case of multiple max
values, the sample is affected by the first one 4.

Example 1 (continued): When we use a softmax output activation function instead of a
sigmoid, the output is then a vector of dimension 8, whose sum is equal to 1, namely
ŷ(s) = (0.7, 0.1, 0.05, 0.05, 0.08, 0.02, 0, 0). The classification decision gives: ĉ(s) =

{ lion }. The sample s is then affected to the unique predicted class "lion". Here, we
see clearly that there is only one predicted class. If the forwarding had led to ŷ(s) =

(0.35, 0.35, 0.05, 0.05, 0.08, 0.02, 0, 1, 0), both "lion" and "cat" could be chosen, since they
have the maximal value, but in the usual implementation of argmax, only the first one is
selected.

In the following, we establish some properties of these two activation functions.

Proposition 1.2.1

For each z ∈ R, sigmoid(z) ∈ ]0, 1[

For each vector z = (z1, . . . , zk) ∈ Rk,∀j ∈ [1, k], softmax(z)j ∈ ]0, 1[

Proof. — Given a real number z ∈ R, sigmoid(z) = 1
1+exp(−z) . Due to the positivity of

the exponential function: exp(−z) > 0,∀z ∈ R, hence 1
1+exp(−z) > 0. More over 1 <

1 + exp(−z(s)), thus 0 < sigmoid(z) < 1

4. https://github.com/BVLC/caffe/blob/master/docs/tutorial/layers/softmax.md
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— Given a real vector z = (z1, . . . , zk) ∈ Rk, for all j ∈ [1, k], softmax(z)j =
exp(zj)∑k
i=1 exp(zi)

.

Due to the positivity of the exponential function, ∀z ∈ Rk,∀j ∈ [1, k]: 0 < exp(zj) <∑k
i=1 exp(zi), hence 0 <

exp(zj)∑k
i=1 exp(zi)

< 1.
□

Proposition 1.2.2

Given a real vector z = (z1, . . . , zk) ∈ Rk,
— Let ŷ = (s1, . . . , sk) where sj = sigmoid(zj), then it holds that

∀j ∈ [1, k], ŷj + ŷj = 1

— Let ŷ = (s1, . . . , sk) where sj = softmax(z)j , then it holds that

∀j ∈ [1, k],

k∑
j=1

ŷj = 1

Proof. — By definition of the complement, ŷj = 1− ŷj , hence the result.
— For the softmax function, ∀j ∈ [1, k] :

∑k
j=1 ŷj =

∑k
j=1

exp(zj)∑k
j=1 exp(zj)

= 1.
□

The following proposition shows that whatever the activation function (softmax or sigmoid)
they are both probability functions, however, their domains are different. The sigmoid function
corresponds to the event θj(s) that represents the fact that the network affects the class cj to the
sample s or not, i.e., the universe of θj is Ωj = {true, false}, θj(s) = true means that s is
affected to cj ( false would mean s is not-affected to cj). Concerning the softmax function, it is
associated to the event θ(s) that represents the fact that the network affects a class in [1, k] to the
sample s, i.e., the universe of θ is Ω = [1, k], θ(s) = j means that s is affected to cj (and no other
class).

This interpretation of the activation functions as probabilities assumes an exclusivity of the issues
in the universe. For the sigmoid, it is assumed that one cannot both affect a sample to a class j

together with rejecting this affectation. For the softmax the interpretation is different, it is assumed
that one cannot affect a sample to more than one class.

Proposition 1.2.3

Given an input vector z(s) = (z1(s), . . . , zk(s)),
— if ŷj(s) = sigmoid(zj(s)) for any j in [1, k] then for any j in [1, k[, ŷj is a probability

function. This function associates to any event θj(s) a probability where θj(s) is the
event of affecting the class cj to the sample s.

— if ŷ(s) = softmax(z(s)) then ŷ is a probability function. This function asso-
ciates to any event θ(s) a probability where θ(s) is the event of affecting a class
in {c1, . . . , ck} to the sample s.

Proof. — Concerning the sigmoid, for a given j in [1,k], let us consider the event θj(s) in
the universe Ωj = {true, false}, we can set P(θj(s) = true) = ŷj(s) and P(θj(s) =
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false) = ŷj(s). According to Propositions 1.2 and 1.2: for any v ∈ Ωj , P(θj(s) = v) is in
[0, 1] and

∑
v∈Ωj

P (θj(s) = v) = 1. Hence, ŷj(s) is a probability function.
— Concerning the softmax, let us consider the event θ(s) in the universe Ω = {1, . . . , k}, we

can set P(θ(s) = j) = ŷj(s) for any j ∈ [1, k]. According to Propositions 1.2 and 1.2:
for any v ∈ Ω, P(θ(s) = v) is in [0, 1] and

∑
v∈Ω P(θ(s) = v)) = 1. Hence, ŷ(s) is a

probability function.
□

Moreover, we can assume that the following events are independent:
— sigmoid: even if the two events of assigning a class j to a sample s and assigning a class j′

to the same sample with j ̸= j′ are done by the same neural network, it is nevertheless as-
sumed that the assignments are independent of each other in the case of a sigmoid activation
function.

— softmax and sigmoid: Given two samples s1 and s2, affecting a class to s1 is independent of
affecting a class to s2, this is due to the fact that the network is not modified by the forward
propagation of s1. Note that the universe of the events concerning two distinct samples are
disjoint they could have been named Ω(s1) and Ω(s2) (and for any j ∈ [1, k], Ωj(s1) and
Ωj(s2) respectively).

Proposition 1.2.4

For a network activated by a final softmax activation function, i.e., such that ŷ =

softmax(z(s)), for any sample s, and for any distinct j1, j2 in [1, k], the events θ(s) = j1

and θ(s) = j2 are mutually exclusive.
Where θ(s) = j if and only if g(ŷ(s)) = cj , is the event by which the network affects the
sample s to the predicted class cj .

Proof. Due to Equation 1.3, g(ŷ(s)) = cj for one and only one j hence the result. □

The above propositions will allow us to check the useful properties of the network proposed for
hierarchical classification in Chapter 6.

In this chapter, we have presented the basic concepts and explained how a NN in general (and
also a CNN in particular) works, as well as all the notions and metrics required to enable us to
address the subject of this study. At the end of this chapter, we have introduced a probabilistic
formalization of a CNN, which will guide the design of a specialized architecture for high-level
knowledge integration in Chapter 7.
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Chapter 2

Background on High-level knowledge
in NNs

Résumé en français du Chapitre 2 : "Les connaissances de haut-niveau dans les réseaux de
neurones"

Dans ce chapitre, nous nous intrressons à l’interaction existante entre des connaissances supplémen-
taires et les réseaux neuronaux. Nous commençons par distinguer deux formes de connaissances :
des connaissances expertes provenant de l’humain et des connaissances boite-noire provenant du
réseau de neurones. Pour les connaissance expertes, nous citons quelques travaux où elles sont utili-
sées de manière implicite ou explicite dans la littérature. Aussi, nous proposons une catégorisation
de la prise en compte de ces connaissances-là au niveau des trois composantes principales du NN :
à savoir en entrée du réseau, au niveau de la conception de l’architecture et de la fonction de perte,
et enfin au niveau de la sortie du réseau. Nous décrivons quelques exemples de travaux pour chaque
catégorie.
Pour les connaissances boite-noire, nous considérons les connaissances implicites que le réseau peut
utiliser, telles que celles provenant d’un autre réseau pré-entraîné, sous forme de connaissances
isuses de transfer-learning, de distilation ainsi que les connaissances produites lors du couplage
de deux tâches simultanées. Nous attirons egalelment l’attention sur les "connaissances" produites
via les méthodes d’explicabilité et d’interprétabilité, pour celà, nous exposons brièvement quelques
méthodes phares d’intepretabilité, en détaillant seulement l’approche LRP (Layerwise Relevance
Propagation) qui permet de souligner les pixels d’une image impliqués dans la décision de classifi-
cation, car elle sera utilisée dans les chapitres 4 et 5.

Contents
2.1 Expert knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.1.1 Integrating High-level knowledge on data preparation . . . . . . . . . . 38

2.1.2 Integrating high-level knowledge on the model architecture and loss function 38

2.2 Black-box "knowledge" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.3 Layerwise Relevance Propagation (LRP) approach . . . . . . . . . . . . . . 41
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In general, image classification systems using a supervised learning approach rely only on la-
beled image datasets for training. The labels contain the information needed to guide the learning
process. However, this exclusive focus on image labels can unfortunately lead to valuable external
knowledge being overlooked, especially since integrating this knowledge into the learning process
can significantly improve the classification task.

For example, during data preparation, external knowledge can be valuable for many tasks such
as: cleaning up the dataset, validating label accuracy, selecting appropriate transformation operators
for data augmentation, or labeling newly generated data. In addition, external knowledge can help
design suitable network architectures and customize loss functions to better suit the task at hand. In
addition, exploiting high-level knowledge can refine model results and improve the decision-making
process. However, to the best of our knowledge, no work explicitly outlines all the different kinds
of knowledge encountered in neural networks.

In this chapter, we illustrate some existing aspects of integrating external knowledge into neural
networks. For that, we distinguish between two types of additional knowledge: expert knowledge
coming from humans and intrinsic knowledge coming from the black box (which is not necessar-
ily intelligible to humans, but useful to the machine). As the scope of this thesis does not cover
the explicability of neural networks, we only present a few key methods, focusing on "layer-wise
relevance propagation".

2.1 Expert knowledge

Expert knowledge refers to knowledge derived from human expertise in a specific domain. This
knowledge can take different forms. We give below a list of several forms of explicit expert knowl-
edge encountered during our study:

— Explicit rules: These rules describe relationships between data and/or labels: for instance,
it may concern the label-conservative property of an operator. For example, knowing that
flipping the image of a right-pointing arrow horizontally gives the image of a left-pointing
arrow, can help to manage operations when increasing data.

— knowledge exceptions on input data labeling: this kind of knowledge concerning some ex-
ceptions about labels can be helpful for refining the annotation. For example, in the zoo-
logical context, the platypus is an animal that has characteristics derived from mammals,
reptiles and ducks, but it lays eggs. Incorporating this knowledge refine data labeling and
avoid mislabeling.

— knowledge constraints between labels: these constraints may represent relationships such as
hierarchical links between labels. For example, in the classification of breast cancer tumor
images, the "carcinoma" subtype is a subcategory of the "malignant" tumor type. This will
be evocated in Chapter 6.

— Knowledge constraints on classification outputs: this kind of knowledge requires the net-
work to have outputs that respect specific characteristics, such as uniqueness in a multi-class
classification, where the network must assign the input sample to a single predicted class.

— knowledge on metadata associated to input data: this knowledge can be the data modality
(image/text/sound/video, etc.) but also other information embedded in the data. For example
in sequential data, the temporal link connecting data is a meta-data that could be very useful,
for image resolution as we will see in Chapter 4. This involves designing specific network
architectures, such as convolutional layers for images or recurrence mechanisms for text,

37



Figure 2.1 – Some mislabeling examples from Fashion-MNIST and CIFAR-100 datasets from [78].

adapted to different modalities of data.
— knowledge about dataset biases: this kind of knowledge helps to purify the dataset for a

better classification. For example, in animal classification, where all the images of the "polar
bear" class have a snow background, this could mislead the network about the discriminating
features of this class. Such knowledge can induce a background preprocessing to avoid
such influence. Other well-known examples concern racism or sexism biases caused by
unbalanced or unfair datasets.

— Knowledge about the training process: such as the knowledge that adding penalizing terms
to regularization techniques avoids overfitting. This means that regularization techniques are
taken into account in the design of the architecture.

— Knowledge about the nature of the task: in multitasking collaboration for instance, the
knowledge that two tasks are complementary may allow for enhancing the efficiency by
combining them: e.g., combining a classification task with a segmentation task can have a
positive impact on classification results.

Several techniques have been proposed to integrate this expert knowledge in the classification pro-
cess. We have categorized these techniques into three categories according to the three key compo-
nents on a neural network. For each category, we mention some relevant works.

2.1.1 Integrating High-level knowledge on data preparation

Exploiting high-level knowledge for data preparation can be observed in several forms. For
instance, in [67],we deal with breast cancer images classification. Knowing that transforming an
image tumor by a flip operator is label-conservative, has helped us to choose this operator for data
augmentation. In addition, knowing that the microscopic magnification is an important metadata
that can enhance the classification task, helped us to better organize the training phase. Also, in
[78]using a labeling validation by experts, some wrongly labeled samples have been identified in
several datasets, such as Fashion-MNIST dataset (which is a dataset of clothes) and CIFAR-10
dataset (which is a dataset of daily objects, as shown in Figure 2.1.1.

2.1.2 Integrating high-level knowledge on the model architecture and loss
function

An example of use of external knowledge for guiding the conception of the architecture is Multi-
task learning (MTL). It is a specialized area within machine learning that aims to solve multiple
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Figure 2.2 – The multi-task learning workflow for both segmentation and fine-grained classification
used in [130].

learning tasks simultaneously while capitalizing on their shared features and distinctions. The core
principle of MTL is to enhance learning efficiency and prediction accuracy for task-specific models
by training them jointly rather than independently.

In a seminal paper from 1997, Rich Caruana defined MTL as "an approach to inductive transfer
that improves generalization by using the domain information contained in the training signals of
related tasks as an inductive bias. It does this by learning tasks in parallel while using a shared
representation; what is learned for each task can help other tasks be learned better."

In the context of classification, MTL seeks to improve the performance of multiple classification
tasks, or at least one classification task along with other related tasks, by training them jointly.

As a first example of MTL in neural networks, we can consider the Generative Adversarial
Network (GAN) as a form of Multi-Task Learning. In a standard GAN (for more details about the
GAN mechanism see [39]), two tasks are learned jointly: the generator task is to create realistic data
samples that look like the true data distribution, while the discriminator task is to distinguish between
real data samples from the training dataset and fake data samples generated by the generator. These
newly generated images and the specific loss function can be considered as a way of knowledge
sharing between the two parts.

Another example of MTL can be found in the work of Xu et al. [130], where they apply MTL
in the context of traditional Chinese medicine (TCM). The authors tackle the challenging tasks of
automatic tongue image segmentation and classification, both crucial for effective tongue character-
ization in TCM. They propose an approach that merges two neural networks: the UNET model for
segmentation and the Discriminative Filter Learning (DFL) model for fine-grained classification.
These two parts are related through a customized loss function that combines both segmentation
and classification loss functions. The system starts with an initial feature extractor module that
captures relevant features from the input image. This feature map is then shared as input for both
the segmentor and classifier. Notably, the segmentation result is fed back into the classifier to crop
the most relevant tongue regions, enhancing the shared feature-map for more accurate fine-grained
classifications (see Figure 2.1.2 for illustration).

The shared feature-map, the injection of segmentation results as input for the classifier, and
the constraints encoded in the combined loss function can be seen as supplementary knowledge,
complementing the labeled dataset. These aspects significantly enhance both tasks, as evidenced by
the obtained results.
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Integrating high-level knowledge on output

High-level knowledge can also be very fruitful to refine the outputs of a NN. For instance, the
abstention mechanism can be considered as a kind of using external knowledge to ensure the NN
robustness, this aspect is discussed in Chapter 8. Another way to use external knowledge to rectify
the outputs is by applying verification rules to the results.

2.2 Black-box "knowledge"

In this category, we consider the neural network as a block-box, that is available to produce a
kind of "knowledge", not necessarily understandable by a human, but useful for the classification
task.

One example of approach in this category is transfer learning [116]; It is a technique that in-
volves leveraging knowledge gained from pre-training a model on one task or dataset and applying
it to the new model. In the context of neural networks, transfer learning is achieved by using a pre-
trained model, often trained on a large-scale dataset, as a feature extractor or a starting point for the
new task. By reusing the learned representations from the pre-trained model, the target task can ben-
efit from the “knowledge” acquired during the pre-training phase. Transfer learning is particularly
useful when the target task has limited labeled data or belongs to the same semantic space as the
original model. It allows the model to leverage the knowledge learned from a different, potentially
more extensive dataset. The pre-trained model has already learned to capture general features and
patterns, making it a valuable resource for related tasks with similar underlying structures. In 2014,
Simonyan and Zisserman in [103] trained VGG16 and VGG19 models (introduced in Section 1.1.6)
on the massive ImageNet dataset (described in Section 3.2.4), which contains millions of labeled
images from various categories. The VGG models achieved remarkable accuracy on the ImageNet
dataset. Subsequently, the researchers showed the power of transfer learning by using these pre-
trained VGG models as feature extractors for other image recognition tasks. Instead of training the
CNNs from scratch, they removed the last classification layers of VGG16 and VGG19 and used the
earlier layers as fixed feature extractors. Then, they added new task-specific classification layers
and fine-tuned the network on other smaller datasets. The results demonstrated that by leveraging
the knowledge learned from the massive ImageNet dataset, the VGG models were able to achieve
state-of-the-art performance on various image recognition tasks, such as object detection, image seg-
mentation, and fine-grained image classification. Even when the target datasets for these tasks were
relatively small and had different image distributions, the transfer learning approach significantly
outperformed training the models from scratch.

Another aspect of this black-box "knowledge" is knowledge distillation [40]. It is a model
compression technique in machine learning where knowledge from a larger, more complex model
(known as the teacher model) is transferred to a smaller, more lightweight model (known as the
student model). The main objective of knowledge distillation is to enable the student model to
learn from the predictions or representations produced by the teacher model, allowing the student to
mimic the teacher’s behavior and performance on a given task.

During knowledge distillation, the teacher model is typically trained on a task using the standard
training procedure. Instead of using the labels for the ground truth, the student model is trained to
match the final or intermediate predictions generated by the teacher model. This process involves
minimizing the discrepancy between the teacher’s predictions and the student’s predictions on the
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Figure 2.3 – The generic teacher-student framework for knowledge distillation [40].

same data points, as shown in Figure 2.2.
Another type of black-box "knowledge" that an NN can produce, concerns the results of ex-

plainability approaches that are used to discover how the network led to a given prediction. Indeed,
Explainable Artificial Intelligence (XAI) has emerged as a crucial area of research, addressing the
opacity and lack of interpretability in complex machine learning models, particularly in the context
of deep neural networks. As neural networks have demonstrated remarkable performance in various
tasks, their black-box nature has raised concerns regarding trust, accountability, and ethical implica-
tions. Explainable methods for neural networks seek to shed light on the decision-making process
of these intricate models, providing some clues about how they arrive at their predictions.

In this context, the need for transparency becomes essential, especially in critical domains such
as healthcare, finance, and autonomous systems, where model predictions influence human lives
and decision-making. The lack of interpretability hinders the adoption of neural networks in these
sensitive applications, as stakeholders demand explanations for the model’s behavior.

As the focus of this thesis is not primarily on explainability methods, we will only present one
specific method: Layerwise Relevance Propagation (LRP) which will serve as a visualization tool
for some experiments in Chapters 4 and 5.

2.3 Layerwise Relevance Propagation (LRP) approach

Several works were proposed in the perspective to visualize and then understand the neural
network functioning. In this chapter, we focus on one of the methods proposed by Bach et al. [9] to
visualize the most relevant pixels of the image that explain the classification. This method is called
Layer-wise relevant propagation (LRP). Considering a CNN, the general equation translating the
output of a neuron j of a given layer l connected to the neurons of the previous layer l − 1 has the
following form (as seen in Chapter 1):

zlj = g

 ∑
i∈Γ−(j)

z
(l−1)
i ⊗ wl

ij + blj

 (2.1)

where g is an activation function, Γ−(j) is the set of predecessors of j (i.e. the set of neurons
entering into j) wij is the weight of the link (i, j) and bj is an additional bias associated to the
current layer and the operator ⊗ is either convolutional or multiplicator operator depending on the

41



nature of the layer.
The output of the CNN is a predicted probability vector obtained by the last layer. The aim of

the LRP approach is to exploit the CNN structure and weights in order to discover the most relevant
regions of the input image x called “saliency map” that drives the classifier decision [127]. More
precisely, the relevance associated with a given neuron i of a layer l is denoted Rl

i. It is back-
propagated from the network’s last layer towards the first one. It starts by associating to the inputs
of the neuron of the last level the highest probability classification value denoted f(x), this value is
then back-propagated through the networks up to the pixels, giving a pixel-wise relevance score R.
This back-propagation computation is based on Kirchhoff’s circuit law stipulating that at each node
the sum of the inputs is equal to the sum of the outputs. In this case, the sum is a weighted sum
using as weights the forward propagation values zli of the CNN as shown in the following equation:

Rl
i =

∑
j∈Γ+(i)

zli∑
j∈Γ+(i) z

l
j

R
(l+1)
j (2.2)

Then, we get a final output R1 which represents the most relevant regions of the image. Figure
2.4 illustrates the LRP mechanism. For any image i, R1

i is denoted LRP (i).

Figure 2.4 – An example on the LRP process [9]

The drawback of equation (2.2) is that it may produce unbounded values when
∑

Zl
j is small.

In order to overcome this problem, [9] have introduced two variants of LRP:
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— The ϵ− variant LRP:

Rl
i =

∑
j∈Γ+(i)

zli∑
j∈Γ+(i)(z

l
j) + ϵ× sign(

∑
j∈Γ+(i)(z

l
j))

R
(l+1)
j (2.3)

with ϵ being a small positive constant in [0, 1[ and sign(x) =

{
+ if x ≥ 0

− if x < 0

However, in this variant, some relevant values may be absorbed by the stabilizer ϵ.
— The β − variant LRP: is introduced to overcome the production of unbounded values with

a possibility to control the importance of positive and negative terms by choosing different
factors α and β.

Rl
i =

∑
j∈Γ+(i)

(α
zl

+

i∑
j∈Γ+(i) z

l+
j

+ β
zl

−

i∑
j∈Γ+(i) z

l−
j

)R
(l+1)
j (2.4)

with α+ β = 1 and

the notations + and − being defined by

{
if x ≥ 0 then x+ = x and x− = 0

if x < 0 then x+ = 0 and x− = x

In our experiments in Chapters 4 and 5, we will use the ϵ-LRP variant because it is numerically
stable and fined-grained. Indeed, according to [9] this variant is known for its ability to improve
numerical stability during the relevance redistribution process. It also aims at maintaining local
consistency in the attribution of feature importance. This means that the feature attributions will
reflect how individual features contribute to specific parts of the model output, providing a detailed
and fine-grained understanding of the model decision-making process.

In this chapter, we have discussed some forms of knowledge that interact with neural networks
and some ways in which they can be taken into account. We have also evoked the black-box "knowl-
edge" stored inside the neural network and exploited through inter-network transfer techniques or
visualized through explicability approaches. Lastly, we have detailed the LRP approach which will
be used in Chapters 4 and 5. Concerning expert knowledge integration, which is the subject of our
study, it will be discussed in the two next parts of the thesis.
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Chapter 3

BreakHis and the other datasets used
in this study

Résumé en français du Chapitre 3 : "BreakHis et les autres ensembles de donnés utilisés dans
cette étude"

Dans ce troisième chapitre, nous présentons les ensembles de données utilisés pour les expériences
menées dans le cadre de cette thèse. Le caractère principal de ces ensembles de données réside
dans leur nature hiérarchique, d’ailleurs, ils ont été soigneusement choisis pour cette raison, car
ils contiennent des connaissances supplémentaires sous la forme de relations hiérarchiques. Tous
ces ensembles sont publiquement accessibles. Les trois premiers ensembles de données sont in-
trinsèquement hiérarchiques. Il s’agit notamment de l’ensemble de données "BreakHis", composé
d’images histopathologiques de cancers du sein, étiquetées avec le type et le sous-type de la tumeur.
Les deuxième et troisième ensembles de données sont des ensembles d’articles de garde robe (vête-
ments, chaussures, accessoires), organisés de manière hiérarchique, à savoir "Deep Fashion Kaggle"
et "Fashion-MNIST". Les quatrième et cinquième ensembles ont specialement été modifiés en créant
des niveaux hiéarchiques, il s’agit de "Prime-MINST" et "HZOO".
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The aim of this chapter is to introduce the datasets that will be used in the experiments of this
thesis.

We have selected five datasets that have the shared characteristic of being hierarchical. All these
data sets are publicly accessible. The first three datasets are intrinsically hierarchical. These include
the "BreakHis" dataset, composed of histopathological images of breast cancers, bilabeled with the
tumor and subtype. The second and third datasets are hierarchically organized sets of wardrobe
items (clothing, shoes, accessories), namely "Deep Fashion Kaggle" and "Fashion-MNIST". The
two last datasets have been manually modified to create hierarchical levels, namely "Prime-MINST"
and "HZOO".

3.1 BreakHis dataset

BreakHis [108] stands for “Breast Cancer Histopathological Images”, it is a public dataset [107]
of histopathological images of breast cancer. The current version of BreakHis is composed of 7909
histopathological biopsy images collected from 82 patients by P&D Laboratory in Brazil. BreakHis
images are observed by different microscopic magnifications: 40X, 100X, 200X and 400X with an
effective pixel size of 0.49 µm, 0.20 µm, 0.10 µm, and 0.05 µm respectively. Figure 3.1 illustrates
the four magnifications used in the BreakHis dataset [108].

It is worth mentioning that BreakHis is widely considered one of the most popular publicly
available datasets for breast cancer histopathological images. With over a thousand citations, this
large dataset is considered a benchmark for comparing various approaches in the field.

Figure 3.1 – Images from BreakHis DataSet with different magnifications.

3.1.1 About breast cancer

According to the latest World Health Organisation (WHO) report, breast cancer is the most com-
mon cancer type among women and also one of the most dangerous ones with the highest mortality
rate, causing 627,000 deaths in 2018 [15]. Indeed, nowadays, 1 in 7 (14%) of women worldwide
are affected by this pathology [10]. Figure 3.2 extracted from [2] illustrates the evolution of the
incidence and the mortality rates of breast cancer in France between 1975 and 2020. The incidence
and mortality rates of breast cancer have shown a dynamic evolution over time. The incidence rate
has generally increased, which can be attributed to several factors such as improved screening meth-
ods, increased awareness leading to more women seeking medical attention, and changing lifestyle
and reproductive patterns. Advancements in diagnostic techniques have also played a role in the
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Figure 3.2 – The evolution of breast cancer mortality and incidence rates among women in France
between 1975 and 2020 [2]

detection of breast cancer at earlier stages, resulting in higher reported incidence rates. On the other
hand, the mortality rate of breast cancer has seen a decline in recent years. This positive trend can
be attributed to advancements in treatment options, including targeted therapies, improved surgical
techniques, and more personalized; approaches. Increased awareness about breast cancer symp-
toms and the importance of regular screenings has also contributed to earlier detection and timely
interventions, ultimately reducing the mortality rate.

For a number of years now, breast cancer has been a world health priority and has triggered
international scientific interest. Physicians and engineers have joined efforts in order to perform
screening, diagnosis, and treatment. The earlier the disease is detected, the better it can be kept
under control; hence the diagnosis phase is crucial. Figure 3.3 illustrates the diagnosis workflow
established by the pathologist. First, a tumor tissue sample is extracted from the suspicious breast
region. Second, the tissue is biologically prepared by adding chemical coloring agents and products
for microscopic observation. The image generated from this microscopic observation is known as a
"histopathological image." Third, the pathologist analyses the microscopic image to come up with
the diagnosis. Finally the resulting diagnosis is delivered to the patient.

→ → →

Tumor sample extraction Histological preparation
of the tissue

Microscopic analysis Diagnosis results

Figure 3.3 – Breast cancer diagnosis workflow

The diagnosis step consists of differentiating between benign and malignant tumors (an instance
of binary classification) and also identifying the sub-type of the tumor among the fifteen reference
sub-types of breast cancer (an instance of multi-class classification). In this study, we will limit
ourselves to eight sub-types: the ones used in the BreakHis dataset (described in Section 3.1.2]).

Currently, the diagnosis is predominantly carried out manually, which requires a lot of work and
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time. Moreover, the task is subject to two main potential errors which are classical in traditional
medical diagnosis and which were pointed out for breast cancer by [121], namely:

— Inter/intra observer variability: according to the U.S. National Library of Medicine, it is
"The failure by the observer to measure or identify a phenomenon accurately, which results
in an error. Sources for this may be due to the observer’s missing an abnormality, or to faulty
technique resulting in incorrect test measurement, or to misinterpretation of the data". Two
varieties are inter-observer variation (variation due to two or more observers reporting on the
same material) and intra-observer variation (variation caused by the same observer reporting
on the same material more than once).

— The nature of histopathological image composition which is a complex image with differ-
ent heterogeneous components, different global rendering of the initial colors and different
background staining which may sometimes confuse the pathologist [122].

Erroneous medical diagnoses are considered to be the third cause of death in the U.S. [60]; it is
even considered a stronger cause of death than the disease itself. An accurate diagnosis is evidently
very important due to its life-threatening impact, and finding ways to obtain more accurate diagnoses
has been the subject of many research projects.

Within this line of research, computer-aided diagnosis has been a significant research focus in
recent years. To achieve this, doctors and engineers have collaborated to develop software solutions
to assist practitioners in various stages. A large number of datasets have been collected, annotated,
cleaned, and made publicly available. One of the most well-known datasets for breast cancer diag-
nosis, that we use in this thesis, is the BreakHis dataset.

3.1.2 BreakHis composition

Table 3.1 illustrates BreakHis composition. The images are divided into benign and malignant
tumors that are themselves divided into different breast tumor subtypes since tumor subtypes are
also very important for the treatment phase and the prognostic estimation in the clinical procedure.
The BreakHis dataset contains eight breast tumor categories, four for the benign type and four for
the malignant:

— Benign sub-types: Adenosis (A), Fibro Adenoma (F), Tubular Adenoma (TA), and Phyllodes
Tumor (PT).

— Malignant sub-types: Ductal Carcinoma (DC), Lobular Carcinoma (LC), Mucinous Carci-
noma (MC) and Papillary Carcinoma (PC)

Figure 3.4 illustrates some examples of benign and malignant subtypes.

Sub- number of samples per Magnif. factors
Classes classes 40X 100X 200X 400X Total

A 114 113 111 106 444
Benign F 253 260 264 237 1014

TA 109 121 108 115 453
PT 149 150 140 130 569

total 625 644 623 588 2480
DC 864 903 896 788 3451

Mali- LC 156 170 163 137 626
gnant MC 205 222 196 169 792

PC 145 142 135 138 560
total 1370 1437 1390 1232 5429

Total 1995 2081 2013 1820 7909

Table 3.1 – BreakHis dataset composition

Due to this bi-labeling, two classification tasks are possible: the binary classification of the
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Figure 3.4 – Examples of tumors subtypes from BreakHis.

BreakHis dataset aims at classifying the images into benign and malignant, while multi-class clas-
sification aims at classifying the images into one of the eight tumor subtypes. Additionally, due to
the bi-level composition of the labels, the BreakHis dataset can be viewed as a hierarchical dataset.
This characteristic further strengthens our selection of BreakHis to conduct our research on the
hierarchical multi-label classification problem, as detailed in Chapter 6.

Undoubtedly, the automatic classification of breast cancer images has been the goal of the sci-
entific community for over 40 years. In the following, we present a concise state-of-the-art study,
focusing on the most significant existing works on BreakHis images. In this review, we first dis-
cuss one relevant work that uses a traditional classification approach, and then we highlight several
noteworthy works that employ Convolutional Neural Networks (CNNs).

3.1.3 A traditional approach for BreakHis images classification

The traditional approach to automatic analysis of histopathological images relied on handcrafted
engineering of explicit features extraction and involved several user choices throughout the work-
flow. These choices encompassed the selection of regions of interest (ROIs) and the use of automatic
methods for different steps. The workflow consisted of the following key steps:

1. ROI selection: Scientists had to in determinate which are the most relevant regions in the
image to focus on.

2. ROI segmentation: Once the ROIs were identified, scientists had to choose which appropriate
segmentation method to apply to extract them accurately.

3. Post-segmentation: In general, traditional segmentation approaches required a post-processing
step to refine the segmentation results.

4. Descriptor selection: Scientists had to identify the most discriminant descriptors to consider
for the classification task.

5. Descriptor extraction: After selecting the descriptors, scientists needed to choose the most
suitable mathematical function to effectively represent these descriptors.
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6. Classification: Once the discriminant descriptors were extracted, scientists selected the most
suitable classifier and employed it to perform the final classification task.

As an example of traditional approach using BreakHis, Spanhol et al. in [108] have explored sev-
eral state-of-the-art handcrafted features extraction methods, such as Local Binary Patterns (LBP),
which is a texture analysis technique used in image processing to capture the local patterns or tex-
tures within an image by comparing the intensity of a central pixel with the intensity of its neighbor-
ing pixels. They also tried four different classifiers: 1-Nearest Neighbor (1-NN), Quadratic Linear
Analysis (QDA), Support Vector Machines (SVM), and Random Forests of decision trees. In order
to compute the global accuracy of these five steps of the traditional approach, the accuracy rates of
the individual steps need to be multiplied, which highlights the interdependence of the steps. At each
step, the choice for one particular method will necessarily result in a certain amount of errors. These
errors propagate across the different steps in a snowball effect that impacts the global accuracy of
the classification. At the last step of the workflow, Spanhol et al. achieved a binary classification
with an accuracy rate of around 95% using a support vector machine fed by the descriptors extracted
before, while the global classification rate is about 82% which is considerably lower (due to the bad
accuracy rates of the previous steps) compared to the last step accuracy.

Due to the high importance of avoiding false negatives in the diagnosis phase, the results achieved
by the different traditional automatic approaches – even if they were considered relatively accept-
able as preliminary results – could not be considered sufficiently accurate. Moreover, due to the
haphazardness of the choices made in the successive steps, the results were highly unstable. More
precisely, the major drawback of the traditional approach is its workflow: first, by focusing on only
ROIs, some information in the initial image may be lost even crucial for the discrimination step. For
instance, the ROI on nuclei cells loses information for tumoral detection namely, the mitotic rate,
the presence of tubule or mitotic spindle, the evolution of the cell shape and the tissue texture [87].
Then, for the segmentation step, the main critical issue of the cell segmentation algorithm is due to
the fact that two or more cells may be clumped together. This overlapping of cells may mislead the
cell-type classification, so it is important to split the touching cells [131]. Then comes the features
extraction phase, which is the most critical step in the image classification because these selected
features must be the most distinctive characteristics that lead to the right classification. This is a
major issue in the feature engineering field. Once selected, these features must be represented by a
descriptor, here comes also the problem of choosing the most suitable mathematical descriptor that
represents well the feature. Another problem is to determine the number of descriptors to use and
how to combine them. Finally, the choice of the classifier has a great impact on the accuracy rate
and may lead to divergent outcomes.

This traditional approach relied heavily on human intervention and on domain expertise at var-
ious stages of the process. However, recent advancements in deep learning and machine learning
have paved the way for automated and end-to-end approaches that alleviate the need for explicit
feature engineering and user choices, the laborious and error-prone process of feature selection can
be avoided.

3.1.4 CNN-based approaches for BreakHis images classification

The vast majority of the recent works using the BreakHis dataset use a CNN-based approach.
Indeed, Throughout the different convolutional layers of the network, the features are implicitly
chosen and extracted according to what suits best with the classification task. The most relevant
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classification works are summarised in Table 3.2.

Ref. Based-architecture 40X 100X 200X 400X All
Binary classification

[13] AlexNet 81.87 83.39 82.56 80.69 NA
[106] VGG-VD 87.00 86.2 85.20 82.90 NA
[109] AlexNet 89.60 85.00 82.80 80.20 NA
[69] 3-Conv CNN 90.4 86.3 83.1 81.3 NA
[32] AlexNet 90.96 90.46 90.37 89.75 NA
[133] VGG16 91.28 91.45 88.57 84.58 NA
[11] 5-Conv CNN 96.82 96.96 96.36 95.97 NA
[128] InceptionV3 96.84 96.76 96.49 94.71 NA
[124] BiCNN 97.89 97.64 97.56 97.97 NA
[128] InceptionResNetv2 97.90 96.88 96.98 96.98 NA

[5] IRRCNN 97.95 97.57 97.32 97.36 NA
[61] DenseNet21-AnoGAN 99.13 96.39 86.38 85.20 NA
[81] VGG16 NA NA NA NA 84.58
[70] VGG16 NA NA NA NA 92.60
[80] VGG16 NA NA NA NA 94.40
[77] ResNetV1 NA NA NA NA 98.70

Multi-class classification
[128] InceptionV3 90.28 85.35 83.99 82.08 NA
[128] InceptionResNetv2 92.07 88.06 87.62 84.50 NA
[46] CSDCNN 92.8 93.9 93.7 92.9 NA
[77] ResNetV1 NA NA NA NA 99.2
[77] InceptionV1 NA NA NA NA 99.2

Table 3.2 – CNN State of the art results for binary classification on BreakHis ("NA" meaning "Not
available")

The accuracy rates obtained by these works (around 90%), demonstrate the efficiency of CNNs
in breast cancer histopathology classification. Considering the performances on the BreakHis dataset
of these approaches illustrated in Table 3.2), we observe that:

The lower the magnification,the higher the accuracy. (3.1)

This observation is of paramount importance and served as the central motivation for the study
proposed in Chapter 5.

3.2 Other datasets

In this section, we shift our focus to three additional hierarchical datasets that will be employed
in the experiments of this thesis. The first dataset is Deep Fshion-MNIST, while the other two are
derived from existing datasets and have been specifically designed to incorporate the hierarchical
dimension.
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3.2.1 Kaggle Fashion Product Images dataset

The Kaggle Fashion Product Images dataset [3] is a widely recognized and extensively used
dataset in the field of fashion classification research. It offers a vast collection of images related to
fashion products. One of the notable aspects of this dataset is its predefined hierarchical structure.
The dataset consists of 41027 images, and the classes are categorized into three levels:

— the coarse-grained level with 4 classes: "Apparel", "Accessories", "Footwear" and "Personal
Care".

— the fine-grained level with 21 classes: "Topwear", "Bottomwear", "Dresses", "Bags", "Eye-
wear", "Headwear", "Footwear", "Socks", "Jewellery", "Watches", "Loungewear and Nightwear",
"Innerwear and Sleepwear", "Swimwear", "Fragrance" ,"Beauty Accessories", "Belts", "Cuf-
flinks", "Umbrellas", "Saree", "Apparel Set" and "Scarves".

— and the most fine-grained level with 45 classes: "T-shirts", "Shirts", "Jeans", "Dresses",
"Handbags", "Sunglasses", "Hats", "Sneakers", "Kurtas", "Sandals", "Watches", "Sports
Shoes", "Flip-Flops", "Heels", "Wallets", "Flats", "Formal Shoes", "Bracelets", "Tops", "Night
Suits", "Earrings", "Backpacks", "Perfumes", "Trunk", "Luggage Accessories", "Briefs",
"Rings", "Deodorant", "Jackets", "Track Pants", "Ties", "Belts", "Camisoles", "Lipstick",
"Lip Gloss", "Foundation", "Eye Makeup", "Nail Polish", "Body Care", "Face Care", "Ban-
gle", "Kurtis", "Necklace and Chains", "Cufflinks", "Rain Jacket", "Nightdress", "Dupatta",
"Lip Liner", "Socks" and "Waistcoat".

Figure 3.5 illustrates some samples from this dataset.

Figure 3.5 – Some images from Kaggle Fashion Product Images dataset [3].

The images in this dataset have different dimensions in terms of width and height. They range
from smaller sizes, such as 32x32 pixels or 64x64 pixels, to larger sizes like 224x224 pixels or
512x512.

3.2.2 Fshion-MNIST

The MNIST dataset [28] is a widely used collection of handwritten digit images, containing
60,000 training samples and 10,000 test samples. Each image is a 28x28 grayscale picture of a
handwritten digit from 0 to 9 with its ground-truth label. This dataset is a fundamental benchmark
in the machine learning community, providing a standardized way of comparing and evaluating the
performance of different models and techniques. Figure 3.6 illustrates some samples of this MNIST
dataset. Zalando has developed Fashion-MNIST dataset [126] as a direct substitute for the original
MNIST dataset. By maintaining the same image size and structure for training and testing sets,
Fashion-MNIST serves as a suitable replacement for benchmarking machine learning algorithms,
offering an alternative dataset for researchers to assess the performance of their algorithms. Figure
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Figure 3.6 – Some images from MNIST dataset [28].

Figure 3.7 – Some images from Fashion-MNIST dataset [126].

3.7 illustrates some samples of this Fashion-MNIST dataset. The labeling of Fashion-MNIST con-
tains 10 classes: "T-shirt/top", "Trouser", "Pullover", "Dress", "Coat", "Sandal", "Shirt", "Sneaker",
"Bag", "Ankle boot".

Seo and Shin in [98] have created a 3-level hierarchy structure for this labeling, as shown in
Figure 3.8.

3.2.3 Prime-MNIST

For this thesis, we designed a hierarchy strucure on the MNIST dataset with two levels, according
to the primality of the numbers. The two-levels hierarchy created is as follows:

— First level (coarsest level): contains the classes "Prime" and "Non-prime".
— Second level (finest level): contains the ten classes corresponding to the ten digits from 0 to

9.
Figure 3.9 describes the designed hierarchy.

3.2.4 HZoo

For this thesis, we have also designed another hierarchical dataset, based on the Imagenet dataset
[27], that we called "HZoo". ImageNet is a large-scale, publicly available dataset that has played a
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Figure 3.8 – The hierarchy structure of Fashion-MNIST dataset proposed by [98].

Figure 3.9 – The hierarchy structure of Prime-MNIST dataset.
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significant role in advancing computer vision research and development. It has been used for years
both as input for an initial training of machine learning models and for benchmarking. It consists
of millions of labeled images covering thousands of different object categories. Originally created
in 2009, the ImageNet dataset has undergone several iterations and updates over the years. The
dataset was initially composed of 21,000 classes, but it has since evolved, notably with the creation
of the ImageNet-1k version, specially designed for the ImageNet Large-Scale Visual Recognition
Challenge (ICLR) in 2010. ImageNet-1k, contains 1,281,167 training images, 50,000 validation
images and 100,000 test images. Based on this dataset, we extracted a subset of animal images by
selecting 12 animal categories, and we chose 1000 image per category. We propose a three-levels
hierarchy, as follows:

— First level (coarsest level): the animal class, we have chosen three types: "mammal", "bird"
and "fish".

— Second level: for this level, we proposed non-visual criteria by considering the dangerous-
ness of each animal: "domesticated mammal", "non-domesticated mammal", "aggressive-
bird", "non-aggressive bird", "dangerous fish" and "non-dangerous fish".

— Third level: contains 12 types of animal: "cat", "dog", "bear", "lion", "flamingo", "indigo
bird", "eagle", "vulture", "goldfish", "salmon", "shark" and "killer whale".

Figure 3.10 illustrates examples for the 12 selected animal categories, and Figure 3.9 illustrates the
proposed hierarchy of the designed HZoo dataset.

Figure 3.10 – examples of animal images chosen from Imagenet dataset for HZoo.
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In this chapter, we have presented the datasets that will be used for the experiments carried out
in this thesis. In Chapters 4 and 5, we will use only the BreakHis dataset while in Chapters 6,7 and
8 we will use the five datasets for the experiments.

Through this chapter, we have selected datasets that have features in common, namely the hier-
archy aspect as additional knowledge. We have also presented, through the fourth and fifth datasets,
a way of conceiving extra levels of hierarchy in a dataset.
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Part II

High-level knowledge used for
feeding the network
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Cette partie souligne l’importance du processus de préparation des données en tant qu’étape
clé de la tâche de classification. Elle aborde deux questions principales : la première concerne la
transparence de la préparation des données. En effet, nous avons remarqué que la plupart des articles
analysés ne donnent pas de détails clairs sur le prétraitement des données, ce qui souligne la nécessité
d’une formalisation explicite de cette étape. Pour combler cette lacune, le premier chapitre de cette
partie présente une description complète de la préparation des données en fournissant des définitions
formelles. Ce formalisme permet d’établir des propriétés précieuses pour l’ensemble de données
d’entraînement utilisé dans les expériences, ce qui garantit l’équité des comparaisons et améliore la
transparence de la recherche.

La deuxième question abordée dans cette partie concerne le mécanisme d’augmentation des
données, une étape qui est devenue systématique dans tous les travaux sur l’apprentissage profond,
mais la raison de son impact positif reste inexpliquée en raison de l’opacité des réseaux neuronaux.
Ainsi, le premier chapitre propose des métriques pour évaluer l’informativité des jeux de données
et pour quantifier la diversité des données à travers plusieurs expériences, afin de proposer à la fois
une formalisation du processus de préparation des données et un ensemble de principes pour aider à
choisir l’augmentation des données la plus appropriée. Il propose également une nouvelle technique
pour mettre en évidence l’effet de l’augmentation des données.

En outre, sur la base des résultats de précision obtenus dans les études de pointe BreakHis, une
hypothèse est formulée, suggérant que des connaissances de haut niveau sur l’agrandissement mi-
croscopique des images peuvent être exploitées pour améliorer les performances de classification
des réseaux. Cette hypothèse conduit à une exploration de l’apprentissage basé sur le curriculum
dans les réseaux neuronaux. Ensuite, des expériences sont menées sur l’ensemble de données Brea-
kHis pour mettre en évidence l’importance de l’ordre dans lequel les données sont présentées au
réseau neuronal pendant la formation. Les résultats confirment l’hypothèse.

This part highlights the importance of the data preparation process as a key step for the classifi-
cation task. It addresses two main issues, the first one is about data preparation transparency. Indeed,
we have noticed that most of the articles analyzed do not give clear details on data pre-processing,
underlining the need for an explicit formalization of this step. To fill this gap, the first chapter of
this part introduces a comprehensive description of data preparation by providing formal defini-
tions. This formalism enables the establishment of valuable properties for the training dataset used
in experiments, ensuring fairness in comparisons and enhancing research transparency.

The second issue addressed in this part concerns the data augmentation mechanism, a step that
has become systematic in any work on deep learning, but the reason for its positive impact remains
unexplained due to the opacity of neural networks. Thus, the first chapter proposes metrics to as-
sess the informativeness of datasets and to quantify data diversity through several experiments, in
order to propose both a formalization of the data preparation process and a set of principles to help
choose the most appropriate data augmentation. It also proposes a new technique to highlight the
data augmentation effect.

Furthermore, based on the accuracy results obtained in BreakHis state-of-the-art studies, a hypo-
thesis is formulated, suggesting that high-level knowledge about the microscopic magnification of
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images can be exploited to improve network classification performance. This hypothesis leads to an
exploration of curriculum-based learning in neural networks. Subsequently, experiments are conduc-
ted on the BreakHis dataset to highlight the significance of the order in which data is presented to
the neural network during training. The results confirm the hypothesis.
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Chapitre 4

How does data preparation impact
the classification quality

Résumé en français du Chapitre 4 : "Comment la préparation des données impacte la qaulité
de la classification"

La préparation des données est une étape indispensable sur laquelle repose la qualité de l’apprentis-
sage. Cependant, cette étape est souvent peu ou mal décrite dans les travaux de recherche. De plus,
l’augmentation des données est adoptée comme pratique systématique suite à de son impact positif.
Toutefois, les raisons de cet impact positif ne sont pas encore élucidées.
Dans ce chapitre, nous mettons la lumière sur l’augmentation des données, en proposant d’abord un
formalisme pour présenter le protocole de préparation des données. Ensuite, nous énumérons des
principes pour comprendre ce qu’est une bonne préparation de données et nous définissons des me-
sures pour évaluer l’informativité d’un dataset. Nous mettons en place des protocoles expérimentaux
afin de valider les principes. Ils sont évalués par rapport à de nouvelles métriques d’informativité
qui sont ajoutées aux métriques de performance de classification.
Enfin, nous proposons une approche basée sur la méthode d’explicabilité LRP pour visualiser l’effet
de la data augmentation dans le dataset BreakHis.

Contents
4.1 Background about information metrics . . . . . . . . . . . . . . . . . . . . 61

4.2 General principles for efficient data preparation . . . . . . . . . . . . . . . . 62

4.3 Data preparation Formalization and Protocols for BreakHis data prepara-
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3.1 BreakHis transformation operators . . . . . . . . . . . . . . . . . . . . 63

4.3.2 Transformation signatures for BreakHis . . . . . . . . . . . . . . . . . 64

4.4 New metrics for measuring the dataset diversity . . . . . . . . . . . . . . . . 65

4.5 Experimental Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.6 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

59



Data preparation is a key step in every neural network training. However, most of the works
in the state of the art do not clearly mention the way they have pre-processed the data, making the
experiments difficult to reproduce. Besides, the positive impact of data augmentation, which has
been adopted as a best practice of pre-processing, is still poorly understood. Based on these two
issues, we design this chapter in order to provide a formalization of data preparation and to move
towards an explanation for its efficiency.

For an efficient classification, CNNs require a huge amount of data. However, this is not always
available: datasets are not always publicly available or may not contain sufficient data. Moreover,
obtaining real data may be very expensive, also, annotating unlabeled data implies the intervention of
an expert, which can be both costly and time-consuming. Consequently, data augmentation has been
introduced to counter this issue and has become one of the best-practice steps of data preparation.
However, due to the CNN black-box aspect, it is difficult to identify how the data structure is guiding
the learning. Through this chapter, we aim at answering the following questions:

— Is data augmentation successful just because it gives a redundancy that helps the learning by
a memoriry effect? 1

— Is it necessary to provide fresh data or is it sufficient to generate data from the old ones?
— How can we quantify the information contained in a dataset for a given classification task?
— How does the augmentation technique impact the training process?
There has been an assumption that data augmentation is a mandatory standard step of data prepa-

ration. Indeed, it has been empirically demonstrated that data augmentation improves the classifica-
tion quality [25]. We can divide the data augmentation strategies into two categories:

— Traditional data augmentation methods: are based on image transformations, such as simple
transformations (flip, rotation, color transformations) that generate images extremely close to
the initial data distribution space; or complex transformations, which may not seem to make
sense to humans, have nevertheless had a positive impact on learning. Such as cut-out [30]
(that randomly masks out square regions of the input images during training, creating holes
or cutouts in the images), Mix-up [111] (combines pairs of images by linearly interpolating
their pixel values), and RICAP [112] (Random Image Cropping And Patching (RICAP),
creates new images by selecting random patches from different images and combining them
to create a new image). However, in critical fields such as health, where the information
label must be conserved, there are a lot of restrictions on the possible transformations.

— GAN-based augmentation methods: With the success of generative adversarial networks
(GANs) [39], artificial fake images are generated. Even if these images are close to the
initial data distribution, the labeling of these generated images represents an important issue,
which restricts the use of these methods in critical fields, since it will require the validation
of an expert.

Moreover, the lack of data which makes the learning process unsuccessful can be associated with
an imbalanced dataset [92], in which there is a glaring difference in the number of samples for one
category versus another. Depending on the classification task, this imbalanced rate may create a
marginalized category during the training phase.

Through this chapter, we study how to quantify the amount of information in a dataset by first
proposing several new measures, second enunciating a set of principles that should govern data
preparation (and help to answer the questions introduced above), third designing several experimen-

1. The memory effect is defined in [82] as the ability of a NN to discover patterns in the training inputs that are unrelated
to the label concepts. It can be equated to learning the background structure of the training data
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tal protocols in order to check the validity of our set of principles, fourth experimenting them on the
BreakHis dataset. And finally, propose a technique to visualize the data augmentation effect.

4.1 Background about information metrics

In this section, we first recall four classic metrics that quantify the informative state of a dataset.
For this purpose, we consider a dataset D composed of n items, D = {s1, . . . , sn}, each item s

being associated with a unique class c which is called the label of s and denoted by s.label = c. The
set of possible classes is denoted C . Classically, in [76], the abundance aD(c) of a class c given a
dataset D is the number of items of this class according to D, and the proportional abundance of a
class c, PD(c), is the percentage of representation of a class among all the classes:

aD(c) = |{s ∈ D : s.label = c}| , pD(c) = aD(c)
n

Also, according to [76], there are three indicators that have been defined in the literature for estimat-
ing the diversity of a dataset, namely, the variety, the balance and the disparity. Here we describe
the metrics designed to provide values for these indicators:

— Variety: The richnessR is a metric related to the variety and represents the number of classes
effectively considered for the classification task:

R(D) = |{c ∈ C : pD(c) > 0}|

— Balance: The imbalance ratio IR is the ratio of the abundance of a majority class over the
abundance of a minority class in a multi-class classification:

IR(D) =
aD(Majority class)
aD(minority class)

According to [85], the dataset is:
— little imbalanced when 1.5 < IR < 3.
— moderately imbalanced for 3 < IR < 9.
— very imbalanced when IR > 9.
Note that in the case of a binary classification,

IR(D) =
1

pD(minority class)
− 1

There are several other measures that capture the distribution of the data. However since they
are all based on the proportional abundance pD it means that they only take into account the
number of items per class without considering the different inherent natures of these items 2.

— Disparity: The Disparity D quantifies the diversity of the data based on a pairwise distance

2. Three other measures are considered in [76], namely, Shannon entropy H, Herfindahl-Hirschman HHI and Berger-
Parker indexes BPI, which capture respectively the uncertainty in predicting the type of an item taken at random, the
probability of two random items to belong to the same class and the maximal proportional abundance:

H(D) = −
∑

c∈C pD(c)× log(pD(c)) HHI(D) =
∑

c∈C pD(c)2

BPI(D) = max(pD(c))

.

61



d between classes c ans c′.
D =

∑
c∈C

∑
c′∈C

d(c, c′)

However, providing the distance d between two classes requires additional knowledge related
to the context and the task.

Since Variety and Balance are only defined on the abundance of each class with respect to each
other, the associated metrics will not help us very much in characterizing the quantity of information
contained in the dataset. For this, we are going to propose several new metrics based on Disparity
or on the diameter of the dataset, that incorporates a distance d more appropriate for images. But
before this proposal, we need to define a general framework for data preparation in which we can
express these metrics, which will be done after stating some general principles that should govern
data preparation.

4.2 General principles for efficient data preparation

During data preparation, it is often the case that researchers use balancing techniques, or merely
augment the data by doing some transformations on the samples. These called “best practices” are
guided by the results obtained, some practices are known to work better than others. However,
the hypothesis underlying the practices is not always made explicit. Moreover, it is not clear if
some practices are good or not, for instance sometimes augmentation creates duplication of some
samples, is it efficient to do so? Below, we enunciate a list of principles that are inspired by the “best
practices” in order to give more awareness about what should be a “rational data preparation”. Note
that some of these principles are well known and some may seem obvious. However, the reason for
their effectiveness remains unclear. By writing them we show that more experiments are required
for attesting them. It also underlines the need for metrics that could characterize better the datasets,
hence, justifying the work done in Section 4.4. We can enunciate six principles that may improve
the selection of a good data preparation:

— Balanced Dataset (BD): stipulates that a balanced dataset behaves better than an unbalanced
one for a classification task

— Sufficient Dataset Size (SDS): implies that a too small dataset may have a high negative
impact (inefficiency and slow convergence) on the training process, even when the data is
balanced.

— No Duplication of Items (NDI): assumes that duplication does not compensate for the small-
ness of the dataset (it does not improve efficiency nor convergence)

— Well Chosen Transformation Operators (WCTO): implies that choosing the right transfor-
mation operators (for instance label conservative ones) without adding “fresh” data has a
positive impact on the training process. (WCTO) is also useful for balancing a dataset of
sufficient size since by adding well-transformed items to the minority class we can obtain a
positive impact on training.

— Variety of Transformation Operators (VTO): stipulates that using diversified transformation
operators has a positive impact.

— Fresh External Data (FED): assumes that adding fresh external real data performs better
than adding generated data (but may require more training time).

We have designed a set of experiments in Section 4.5 to evaluate these rational principles on the
BreakHis dataset.
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4.3 Data preparation Formalization and Protocols for BreakHis
data preparation

In this section, we introduce the formalism and the signature of the transformation functions
adopted in order to clearly present the data preparation of BreakHis.

4.3.1 BreakHis transformation operators

In order to augment a dataset, we need to perform transformations on its samples. A first transfor-
mation is to do nothing, this is done by using the identity operator denoted Id. In addition to it, our
data augmentation process is based on two types of elementary operators that are label-conservative
(see Proposition 4.3.1):

— Geometric operators: Due to the fact that BreakHis images are rectangles of 460x700, any
non-mirror geometric operation would yield a different shape which would need to be re-
shaped or cropped in order to be fed to the CNN. To avoid this post-operation that may
decrease the precision, we opted only for two operators that preserve the same shape: the
horizontal and the vertical flip. These two operators are denoted respectively H and V.

— Color operators: In order to increase the number of images, we consider also the possibility
of modifying the colors. We used two operators: a RGB color inversion and a transformation
of the RGB encoding of the image into the HSV color encoding. These two operators are
denoted respectively c and C.

Proposition 4.3.1: Label conservation[7, 114]

The operators H, V, c, and C are label conservative.

Proof. These geometric operators are label-conservative since the histopathological requirements
for correct labeling impose that the tumorous characterization should be the same in every rotation
and mirroring [7]. The color operators are also label-conservative according to [114]. □

In order to perform more than four distinct data augmentation, it is necessary to combine elemen-
tary operators by applying them successively. However, some combinations could create duplicate
instances of the same images (e.g. HV=VH, Hc=cH, ...) due to the following symmetry property:

Proposition 4.3.2

Any application of two successive elementary operators, called combination, is symmetric
except for cC (since Cc is not implemented and not guaranteed to be label conservative).

Proof. By definition of the elementary operators. □

In summary, due to symmetries, only 15 distinct combinations are possible, namely: H, V, c, C,
HV, Hc, HC, Vc, VC, cC, HVc, HVC, HcC, VcC, HVcC.
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4.3.2 Transformation signatures for BreakHis

We define the dataset transformations for BreakHis by using the following signatures first for
splitting the dataset and then, for operating the transformations on the corresponding partition. In
order to explain formally how the data is partitioned before doing the augmentation we need to
introduce a function called split:

Definition 4.3.1: Split

Let D be a dataset, and (r1, r2, . . . rn) be a sequence of numbers whose total is 100,
split(D, (r1, r2, . . . rn)) = (D1, . . . Dn) s.t. (Di)1..n is a partition of D and for all i,
ri = |Di|/|D| × 100.

Thanks to this function, we devide the BreakHis dataset into 3 subsets for train, validation and
test sets respectively. Then, we augment the training set using the following transformation func-
tion.

Definition 4.3.2: Signature of a data-transformation

A dataset D is a set of items or samples, each sample s ∈ D has three attributes: a unique
identifier s.i, an image s.img, a label s.label. The signature of a transformation of a dataset
D is denoted

tr(D, ops, ratio)

where:
— ops: is the list of operators to apply to the different parts.
— ratio: is the division rate (in percentage) of the splitting of the dataset into parts (on

which the operator(s) will apply).
The result of a transformation is such that:

tr(D, (op1, . . . opp), r) = (op1(D1), . . . , opp(Dp))

where (op1(D1), . . ., opp(Dp)) is the partition obtained by dividing D into p = 100/r parts
called D1, . . . Dp on which the operators (op1, . . . opp) are applied respectively and op(Di)

is an abbreviation for:

op(Di) = {(new_id, op(s.img), s.label) | s ∈ Di}

Here is a first example of an augmentation with a distinct operator applied to the distinct four
parts of a dataset.

Example 2. Let us consider the augmentation done by applying one of elementary operation among
(H,V, c, C) to each 25% of the dataset D: this augmentation has the signature (D, (H,V, c, C), 25).
It consists in partitioning D into four parts (D1, D2, D3, D4) and apply H to D1, V to D2, c to
D3 and C to D4 yielding a new dataset D′ = tr(D, (H,V, c, C), 25) = (H(D1), V (D2), c(D3),
C(D4)).

Note that an augmentation that applies the same operator op to the whole dataset D has the
following signature tr(D, (op), 100).
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Remark 1. Note that split(X, (25, 25, 25, 25)) gives the same quadruplet of sets of images than
tr(X, (Id), 25), indeed, it amounts to splitting the dataset into four equal parts. However tr pro-
duces new samples while split uses the existing ones.

Thanks to this formalization, we can encode any transformation protocol for BreakHis dataset.
It is worth noticing that this formalization can also be generalized to any other data set with any
other transformation operators.

4.4 New metrics for measuring the dataset diversity

According to the definitions recalled in Section 4.1, in order to compute the disparity D of a
dataset, we should be able to provide a way to compute the distance between the different classes.
We propose to define the distance between two classes by introducing first the distance between
two images. Then we base the distance between two classes on the distance between the means of
each classes. There are several ways to compute the distance between two images, for instance the
Euclidean distance is based on a point-to-point comparison of the pixels of each image (it is the
norm of the matrix difference). Another idea is to take into account extra information in order to
integrate into the distance the fact that horizontal and vertical symmetries should not increase the
distance between images, because for a classification task these symmetries do not matter. This is
why we choose to use a standard measure called SSIM (structural similarity index measure) [123]
which estimates the similarity of two images based on a kind of contraction of the images according
to their luminance, contrast and structure.

Definition 4.4.1: Structural Similarity Index measure (SSI) [123]

Let s1, s2 be two samples,

SSI(s1, s2) =
(2µ1µ2 + α1)(2σ12 + α2)

(µ2
1 + µ2

2 + α1)(σ2
1 + σ2

2 + α2)

where µ1, µ2, σ2
1 , σ2

2 , σ12, α1, α2 are the means and variance of s1.image and s2.image,
the co-variance of s1.image and s2.image, and two small constants respectively. a.

a. These constants were introduced by [134] to avoid instability when the denominator is close to 0 by setting
α1 = 0.01×L and α2 = 0.03×L where L is the dynamic range of the pixel values. For BreakHis dataset, with
8 bits/pixel images, L = 255.

Note that this similarity measure is invariant through vertical and horizontal flip, since an image
and its flipped version have the same average and variance. However this does not hold for color
operation.

We propose a SSI variant, called SSIC that is label-conservative for all operations introduced in
Section 4.3.1, i.e., which is invariant to color operations c and C.

Definition 4.4.2: SSIC

Let s1, s2 be two samples,

SSIC(s1, s2) = min
op∈{Id,c,C}

SSI(s1, op−1(s2))
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Example 3. for instance, if s is a sample to be compared to its transformed sample by RGB color
inversion c(s), the distance SSIC(s, c(s)) is 0 since c−1(c(s)) = s

Proposition 4.4.1

For any combination cop of the elementary operators {Id, H , V , C, c}, it holds that for all
sample s, SSIC(s, op(s)) = 0

Proof. The proof concerning the geometric operators is due to the definition of SSI and is already
explained in the Note below Definition 4.4. SSIC being built on SSI to ignore color transformations
hence the result. □

We are now in position to define the best representative sample among a set X , called µI(X). It
is the sample which is the most similar to the other samples of X:

µI(X) = argmaxx∈X

∑
y∈X\{x}

SSIC(x, y)

Another way to define µ(X) is to compute the most similar image according to a threshold (where

the threshold th could be set for instance to the average of pairwise similarity, th =
∑

x∈X

∑
y∈X\{x} SSIC(x,y)

|X|×(|X|−1) ).

µ(X) = argmaxx∈X

∑
y∈X\{x}|SSIC(x,y)>th

SSIC(x, y)

We propose to evaluate the diversity of a dataset D by its disparity and diameter. The disparity
has already been recalled above and is related to the distinction between the different classes. The
diameter is a general measure of the scope of the whole dataset independently of the classes, it is
the maximum distance between any two images of the dataset. These two measures can be defined
either on the Euclidean distance d or on the more informed similarity measure SSIC yielding four
measures diam, disp, diamI and dispI where I stands for “informed measure”. We normalize
the Euclidean distance by the the greatest possible distance matrix denoted |im255|, i.e., the image
composed of 255 on the three channels RGB (since the images are 460 × 700 then |im255| =√
460× 700× 3× 2552 = 250627.5125).

Definition 4.4.3: Informed metrics

Given a dataset D divided into two classes D1 and D2 (D = D1 ∪D2),
— diam(D)= maxs1,s2∈D d(s1.image,s2.image)

|im255|

— disp(D)= d(µ(D1),µ(D2))
|im255|

— diamI(D)= maxs1,s2∈D(1− SSIC(s1.image, s2.image)).
— dispI(D) = (1− SSIC(µI(D1), µI(D2)).

Note that dispI(D) and diamI(D) are based on the Structural Dissimilarity Index DSSIM(x, y) =
1−SSIM(x,y)

2 [96]. Also concerning disparities, the definitions are given for a binary classification
(|C | = 2) where D1 is the part of the set D containing the first class and D2 is the part of the set
containing the second class. 3

3. If there were more than two classes, the disparity would be
2
∑

c∈C

∑
c′∈C\{c} d(µ(Dc),µ(Dc′ ))

|C|×(|C|−1)×|im255|
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4.5 Experimental Protocols

In this section, we propose 13 different data preparation protocols for the BreakHis dataset,
designed with the purpose of enabling us to validate the General Principles enunciated in Section
4.2. D denotes the part of BreakHis dataset items assigned for training (we took 2/3 of the initial
dataset), and Di denotes the new training dataset after preparation with the protocol Pi. In the
following, all the samples s′ of Di are such that s′.label = s.label where s is the original sample
in D which results in s′ in Di (by a transformation in {Id,H, V, C, c,HC, V c, CV, cH}). In other
words, the protocols create new samples that are labeled according to their initial label in the original
dataset.

BreakHis training dataset D is composed of two classes, the marginal class called m, is the
benign category: m = {s ∈ D|s.label = benign}. The majority class denoted M is the malignant
category: M = {s ∈ D|s.label = malignant}. Hence D = M ∪m. Note that m has a size equal
to half the size of the majority class M , such that: |D| = 5271, pD(M) = 2/3, pD(m) = 1/3.

The protocols use these characteristics for balancing the data.

1. Protocols 1 (no data creation): P1a is a control protocol where no balancing nor augmenta-
tion is processed to the dataset. D1a = D; P1b is a second control protocol where only one
augmentation is done without bringing “new” information: mere identical duplication of the
items of the already majority class D1b = D∪ tr(M, (Id), 100); P1c is a third control proto-
col which does not bring any “new” information but increases the size by simple duplication
of the items in order to balance and augment the data D1c = D∪m∪ tr(D∪m, (Id), 100).

2. Protocols 2 (balanced data): Double the size of the minority class with only one operator.
P2a uses a geometrical operator: D2a = D ∪ tr(m, (H), 100); P2b uses a color operator :
D2b = D∪tr(m, (C), 100); P2c: balance by under-sampling. D2c = m∪Sample(M, |m|)
where Sample(X,n) is a function that randomly selects n elements among the set X;

3. Protocols P3a (augmented unbalanced data) uses a color operator to augment the size of the
majority class: D3 = D ∪ tr(M/2, (C), 100).

4. Protocols 4 (balanced and augmented data): with two single successive operators. P4a uses
the geometrical operators H and V : m′ = m ∪ tr(m, (H), 100) (double the size of the
minority), D4a = M ∪ m′ ∪ tr(M ∪ m′, (V ), 100) (augment the whole dataset); P4b is
similar to P4a but uses the color operators C and c; P4c uses the operators H and C; P4d

uses the operators V and c. P4e uses the four operators applied on different parts of the
dataset: m′ = m ∪ tr(m, (H,V,C, c), 25) (double the size of minority), D4e = M ∪m′ ∪
tr(M ∪ m′, (C, c, V,H), 25) (augment 4 the whole dataset). P4f supplies the lack of data
by adding samples from another dataset 5: D4f = M ∪m ∪m_extra ∪M_extra where
m_extra (resp. M_extra) is a set of 3|m| (resp.|M |) minority (resp. majority) category
images of the other dataset.

The following proposition shows that all the protocols that we provide except P4f does not bring
any “new” information to the dataset.

4. More precisely, D4e = M ∪m ∪ tr(m, (H,V,C, c), 25) ∪ tr(M, (C, c, V,H), 25) ∪ tr(m, (C, c, V,H), 25) ∪
tr(m, (HC, V c, CV, cH), 25)

5. https://iciar2018-challenge.grand-challenge.org/Dataset/
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Proposition 4.5.1

for all the datasets Dij obtained by the protocols except D4f

diamI(Dij) = diamI(D1a) and dispI(Dij) = dispI(D1a)

Proof. The proof is based on the invariance of SSIC wrt color and geometric operators. □

4.6 Results and discussion

In this part, we aim to estimate the amount of information that is contained in the different
datasets obtained by the previous protocols. As said in Section 4.1, the variety and balance can be
respectively estimated through the richness measure R and the imbalance ratio IR. This section
evaluates the different protocols on two aspects, first the quantity of information present in the
dataset produced by the protocols, second the classification efficiency given by a CNN trained on
these datasets. Table 4.1 gives the different sizes Dij of the datasets obtained by the different
protocols Pij . Note that the richness of the dataset obtained with any of the protocols remains the
same since the number of classes remains constant: R(Dij) = 2 for all the datasets. Concerning the
balance, the imbalance ratio IR of the datasets Dij obtained by the different protocols is always
1 (due to the doubling of the size of the minority class that has a size equal to half the one of the
majority class), for any protocol Pij except P1a, P1b and P3. Note that due to Proposition 4.5, the
informed disparities and diameters are the same for all the datasets except D4f .

For the binary classification task, we used the VGG19 neural network described in 1.1.6. We
used the pre-trained "VGG19" convolutional neural network model as a classifier to compare the
different data preparation protocols. In order to optimize the network training, we used several
regularization techniques such as the L2 regularization with α set to 0.01, the early stopping, and
the dropout. We trained our model for 3000 epochs with a batch size of 64. We opted for Adam-
optimiser for a learning rate fixed initially at 0.0001.

P |Dij | R IR disp diam dispI diamI

1a 5271 2 2,19 0.0254 0.1299 0.0975 0.0157
1b 8785 2 4,38 0.0254 0.1299 0.0975 0.0157
1c 14056 2 1 0.0254 0.1299 0.0975 0.0157
2a 7028 2 1 0.0528 0.1299 0.0975 0.0157
2b 7028 2 1 0.0826 0.2453 0.0975 0.0157
2c 3514 2 1 0.0265 0.1045 0.0975 0.0157
3a 7028 2 3,28 0.0654 0.4213 0.0975 0.0157
4a 14056 2 1 0.038 0.1465 0.0975 0.0157
4b 14056 2 1 0.1168 0.5812 0.0975 0.0157
4c 14056 2 1 0.2051 0.3489 0.0975 0.0157
4d 14056 2 1 0.1030 0.4731 0.0975 0.0157
4e 14056 2 1 0.4361 0.8312 0.0975 0.0157
4f 14056 2 1 0.4673 0.4369 0.1385 0.2413

Table 4.1 – Metrics Results obtained on BreakHis

Table 4.2 describes the results obtained by the network trained on the datasets produced by the
different protocols. Acc, Prec, Rec refer respectively to the accuracy, the precision, and the recall
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rates. We also give an indication of the training behavior by mentioning the stabilization’s epoch
StbE which is computed thanks to the early-stopping regularization technique [90]. It is the epoch
from which the training loss is nearly steady.

Table 4.3 shows the principles that seem to support the protocol performance, for WCTO and
VTO we precise respectively the list of transformation operators and the number of distinct operators
used.

P StbE Acc (%) Prec (%) Rec (%)
1a ∞ 47.23 53.22 48.59
1b ∞ 49.08 46.59 49.03
1c ∞ 50.01 48.23 47.71
2a 1966 64.12 65.27 67.02
2b 2133 69.43 66.15 68.13
2c ∞ 50.03 46.02 49.93
3a ∞ 55.79 52.03 56.46
4a 2146 88.63 75.10 70.02
4b 2369 85.36 71.36 69.04
4c 1967 90.02 85.03 88.52
4d 2513 84.29 72.13 78.96
4e 2719 95.63 78.49 75.16
4f ∞ 96.03 89.46 91.75

Table 4.2 – Accuracy Results obtained on BreakHis ("∞" means that the network remains unstable
throughout the entire training phase and requires more time to reach stabilization).

P BD SDS NDI WCTO (ops) VTO (nb ops) FED
1a no no yes no 0 no
1b no no no no 0 no
1c yes yes no no 0 no
2a yes no yes H 1 no
2b yes no yes C 1 no
2c yes no yes no 0 no
3a no no yes C 1 no
4a yes yes yes V + VH 2 no
4b yes yes yes c + cC 2 no
4c yes yes yes C + CH 2 no
4d yes yes yes c + cV 2 no
4e yes yes yes C + c + V + H + CH

+ cV + VC + Hc
8 no

4f yes yes yes no 0 yes

Table 4.3 – Principles satisfied by the protocols

In Table 4.2, the bad results of P1a and P2c underlines that a too small dataset has a high
negative impact on the training process, even when the data is balanced confirming the principle
(SDS). Also, these two datasets have the smallest disparity and diameters (absolute and informed).
Having a small disparity means that the images of the two classes are near to each other making
more difficult the discrimination task.

Duplication does not compensate the smallness of the dataset. Also, compensating the lack of
data by duplicate /ing identically the same images makes the training even more difficult and yields
the CNN into over-fitting (P1b and P1c), because for these latter protocols, the CNN is unstable and
blocked in a transitory regime with a bad accuracy under 50%, confirming the (NDI) principle.
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Using data augmentation with no “fresh” data but with transformed items has a positive impact
on the training process (since P4a gives better results than P1c and P2b being better than P2c) this
confirms both (WCTO) and (BD) principles.

Moreover, the reader can check that augmenting a balanced dataset increases the performances,
(see P4abcdef wrt P2abc) which supports again the (SDS) and (BD) principles. Note that the color
transformations have better impact than the geometric ones (P2b being better than P2a and P4c than
P4a), consolidating the (WCTO) principle. In parallel, we observe that both the disparity and the
diameter are augmented by adding transformed samples relating these measures to the (WCTO) and
(VTO) principles.

In addition, we conclude that varying the operators by using them on different parts of the
dataset, increases the accuracy: the best accuracy of 95.63% is obtained in that case (P4e) with
the use of 8 different operators demonstrating the importance of (VTO) principle which is again
correlated with a high disparity and diameter.

Lastly, we see that P4f has the best performances with the addition of fresh external data (FED)
but this protocol needs more training time. Obviously having the possibility to add fresh external
data is ideal, however, it is not always possible to find more real data, this is why we can consider
that P4e and P4c are the best data preparations.

Contrary to what was expected, several datasets that have equal values with dispI and diamI

may have very different efficiency. These measures capture a kind of brute richness similar to the one
that a human expert could have given by understanding the equivalences between samples. It seems
that the network is benefiting from the creation of equivalent samples which do not increase what
we call “informed” disparity and diameter but increase the non-informed disparity and diameter.

When comparing the results of metrics used to evaluate informativeness with those used for
classification, it becomes evident that the informativeness metrics do not sufficiently reflect the
intrinsic state of the dataset and the effectiveness of transformations for the classification task.

To address this issue, we found it necessary to devise a method for evaluating what the network
deems relevant in an image in comparison to its transformation by an operator. We propose a method
based on the Layerwise Relevance Propagation (LRP) pixel visualization technique described in
Section 2.3 and the similarity metric defined in Definition 4.4, leading to the new metric SSItr

that evaluates the similarity between the feature map of a sample s1 and the saliency map of its
transformed version by the operator op. Algorithm 0 details the SSItr function.

Algorithm 1: SSItr(s, op) function
function SSItr(s1, op)

s2← op(s1)
s1′ ← LRP (s1)
s2′ ← LRP (s2)
if (op ∈ {H,V }): {s2′ ← op−1(s2′)}
return (SSI(s1′, s2′))

end function

In Algorithm 0, we consider a sample s1 ∈ D and its transformed version by the operator
op: s2 = op(s1). The aim of this approach is to compare what was relevant for the classification
task for the sample s1 with what was relevant for its transformed version s2 using the operator
op. We generate s1′ and s2′ the saliency maps of s1 and s2 respectively using the LRP approach:
s1′ = LRP (s1) and s2′ = LRP (s2). Now, we have to compare these two saliency maps using the
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SSI metric. Since the geometric operators used in our framework modify the location of pixels, we
need to apply the inverse operator to s2′ in order to restore the same spatial distribution to guarantee
a plausible comparison between s1′ and s2′. At the end the function SSItr returns the similarity
measure between s1′ and s2′ which translates the difference between what the NN considers more
discriminating in the original image and its transformed version by the given operator.

The closer the SSItr values are to 1, the more it indicates the similarity between the saliency
maps s1 and s2, suggesting that they highlight the same areas. This implies that s1 and its transfor-
mation reveal the same salient pixels for this classification task. In this case, we can conjecture that
this transformation operator seems to have a memoriry effect in the learning process.

In the opposite case, i.e. the further SSItr is from 1, this means that s1 and its transform rely
on different zones for the classification task, leading us to conjecture that in this case, this transform
operator seems to help to reveal new discriminant features, that we can call an exploratory effect.

To assess the impact of each operator, we introduce the function SSItr(D, op, th), which cal-
culates, for a given dataset D and a transformation operator op, the rate of samples in D that have
their saliency maps quite similar to the saliency maps of their transformed versions by applying the
operator op. We consider that the saliency map of a sample s is similar to the saliency map of its
transformation by op if SSItr(s, op) is higher than a defined threshold th. In this experiment, we
choose th = 0.65. Algorithm 2 details the SSItr(D, op, th) function.

Algorithm 2: SSItr(D, op, th) function
function SSItr(D, op, th)

cpt=0
Foreach (s ∈ D) :

if (SSItr(s, op) > th):
cpt← cpt+ 1

return ( cpt|D| )
end function

To evaluate the sensitivity of the dataset D for the four operators, namely H, V, C, and c, we
applied the Algorithm 2 for each operator. The results are summarized in Table 4.4.

Function Result(%)
SSItr(D,H, th = 0.65) 29.33
SSItr(D,V, th = 0.65) 35.91
SSItr(D, c, th = 0.65) 87.56
SSItr(D,C, th = 0.65) 61.40

Table 4.4 – Results of the sensitivity of the dataset D to the transformation operators.

From Table 4.4, we observe that for both the horizontal and vertical flip, the saliency map of
an image and its transformed version by these geometrical operators are very different, leading to
conjecture that these two operators help to discover new relevant distinctive features. And for the
color transformations, it seems that they have more of a memory effect on the learning process.

From Table 4.2, we can observe that when geometric operators (that seems to have an exploratory
effect) are used alone in Protocol P4a, or color operators (that seems to have a memory effect)
are used alone in Protocol P4b, the resulting performance is lower compared to using the variety
of the four operators as seen in Protocol P4ee. In an attempt to understand the impact of data
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augmentation, we hypothesize that the synergy between operators with a memory effect and those
with an exploratory effect is a crucial factor contributing to the success of data augmentation for this
classification task.

This chapter addressed the important question of data preparation, by focusing on the informa-
tiveness of a dataset, to find the best data augmentation process. For this purpose, new metrics and
principles have been proposed and 13 data-preparation protocols were designed to conduct the ex-
periments. We have identified the most suitable data preparation strategy for the BreakHis dataset.
As a perspective of this work, we think that it would be interesting to generalize this kind of analysis
to other datasets, by automating the steps for selecting the best data preparation in the form of a
routine that can be used for any image classification experiment.

We also proposed an interesting formalization of the data preparation, that can be generalized to
clarify this process to ensure transparency and reproducibility.

We also proposed a formalization of the data preparation process that can be extended to enhance
transparency and reproducibility.

Regarding the metrics used to gauge dataset informativeness, we conclude that there is a need
to explore alternative ways of defining such metrics, which should be more closely aligned with the
intrinsic features of the dataset and more strongly correlated with the classification task.

In terms of understanding the impact of data augmentation, we presented an intriguing approach
that can be generalized and further developed to provide a deeper insight into the influence of trans-
formation operators on classifiers. While these conclusions remain hypothetical and strongly cor-
related with both the classification task and the dataset. The proposed SSItr functions represent
innovative methods for a better understanding of the effects of data augmentation, thus paving the
way for further exploration of this issue.
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Chapter 5

How does data feeding impact the
classification quality?

Résumé en français du Chapitre 5 : "Comment l’intégration des entrées impacte la qualité de
la classification"

Après avoir déterminé à travers l’ensemble des expériences du chapitre 4 la meilleure façon de
preparer les données, nous nous intéressons, dans ce chapitre, à l’exploitation de connaissances
haut-niveau dans l’ordonnancement de la presentation des données d’entraînement. Ce chapitre est
inspiré de l’observation des résultats de l’état de l’art sur la base de données BreakHis, conduisant
à une hypothèse sur le lien entre le grossissement microscopique et l’exactitude de classification.
Appuyés par une confirmation experte énonçant qu’il est plus simple d’identifier le type tumoral
sur une image de faible grossissement, nous intégrons cette connaissance pour ordonner les données
d’apprentissage par curriculum incremental. Plusieurs protocoles expérimentaux sont conduits pour
déterminer le meilleur ordre et évaluer l’approche.
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After exploring the data augmentation process in the previous chapter, in this chapter, we study
the impact of using high-level knowledge in the organization of the training set. The key idea of this
chapter is inspired by the observation of some relevant state-of-the-art studies (described in Section
3.1.4 of Chapter 3). Drawing upon the accuracy results from these studies, we formulated a hypoth-
esis (see Equation 3.1) suggesting that high-level knowledge on the microscopic magnification of
images can be exploited to improve the network’s classification performance. This led us to explore
the concept of curriculum-based learning in neural networks. Consequently, we conducted experi-
ments that highlight the significance of the order in which data is introduced to the neural network
during the training phase.

Indeed, as already mentioned in Chapter 1, neural networks have shown remarkable success
in various domains. However, training deep neural networks can be challenging, especially when
dealing with complex and large-scale datasets. To address this challenge, researchers have exploited
the concept of curriculum learning that mimics the way humans and animals learn by gradually in-
troducing concepts or tasks in a structured and sequenced manner. In nature, humans and animals
often learn through a curriculum-like process. They start with simpler tasks or concepts before grad-
ually moving towards more complex ones. This sequential learning allows for the development of
skills and the gradual integration of more advanced knowledge. Curriculum learning aims to repli-
cate this natural learning progression in artificial neural networks, thereby enhancing their learning
capabilities and generalization abilities.

In this chapter, we leverage this concept to enhance the classification of histopathological breast
cancer images by gradually introducing the images according to the order of increasing microscopic
magnification.

5.1 State of the art about curriculum learning

According to Bengio [14], experiments showed that humans and animals learn better when the
examples are presented in a suitable order. The idea of using this strategy in machine learning can
be tracked back to [33] who trained a network to process complex sentences. The training succeeds
only when the network begins with limited working memory and gradually increasing memory span.
[57] has also used this kind of guided learning to train a recurrent neural network to predict the next
word starting from simple sentences towards more and more complex ones. Similar ideas were also
explored in robotics [95], by gradually raising the task difficulty.

Bengio et al. [14] have introduced the term of “Curriculum learning” to define this process of
learning gradually from simple examples towards more and more difficult ones. Several experiments
are presented in this article. The first one is about training a support vector machine (SVM) on a
dataset made of randomly generated points in the presence of more and more noise. In another ex-
periment, a Perceptron is trained to classify generated pairs (x, y) where y is a function of x with
more or less additional pairs (x′, y′) where x′ is irrelevant to y′ (the more irrelevant pairs the more
difficult the learning task). They analyzed three training strategies: curriculum (the examples are or-
dered by increasing difficulty), anti-curriculum (the examples are ordered by decreasing difficulty),
and lastly the examples were ordered randomly. The results showed that the curriculum strategy
generates fewer test errors. A last experiment concerning shape classification uses two datasets “Ba-
sicShapes” and “GeomShapes” that contain respectively regular shapes images (circles, squares, and
equilateral triangles) and not necessarily regular shapes images (ellipses, rectangles, triangles). The
first dataset being less variable than the second one is considered “easier to learn”. The curriculum
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consists of a 2-step schedule: first perform the gradient descent with the BasicShapes then perform
it with the GeomShapes training sets. The best generalization is obtained when the model spends
half of its training epochs on the easiest examples and then moves to the hardest examples of “Ge-
omShapes”. The last experiment was about training a recurrent neural network to predict the most
suitable word that will occur after a sequence of words. The results showed that learning gradually
with sentences that are restricted to a limited vocabulary of 5000 words and progressively integrat-
ing sentences using more and more vocabulary (increasing the vocabulary by steps of 5000 words)
gives better results than feeding the network with all the sentences of the training set directly from
the beginning.

Inspired by these results, several works have adopted the curriculum strategy for their network
training. In [45], curriculum learning is defined by increasing progressively the difficulty of the
samples in each training batch. They propose two definitions of the difficulty associated to a sample:
1) the number of neurons activated at the penultimate layer.

2) the confidence degree of the classification (the lower the confidence the more difficult the
sample). In [42], a neural network is also used to estimate the difficulty of a given task relative to
the neural network “learning progress" and this indicator is then used to select the next samples to
learn.

Note that the expression “Incremental” learning is also used in machine learning fields like
decision trees [118, 97], decision rules [73], SVM [31], for characterizing the learning task done
with data that arrives continuously over time. Note also that the term was used in the context of
neural networks research, to allow the neural network to accommodate new arriving data and also
new additional classes. For instance, [20] and [117] are using incremental learning in the context
of fuzzy systems (systems where the frontiers of the classes are not clear-cut, since some items
may be associated with different classes as time goes by). It has also been used by [16] which
adapts the network with new heterogeneous remote sensing data and with the possibility of having
evolving classes. [21] are addressing the problem of incremental learning that occurs when new
data concerns new classes that were not present before, which could bring bad performances to the
network. In order to handle this problem [21] proposes to feed the network with new data concerning
a new class accompanied by data associated with old classes. For all these works, the “incremental”
aspect aims at enabling the network to integrate new data coming from the changing environment
and to discover new classes.

The aim of this chapter is to explore and check whether “curriculum incremental learning” en-
hances the recognition rate. For this purpose, we describe a set of experiments that take into account
the ordering of the training phase. The training starts with the VGG19 neural network and then
learns sets of images of different magnifications with their labels. These sets of images are issued
from the BreakHis dataset, the CNN is fed with a sequence of patches of images ordered by magni-
fication either in ascending, descending, or random order. We also made a control experiment with
a set of images with magnifications that were randomly mixed.

The main originality of this approach is that, to the best of our knowledge, no studies have been
done that exploit the inherent hierarchical ordering of image magnifications and the way these are
fed to a CNN. The second originality of our work concerns the data preparation: we provide a
clear and precise description of how the data are taken from the BreakHis dataset and we have re-
implemented all the approaches of the literature in order to build a sound comparison. This allows
us to provide a re-usable benchmark for future studies.
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Based on the state-of-the-art works, presented in Chapter 3, about the approaches using BreakHis,
this chapter is designed to confirm the hypothesis 3.1 (stated in Chapter 3) by using the curriculum
learning strategy. The main idea is to incrementally train our model on the images, beginning with
those of low magnifications, and gradually introducing the remaining images. Hence, in our ap-
proach, we define the difficulty of a sample by extra-information, namely the magnification (mean-
ing that a more detailed image is considered as more difficult to learn), moreover the curriculum
is done by training with more and more difficult sets of patches instead of increasing the difficulty
inside each patch.

Also, by scrutinizing the most recent studies, we noticed that, as far as we know, none of these
works gave a precise explanation about their data-preparation process (neither explains how they
split the data into train, validation, and test, nor the data augmentation details), and none of them give
access to the test set used. These shortcomings made the results difficult to reproduce, and therefore
difficult to compare. A second drawback of most of these approaches (see e.g. [124, 70] [91]) is
that the data-preparation may generate duplicate samples, for instance, images are augmented by
applying two distinct operators: they are flipped vertically and they are rotated 180o (resulting in
producing the same image twice!).

To address these limitations, in the next section, we explicitly describe our data preparation.
The third section is dedicated to the implementation of the curriculum incremental learning and the
experimental study.

5.2 BreakHis data preparation

Data preparation consists of splitting and augmenting the dataset in order to learn correctly as
well as to validate the approach. As recalled in Chapter 1, the dataset is first split into a training set,
which will be augmented, a validation, and a test set.

5.2.1 BreakHis data-subsets

In the BreakHis dataset, the benign and malignant categories are unbalanced: for instance, in
Table 3.1 we can see that concerning 40X magnification, there are 625 samples for the Benign cat-
egory and 1370 for the Malignant one, the Malignant category is the major class with an imbalance
ration IR over the minor class of 1370/625 = 2.19, denoted IR). Moreover, among the benign types
Fibro Adenoma (F) is the predominant subtype while Ductal Carcinoma (DC) is the predominant
one among the malignant ones.

In order to deal with these unbalanced datasets, we opted to over-sample the marginal classes,
because in the medical field, especially in oncology, the importance is not to detect one particular
type rather than another one, but to identify correctly each category which should thus be well
represented. Besides, we are dealing with small 1 datasets of around 2000 images per magnification
(see Table 3.1), hence augmenting the number of samples is highly required.

We can distinguish the different parts of BreakHis datasets regarding the number of times they
should be duplicated to obtain the same size as the majority category. This is done by quadrupling or
octupling some sub-classes since according to the repartition of the samples presented in Table 3.1
the majoritarian sub-class (the Ductal Carcinoma DC) is roughly eight times bigger than the smallest
sub-classes (A, TA, PT, LC, PC) and roughly four times bigger than (F). For the sake of generality,

1. BreakHis dataset is small compared to other works, for instance, VGG19 has been trained over millions of images.

76



the majoritarian sub-class is denoted M , the union of the samples that need to be octupled is denoted
o and the ones to be quadrupled q.

Definition 5.2.1: BreakHis data-subsets

The different parts of BreakHis are named as follows:
— Xi = Li ∪ Vi ∪ Ti for i ∈ { 40X, 100X, 200X, 400X }: Xi is the set of samples

with the magnification i. Xi is split into three subsets: one for the training phase of
the learning Li, one for validation Vi, and the last one for testing Ti: (Li, Vi, Ti) =

split(Xi, (70, 10, 20))

— Mi: the set of samples of Li that are in the major class. Here the majority category
is Ductal Carcinoma (DC).

— qi: the set of samples of Li that belong to marginal categories that should be quadru-
pled (imbalance ratio ≈ 4). It covers the subtypes F and MC.

— oi: the set of samples of Li that should be multiplied by 8 (imbalance ratio ≈ 8). It
contains A, TA, PT, LC, and PC subtypes.

5.2.2 BreakHis data-preparation algorithm

Thanks to Definition 4.3.2, 4.3.2 and 5.2.1, the balancing and augmentation done on the BreakHis
dataset is summarized by Algorithm 3. This algorithm shows the transformations that were chosen,
these choices are justified by the previous chapter (it was published in the proceedings of the "Con-
férence francophone sur l’apprentissage Cap’21" [66]).

The data preparation for binary and multi-class classification is done thanks to a call to Algo-
rithm 3 with the parameters M , q and o as defined by Definition 5.2.1 (for sake of simplicity, the
magnification i is omitted). Algorithm 3 aims at balancing the data in order to obtain an equal
number of each sub-type (inducing an equal number of benign and malignant items). For the sake
of shortness, the algorithm is described by using tr on the union of all the samples that should be
quadrupled or multiplied by eight. However, in our implementation, the work has been done sepa-
rately for each subcategory and each magnification, and for each of them, the augmentation is only
done until reaching the threshold corresponding to the size of the majority category (e.g. Adenosis
with the magnification 40X has been duplicated 8 times by doing Id, H, V, C, Hc, Vc, HVc, HVCc,
and the last operation done on it (HVCc) is performed to reach a total of 864× 0.7 = 605 images in
total (since 605 is the size of the majoritarian images of DC 40X used for training)).

Algorithm 3: BreakHis preparation with L = M ⊔ q ⊔ o

1 /* Doubling q ⊔ o*/

2 o′ ← tr(o,HV c, 100)

3 /* Balancing Sub-classes*/

4

L′ ←


(M ⊔ q ⊔ o) ⊔ o′ /* M + 1× q + 2× o */

⊔ tr(q ⊔ o ⊔ o′, H, 100) /* +1× q + 2× o */

⊔ tr(q ⊔ o ⊔ o′, V, 100) /* +1× q + 2× o */

⊔ tr(q ⊔ o ⊔ o′, C, 100) /* +1× q + 2× o */

return (L′)
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Proposition 5.2.1

After balancing the BreakHis dataset, no image is present twice.

Proof. Due to the fact that H(HV c(x)) = V c(x) and V (HV c(x)) = Hc(x) and C(HV c(x)) =

HV Cc(x), L′ can be rewritten as follows:

L′ =


M ⊔ q ⊔ o ⊔HV c(o)

⊔H(q) ⊔H(o) ⊔ V c(o)

⊔V (q) ⊔ V (o) ⊔Hc(o)

⊔C(q) ⊔ C(o) ⊔HV Cc(o)

As seen here, L′ does not contain any duplicated instance. □

Remark 2. The data preparation made in Algorithm 3 diversifies the transformations since it uses
eight transformations with two concerning geometrical properties (H,V), one concerning colors (C)
and four combinations of geometry and colors (Hc, Vc, HVc, HVCc).

Proposition 5.2.2

After preparation, the dataset L′ is such that
— for all magnification in 40X, 100X, 400X, the binary classification IR = 1. For 200X

IR = 1.011.
— for all magnification in 40X, 100X, 400X, the multi-classification IR = 1. For 200X,

the worst IR=1.037.

Proof. Since the duplication is done according to the threshold given by the majority subcategory,
and due to the choices made for the categories to duplicate 8 and 4 times, we get an IR ratio exactly
equal to 1 for all the subcategories except for A 200X (with IR=1.009 since twelves images are
missing for reaching 896) and TA 200X (with IR=1.037, 864 images are obtained instead of 896). □

Note that some approaches generate samples without checking whether they are duplicates of
already generated samples, our implementation pays attention to generating exactly the right number
of new samples that are needed with no duplication. Note that any algorithm that produces more
samples and then removes the duplicated ones is not as efficient as Algorithm 3 for two reasons:
first, it cannot guarantee the built-in balanced property, second, it has a greater spatial complexity.

Proposition 5.2.3

Algorithm 3 has a smaller spatial complexity than any algorithm that generates a duplicate-
free set containing the same amount of samples of each class for each magnification.

Proof. Due to proposition 4 and the use of the threshold relative to the majority class, the algorithm
generates only the samples that are required without creating duplicated samples. Hence the spatial
complexity 2 is only equal to the number of created samples. □

2. The spatial complexity of an algorithm is the space used by the algorithm without considering the size of the input
data.
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5.3 Experimental protocols on curriculum efficiency for classi-
fication

In this section, we first present the neural network architecture and computational details. Next,
we design experimental protocols to confirm Hypothesis 3.1 of Chapter 3.

5.3.1 CNN architecture and computational details

In this work, after several attempts, we have selected the VGG19 model [103] as described in
Section 1.1.6. Our choice is primarily motivated by the high performance of this network (recalled
in Section 1.1.6), and by the fact that it has been widely employed in histopathological breast cancer
classification studies.

The model is implemented with the Keras library, using Tensorflow GPU and deep learning
libraries. The model is trained with 4000 epochs with a batch size of 128. Adam-optimiser is used
with a learning rate fixed initially at 0.0001. The implementation is done on a compute node of
the OSIRIM (Observatory of Systems Information Retrieval and Indexing of Multimedia contents)
Platform [86] 3. The source code is available in [62].

5.3.2 Experimental protocols

Let us recall that the training is done on the specific part of the data called L (separated in L40X ,
L100X , L200X and L400X ) of the BreakHis Dataset, and the tests are done on the part called T of
BreakHis (see Definition 5.2.1) which is also distributed into four sets according to the magnifica-
tions.

We first re-implemented the best approaches of the state of the art namely InceptionV3 and
ResNetV2 with the data preparations and hyper-parameters defined in the previous Section. We call
these methods separated since they learn on each magnification separately. We also implemented a
separate version based on VGG19 transfer learning (called VGG19 in Table 5.1).

We then introduced six approaches in order to verify the magnification impact on the learning
process.

— The INCR (for incremental) approach aims at training the model on the grounds of the
weights obtained successively for the 40X, 100X, 200X and 400X magnifications as illus-
trated on Figure 5.2. More precisely INCR trains the network on 40X images then uses the
latest weights as starting point to train the 100X images and so on for other images) starting
from VGG19 weights.

— The Ctrl_INCR (for control incremental) approach consists in training VGG19 indepen-
dently with the same set of images as the incremental approaches but not incrementally (first
train and test on 40X images then train on a mixed set composed of 40X and 100X images
and test on 100X, then train on 40X + 100X + 200X and test on 200X then train on all images
and test on the 400X), as shown in Figure 5.1.

— The DECR (for decremental) approach aims at training and testing successively on 400X,
200X, 100X and 40X magnifications.

3. The compute node has the following characteristics: DELL T630 server, 2 Xeon 2640 V4 processors (20 threads), 2 x
400 Go RAID1 SSD disk, 1 x 10 Gb/s network, 4 GPUs Nvidia GTX 1080 TI (3584 cuda cores each, 11 Go RAM).
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Figure 5.2 – The INCR approach

— The Ctrl_DECR approach consists in training VGG19 similarly to the Ctrl_INCR approach
but with the respective appropriate sets of images (400X then 200X + 400X then 100X +
200X + 400X then all).

— The DIS (for disordered) approach aims at training successively on 200X, 40X, 400X, 100X.
— The Ctrl_DIS approach consists in training VGG19 similarly to the two others control ap-

proaches with the successive sets (200X, 40X + 200X, 40X + 200X + 400X, AllX).

5.4 Results and discussion

All the results of the experiments are shown in Table 5.1. The main conclusions that follow from
these results are that 1) the hypothesis is verified and 2) the best approach is INCR.

5.4.1 Accuracy results

First, the experiment performed on the three separated approaches (VGG19, InceptionV3 and
ResNetV1 [128]), where we trained then tested each magnification separately for both binary and
multi-class classification are confirming Hypothesis 3.1: the lower the magnification the higher the
accuracy.

Second, in most cases, VGG19 has a better accuracy than InceptionV3 and ResNetV1 on BreakHis
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40X 100X 200X 400X All
Separated approaches: Binary classification

VGG19 95.90 95.35 95.30 94.98 97.05
InceptionV3 95.68 95.52 94.78 94.22 96.95
ResNetV1 96.20 95.68 94.25 93.08 96.78

Incremental approaches: Binary classification
CTRL_incr 95.90 95.96 95.52 96.89 97.05

INCR 95.90 96.23 97.01 98.86 98.76
CTRL_decr 96.82 96.97 95.41 94.98 97.05

DECR 96.91 96.06 95.43 94.98 97.38
CTRL_dis 96.17 97.25 95.30 96.98 97.05

DIS 96.33 97.06 95.30 97.03 97.11
Separated approaches: Multi classification

VGG19 94.06 93.63 93.80 93.25 95.49
InceptionV3 95.12 94.33 93.57 93.15 95.37
ResNetV1 93.87 93.25 92.89 93.52 94.76

Incremental approaches: Multi classification
CTRL_incr 94.06 94.17 94.71 95.62 95.49

INCR 94.06 95.35 95.68 96.26 95.93
CTRL_decr 95.68 94.91 94.22 93.25 95.49

DECR 96.03 94.54 94.40 93.25 95.67
CTRL_dis 95.18 96.07 93.80 95.32 95.49

DIS 95.23 96.13 93.80 95.78 95.71

Table 5.1 – Accuracy Results obtained on BreakHis, the approaches are in lines, the datasets are in
columns

images. Moreover the 6 new approaches implemented are more accurate than VGG19 (thanks to the
benefit of transfer learning from a more suitable field). Lastly, we observe that among the new
approaches, the INCR approach, that sequentially feeds images with a larger zoom factor to the
network, gives more accurate results with a general test accuracy of 98.76% (enhancing the VGG19
separated approach, and improving the state of the art), it shows also a better behavior than the
Ctrl_INCR approach (that trains on the same amount of images but in a random way) and than the
DECR and DIS ones. This is summarized by the following rank ordering that holds for Binary and
Multi-classification:

ResNetV1 <All InceptionV3 <All VGG19 =All Ctrl_∗ <All DECR <All DIS <All INCR

where <All means more accurate in the test of images of any magnification (last column of Table
5.1).

The fact that INCR is more accurate than Ctrl_INCR may be explained by the fact that perform-
ing intra-transfer learning seems to better guide the gradient descent towards the local optima, as
opposed to starting from VGG19 weights and exploring a huge amount of data from scratch.

In order to support these results, we used the Layer Wise Relevant Propagation (LRP) technique
[75] which selects the pixels (forming a saliency-map) that are the most relevant for guiding the
classification task. The LRP approach exploits the CNN structure and weights in order to discover
this map. We use LRP on several wrongly classified images from the 400X test with CTRL_INCR
but correctly classified with INCR, e.g. the image SOB_M_DC-14-5694400-014 shown on Fig-
ure 5.3. This figure shows the initial image on the left, on the center its LRP saliency map obtained
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Figure 5.3 – An Image from BreakHis (left), its associated saliency maps obtained with
CTRL_INCR (center) and INCR (right)

with the control protocol and on the right, the one obtained with the incremental protocol. We can
see that the incremental protocol activates more regions of interests for the classification task than
the image obtained by the control protocol. This experiment reinforces the idea that the network is
learning better with the curriculum strategy.

Let us recall that a fair comparison with state of the art approaches was impossible, since as
mentioned above, most of the state of the art proposals did not precise neither their data preparation
nor the parameters of their network, nor the size and nature of the test set. Besides, none of the
studies cited in Table 3.2 made experiments covering both the classification on the datasets of the
four different magnifications separately and the classification on the whole dataset. This is why
we re-implemented the two architectures that gave the best results in [77], namely InceptionV3 and
ResNetV1. The accuracy rate obtained in table 5.1 demonstrates that our choice of VGG19 network
and our incremental curriculum strategy gave better results than the two other architectures. Note
that 3.2 shows that [77] obtained an accuracy rate of 99.2% in the multi-class classification of an
image of any magnification. However, in this work, an additional external dataset has been added to
supplement the lack of data.

One main goal of this work was to experiment the use of curriculum learning based on mag-
nification knowledge in the cancer type and sub-type classification. The experiment has not only
demonstrated the benefits of a guided feeding but also showed that our approach has outperformed
the state of the art results.

5.4.2 Duration of the training period

Table 5.2 represents the computational time taken by the training process of the different proto-
cols. Note that the training does not stop directly after stabilization since every protocol is system-
atically trained on a fixed number of epochs (4000 epochs for each magnification training set and
16000 epochs for the whole training set) for sake of fair comparison.

The average time taken for the training phases of the whole dataset (column All) is around 30
minutes and 59 seconds for the binary classification and around 31 minutes and 54 seconds for
the multi-class classification. We note that for the separated approaches of the literature where
each dataset is learned independently, VGG19 is the fastest network for both binary and multi-
class classification for every magnification, namely the training time for the whole set is 30mn18s
for the binary classification and 31mn02s for multi-class classification. This can be explained by
the fact that InceptionV3 and ResNetV1 are deeper networks (with respectively 48 and 159 layers
compared to 19 layers for VGG19 ) with complex intermingled blocks (contrarily to VGG19 which
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40X 100X 200X 400X All
Separated approaches: Binary classification

VGG19 07:23 08:05 07:56 07:02 30:18
InceptionV3 08:49 8:52 09:06 08:12 34:12
ResNetV1 09:11 09:40 09:33 08:57 38:03

Incremental approaches: Binary classification
CTRL_incr 07:23 15:20 22:07 30:18 30:18

INCR 07:23 14:22 20:25 28:09 28:09
CTRL_decr 07:02 15:38 23:58 30:18 30:18

DECR 07:02 15:27 24:21 31:09 31:09
CTRL_dis 07:56 15:34 23:13 30:18 30:18

DIS 07:56 15:49 22:58 32:05 32:05
Separated approaches: Multi classification

VGG19 7.29 08:11 08:02 07:05 31:02
InceptionV3 08:55 09:13 9:15 8:24 35:28
ResNetV1 9:19 09:52 09:47 09:20 40:05

Incremental approaches: Multi classification
CTRL_incr 7.29 15:33 23:02 31:02 31:02

INCR 7.29 15:12 22:05 29:57 29:57
CTRL_decr 07:15 15:46 24:02 31:02 31:02

DECR 07:15 15:39 24:36 31:37 31:37
CTRL_dis 08:02 15:34 23:13 31:02 31:02

DIS 08:02 16:23 23:02 32:18 32:18

Table 5.2 – Computational training time in (minutes:seconds). The training is done with 4000 epochs
for each magnification set and 16000 epochs for the whole training set, the approaches are in lines,
the datasets are in columns

is sequentially organized).
Concerning the experiments done on curriculum learning, we can see that in the binary classifi-

cation, the incremental approach gains 124 seconds (which represents 6% of the training time) over
the control approach and 65 seconds in the multi-class classification. Also, the incremental approach
reduces the training time compared with the decremental approach and the disordered approach.

5.4.3 Number of epochs for training stabilization:

To confirm the claim of this study that INCR is the best approach, we compare also the number of
epochs for training stabilization (StbE described in Section 4.6). As said in the previous paragraph,
the learning was not stopped at the stabilization epoch, but the training was done for a fixed number
of epochs. However, the stabilization epoch is very useful for comparing the network’s behaviors.
We give here only two remarkable numbers: the stabilization epoch for INCR with the whole dataset
is 12313 while the one of DIS approach is 14659 given that these curriculum approaches already
require 12000 epochs to load the whole dataset (there are 4000 epochs to obtain network N0 then
4000 for obtaining the first network’s weights for the first magnification package, and so on, hence
12000 epochs are required to obtain the final network that will be fine-tuned on the last magnification
images package). We note that only 313 supplementary epochs are necessary to reach stabilization
for the INCR approach, while the additional epochs required by DIS are 1659. So the stabilization
time of the INCR approach is 5 times faster.
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To sum up, there are three novelties in this chapter: the new way to make the data preparation
explicit and reproducible (the implementation and the datasets are available in [62]), the use of
magnification as a criterion for guiding the curriculum learning process, the proof of concept on the
Breakhis dataset.

In order to check our hypothesis, we have implemented eighteen approaches including the al-
gorithms found in the literature. This implementation was done for a fair comparison of the results
with the same data preparation. The experiments confirm that starting to train a network from the
lowest magnification images towards the highest magnification gives a more accurate network than
the same one trained randomly. This technique of guided CNN feeding may be very useful for other
domains such as multi-resolution satellite images or continuously-changing environment images.

The ideas developed in our study can be exported to other domains thanks to the formalization
provided in Section 5.2. Concerning curriculum learning, it has already been applied in different
fields (see Section 5.1) and our study emphasizes the benefits of using high-level knowledge as a
curriculum criterion, especially in fields where images are available with different magnifications.

We also notice that there is a limitation concerning the BreakHis dataset itself since in this
dataset, the same area is not available in the different magnifications. Indeed, contrary to what could
be expected from the encoding of the names of the files in BreakHis, there is no link between two im-
ages with the same “slide-id” (also called “patient id”) and the same sequential number. For instance,
the images called SOB_B_A-14-22549AB-40-007.png and SOB_B_A-14-22549AB-100-007.png
are named as if they were magnification X40 and X100 taken from the slide 22549 area 007, but in
fact 007 is a random number, hence it does not imply that the two images cover the same area. This
observation gave birth to doubts about the correctness of the existing labeling of BreakHis since
all the images of the same slide-id have the same cancer-type label. This leads us to believe that
the label of some images could have been inferred instead of obtained from an expert. This doubt
about BreakHis dataset labeling is increased when one considers that some works use the label of
an entire image for labeling its subarea (while a tissue image may contain normal, malignant, and
benign regions at the same time).

These issues underline the need for benchmarks with clearly defined test data sets. Our pro-
posal may be considered as a first step towards building the criteria for the certification of such
benchmarks.

Coming back to the second scientific question of this work, namely, “is magnification a good
criterion to guide curriculum learning ?”. We have only shown that this is the case for the precise
application of cancer classification with the BreakHis dataset, further experiments are required to
show the validity of these criteria in other domains.

A perspective of this work is to explore another technique of guided learning, that we could call
“focused feeding”. The idea is to propose a quadruple (because we dispose of four magnification
types) Siamese convolutional neural network where four parallel networks are joined by a common
fully connected layer. Each Siamese network receives an image with a specified magnification of
the same area. This architecture could bring more accuracy by benefiting from several magnified
views of the same area. Moreover by using layer-wise relevant propagation [9] we could discover
which parts of the images with which magnification were the most informative for the decision task.

Note that this perspective can only be done with an appropriate dataset. However, [58] could an-
swer this limitation since they propose to use a GAN in order to generate ultrasound super-resolution
images (SR) of good image quality wrt to LR images (in terms of image similarity metrics, infor-

84



mation fidelity criteria, and visual effects). The use of the GAN ensures that a re-degenerated image
of the generated SR one is consistent with the original LR image, and vice versa. Hence, [58] opens
an interesting perspective on the possibility of generating images of distinct magnifications of the
same area starting from one image of this area.

Through this part, we explored the use of expert knowledge at the input level of the neural
network. We presented significant contributions in the field of data preparation. First, we introduced
new metrics to evaluate data diversity, and through carefully designed experimental protocols, we
gained insights into the mechanisms of data augmentation through an approach that highlights the
relevant supplementary features learned from the transformed images. Additionally, we address
existing limitations in data preparation transparency and propose a framework that ensures fairness
and efficiency in the process.

Furthermore, after an extensive review of the state-of-the-art literature, we identify a remarkable
hypothesis that establishes a connection between image magnification and classification accuracy.
This discovery leads us to explore the curriculum learning strategy, where we leverage high-level
information about image magnification to order the training set accordingly.

The results of our experiments strongly confirmed the positive impact of ordering and high-
lighted the importance of using high-level knowledge during the data preparation phase. These
findings underline the significance of our contributions to the progress in characterizing efficient
data preparation for classification.
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Part III

Hierarchical knowledge used for
designing the learning engine
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Dans cette partie, nous nous intéressons à un type spécifique de classification pour lequel des
connaissances de haut-niveau supplémentaires sont fournies. Plus précisément, nous traitons des
données multi-étiquetées pour lesquelles un chemin hiérarchique relie les étiquettes. Ce type particu-
lier de classification est connu sous le nom de "classification hiérarchique multi-étiquettes" (HMC).
Il s’agit d’une tâche complexe qui implique l’encodage de contraintes de haut-niveau dans le mo-
dèle de réseau neuronal. Plus précisément, le problème HMC est une extension du problème de la
classification multi-labels (MLC) où les étiquettes prédites doivent respecter les contraintes hiérar-
chiques existant dans l’ensemble de données. Avant l’essor du domaine HMC, la MLC était réalisée
sans prendre en compte les liens hiérarchiques entre les données. Pourtant, cette information sup-
plémentaire reliant les classes et les sous-classes serait utile pour améliorer les performances de
la classification. Récemment, certains travaux ont intégré cette information hiérarchique en propo-
sant de nouvelles architectures de réseaux de neurones (appelées Branch-based CNN (B-CNN) ou
Hierarchical-based CNN (H-CNN)), obtenant des résultats prometteurs. Cependant, avec ces archi-
tectures, le réseau est séparé en blocs où chaque bloc est responsable de la prédiction de la classe
d’un niveau donné de la hiérarchie.

Pour améliorer ces solutions et tirer un meilleur parti de l’ensemble du réseau, nous proposons
une nouvelle architecture dans laquelle toutes les couches du réseau participent simultanément à la
prédiction de toutes les étiquettes d’un échantillon, c’est-à-dire de la classe située au niveau supé-
rieur de la hiérarchie à la classe située au niveau inférieur. En plus de traiter le problème HMC, nous
proposons un mécanisme d’abstention qui permet au réseau de s’abstenir de fournir sa décision de
classification à partir d’un certain niveau si sa confiance est inférieure à un seuil défini. Cette partie

contient trois chapitres : un premier chapitre formalisant le problème HMC, où les concepts de base
sont introduits, un deuxième chapitre présentant notre proposition pour traiter le problème HMC, et
enfin un troisième chapitre décrivant le mécanisme d’abstention.

Les principaux objectifs de cette partie peuvent être résumés comme suit :
— Établir un ensemble de définitions et de notations pour traiter les problèmes de HMC et

d’abstention.
— Intégrer les connaissances hiérarchiques dans les réseaux neuronaux :

— Concevoir une nouvelle architecture de réseau neuronal (en étendant la littérature exis-
tante).

— Définir des fonctions de perte spécifiques adaptées à la nouvelle architecture.
— Concevoir un mécanisme d’abstention basé sur des informations hiérarchiques afin d’ac-

croître la robustesse du système.
— Introduire de nouvelles mesures d’évaluation pour quantifier l’efficacité de l’abstention.

In this part, we are interested in a specific type of classification for which additional high-level
knowledge is provided. Specifically, we are dealing with multi-labeled data for which a hierarchical
path is linking the labels. This particular type of classification is known as "hierarchical multi-label
classification" (HMC) which is a challenging task involving the encoding of high-level constraints
into the neural network model. More precisely, the HMC problem is an extension of the multi-label
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classification (MLC) problem where the predicted labels must respect the hierarchical constraints ex-
isting in the dataset. Prior to the rise of this HMC field, MLC was done without taking into account
the hierarchical links between the data. Nevertheless, this extra information linking classes and sub-
classes is useful to improve classification performance. Recently, some works have integrated this
hierarchical information by proposing new neural network architectures (called Branch-based CNN
(B-CNN) or Hierarchical-based CNN (H-CNN)), obtaining promising results. However, with these
architectures, the network is separated into blocks where each block is responsible for predicting the
class of a given level of the hierarchy.

To improve these solutions and take better advantage of the whole network, we propose a new
architecture in which all layers of the network are involved in the prediction of all the labels of a
sample, i.e., from the class at the top level of the hierarchy to the class at the bottom one. In addition
to dealing with the HMC problem, we propose an abstention mechanism that allows the network to
abstain from providing its classification decision from a certain level if its confidence is lower than
a defined threshold.

This part contains three chapters: a first chapter formalizing the HMC problem, where the basic
concepts are introduced, a second chapter presenting our proposal to deal with the HMC problem,
and finally a third chapter describing the abstention mechanism.

The main objectives of this part can be summarized as follows:
— Establish a set of definitions and notations for dealing with HMC and abstention problems.
— Integrate hierarchical knowledge in neural networks:

— Design a new neural network architecture (extending the existing literature)
— Define specific loss functions to suit the new architecture.

— Design an abstention mechanism based on hierarchical information to increase the robustness
of the system.

— Introduce new evaluation measures to quantify the abstention efficiency.
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Chapter 6

Formalising Hierarchical
classification

Résumé en français du Chapitre 6 : "Formalisation de la classification hiérarchique"

La classification multi-labels hiérarchique est une tâche critique, imposant des contraintes hiérar-
chiques entre les étiquettes des classes, où il n’est pas juste question de bien assigner une image
à son ensemble de classes, mais aussi que cet ensemble soit en accord avec la hiérarchisation des
labels.
Dans ce chapitre, nous explicitons formellement le cadre de la classification multi-labels hiérar-
chique. Nous commençons par énoncer les travaux phares de la littérature ayant traité de la clas-
sification hiérarchique à l’aide des réseaux de neurones convolutifs. Ensuite, nous présentons une
formalisation des principales notions et principes nécessaires à la mise en place de notre solution.
Nous donnons ensuite une interprétation de ce type de classification dans un cadre probabiliste. Nous
clôturons ce chapitre par l’identification et la formalisation de deux contraintes principales régissant
cette problématique.
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6.3 The probabilistic view of HMC classification . . . . . . . . . . . . . . . . . . 96
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As mentioned in Chapter 1, classification is a crucial task in everyday life, it is one of the
primary and primordial faculties learned by an agent to discover its environment, and in certain
animal species, it remains a vital task on which depend their survival and perennity [105]. A smarter
task is hierarchical classification since it involves high-level structural knowledge. Indeed, hierarchy
is present in many fields of applications (the reader can refer to the survey [102] for more details)
such as:

— document classification: [22] designed an automatic document classifier by using hierarchies
like e.g. USPatent dataset, the authors underlined the fact that hierarchical views of text
databases can improve search and navigation for a user;

— speech recognition: the hierarchical organization of emotions can help to distinguish bet-
ter some confusing emotions such as boredom and sadness, see, e.g., the Berlin Emotion
Database (EMO-DB) [18];

— musicology: in genre recognition, several musical genres are hierarchically organized and
this hierarchy plays a capital role in the classification, see e.g. the dataset constructed in
[19];

— chemistry: in protein functions classification, the protein functions are naturally organized
into hierarchies based on EC nomenclature 1, e.g. ExplorEnz is one of the largest hierarchical
enzyme databases [68];

— genomics: in genetic disease, the genetic tree is a key piece of hierarchical information, see
e.g. the catalog of Human Genes and Genetic Disorders[6]

— geometry: a semantic meaning can be assigned to geometry by using an existing class hier-
archy, e.g. Princeton Shape Benchmark for 3D shape classification [100].

In this study, we adopt the point of view defended by Silla and Freitas in their survey [102] which
defines hierarchical classification as the process of doing classification under the guidance of a pre-
established taxonomy, in the context of supervised learning. For instance, hierarchical classification
is a particular case of structured classification where extra information is available about the classes
organization which can be a tree (like a taxonomy), a forest (like an ontology), or any other graph.
The difficulty of the hierarchical classification is greater when the classes are organized into a DAG(
Directed Acyclic Graph) structure than when they are in a tree structure (each node can have only
one parent).

The approaches of hierarchical classification can be distinguished according to the depth at
which it is performed. For instance, some works always classify at the level of leaf nodes, this
kind of approach is called mandatory leaf-node prediction (MLNP), on the other hand, some ap-
proaches classify at any level of the hierarchy: non-mandatory leaf-node prediction (non-MLNP).
In non-MLNP approaches, a sample can be assigned to a label at any level in the hierarchy, it is
often done by using a confidence threshold under which no further digging inside the sub-levels of
the classification is done. This categorization is refined according to the precise aim of the classifier
and the way it exploits the hierarchy:

— flat classifiers are MLNPs that only aim to give the leaf class, then the hierarchy may be
used a posteriori to deduce all the implicitly assigned ancestors. The drawback of this kind
of approach is that it requires discriminating among a large number of classes (the leaves of
the taxonomy), moreover, the hierarchy is not used to guide the learning.

— local classifiers are non-MLNPs that aim to give the class of the input at a specific level, they

1. EC stands for Enzyme Commission numbers which is a numerical classification of enzymes, based on the chemical
reaction they catalyze.
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are using the predicted upper class to narrow the choices of the current class (they are also
called top-down approaches). A disadvantage of these approaches is that an error at a given
level will propagate to the sub-levels.

— global classifiers are non-MLNPs that provide as an output, the entire path of classes in the
hierarchy from the root class to the leaf instead of only the leaf (i.e. the finer class).

In order to overcome the limitations mentioned above, this chapter is dedicated to introducing the
basic notations that allow us to express rigorously in an abstract way any hierarchical classification
problem. The purpose of this chapter is to set up rational criteria to guide the construction of solu-
tions to the hierarchical classification task. After summarizing some relevant state-of-the-art works
(Section 6.1), we describe the formal framework that we have created for introducing the notations
used in all this part (Section 6.2), then we formalize two constraints imposed to any hierarchical
classifier (Section 6.4).

6.1 State of the art about hierarchical classification

As already mentioned in the head of this part, Hierarchical multi-label classification (HMC) aims
at classifying objects with a set of labels that respects a set of given hierarchy constraints. In HMC,
the classes of objects are organized as a tree where the edges correspond to superclass-subclass
links. In this section, we review some works dealing with hierarchical classification, we exclude
MLNP approaches because they do not exploit the hierarchical knowledge (they can be considered
as mere MLC). In this state-of-the art, the considered non-MNLP approaches are divided into four
families. The two first families are global approaches: the hierarchical adjustment approaches
and the branch based CNN approaches. Hierarchical adjustment approaches are modifying the
output of the superclass according to the one of the subclass. Branch-based CNN are using specific
architectures to handle the hierarchical concept. The third family contains local approaches that
use a cascade of classifiers (one per category) trained in a sequential workflow. The last family
covers non-MNLP approaches that are neither global nor local since they translate the hierarchical
constraints inside the loss function. Note that it is not a typical HMC approach since this mechanism
may be applied to constraints that are not necessarily hierarchical.

6.1.1 Hierarchical adjustment

A natural idea was proposed by Giunchiglia and Lukasiewicz in [36], it consists in imposing a
hierarchical constraint by adjusting the output according to the hierarchy. Their solution is based
on enforcing inclusion between the objects of a class to its superclass: if an object is assigned to
a category A, it should also be assigned to its supercategory B (A ⊆ B). For that, they adjust the
output zB of the superclass B wrt the output ŷA of A, by defining ŷB = max(zB , ŷA). The final
loss function is a sum of the loss function concerning the output ŷA and the loss function concerning
the adjusted output ŷB .

A benefit of [36] is to impose the respect of the hierarchy (by enforcing each super-class pre-
diction to be consistent with its subclass prediction). A drawback is that this approach is using a
sigmoid function which may allow to have several predicted classes by level (no exclusivity per
level).
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Figure 6.1 – The B-CNN architecture described in [136]

6.1.2 Branch-based CNN approaches

In the field of branch-based CNN approaches, Zhu and Bain [136] were the first to propose a
neural network architecture, called B-CNN, to support the hierarchy constraint. The B-CNN for
“Branch Convolutional Neural Network (B-CNN)” is a CNN with a particular architecture where
the first layers are dedicated to the prediction of coarse classes and the last layers to the prediction o
fine classes, according to a given hierarchical structure of the target classes. The predictions of the
different hierarchical levels are then aggregated with a weighted sum of the loss functions associated
to each of them. Moreover, the learning phase is done by following a curriculum incremental strategy
(as the one we proposed in [63], see Chapter 5 ) consisting in successively learning coarse to fine
concepts. The authors’ experiments show that B-CNN improves over the corresponding baseline
CNN on the benchmark datasets MNIST, CIFAR-10, and CIFAR-100 (See [1] for more details
about these two last datests). Their architecture is shown in Figure 6.1.

Similarly, Seo and Shin [98] are using hierarchical classification for recognizing and classifying
people’s clothing in apparel images. Their proposal is a VGG19 architecture with additional inter-
mediary outputs: the network is able to give three predicted values for a given sample: one at the top
level of the hierarchy, which is the coarsest category, one at the middle level and the last one at the
bottom, which is the finest level (these levels were respectively named “coarse 1”, “coarse 2” and
“fine” by Zhu and Bain in Figure 6.1).

In the approach of Kolisnik et al. [54] a new architecture, called H-CNN, is introduced based
on B-CNN and designed on VGG16 model to classify the images of Kagfgle Fashion Image dataset
under hierarchical constraints. The model is an extension of the solution proposed in Seo and Shin
[98] which separates the neural network into connected blocks where each block is responsible
for predicting a class at a given level. The novelty of this study is the computation of conditional
probabilities by progressively updating a Conditional Probability Weight Matrix (CPWM) in order
to obtain the adjusted probabilities of the subclasses knowing the probabilities of the superclasses.
Note that, the conditional probability update was previously used by Phan et al. [89] to highlight
the relationships among diseases in classification of chest X-rays, and also by Taoufiq et al. [113]
for urban structure classification. The results of H-CNN are promising and enhance the accuracy
of fine-classes prediction compared to a simple model and to a B-CNN model without conditional
probability adjustment.

Note that the main goal of these approaches is to refine the prediction of fine classes, which
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Figure 6.2 – The hierarchical classifier of [79].

guarantees neither respect for the hierarchy nor the improvement of the prediction accuracy of su-
perclasses. One benefit of these approaches is that, as the neural network is divided into blocks, the
learning parameters for the network as a whole can be reduced.

6.1.3 An example of local approach

We restrict our presentation for illustrating local classification to only one approach, namely
[79], because it is the only hierarchical approach (as far as we know) experimented on BreakHis
(which is one of the datasets we are interested in). Murtaza et al. [79] build three classifiers: a
binary classifier for predicting whether the tissue is benign or malignant, a multi-class classifier for
the benign subclasses (A, F, TA, PT) and a second multi-class classifier for the malignant ones (DL,
LC, MC, PC). The architecture is a cascade network where the output of the binary classifier guides
the choice of the second classifier to use.

The workflow of their approach is shown on Figure 6.2: first, the first part of the network (called
BC1 in this diagram) is trained for labeling the super-class (benign or malignant), then based on this
prediction, a choice is made about loading either the network B2 if the superclass is benign or the
network M2 otherwise. The training is thus done in two separate stages.

The approach is a local approach in the taxonomy of Silla and Freitas [102], and even if it allows
for some predictions mistakes, there is no hierarchy violation by construction since they use the
prediction of the main class in order to select the specialized network that will give the subclass in a
following stage.

6.1.4 Loss functions integrating hierarchical constraints

As a third part of this state of the art, we expose works dealing with semantic loss functions. Lots
of articles are dealing with the use of a semantic loss function for translating high-level knowledge.
Among them are the work of Xu et al. [129] which proposes to integrate a Boolean logical constraint
into a loss function, called semantic loss function. The article focuses on constraints expressing the
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exclusive membership to a unique class while using a layer of sigmoid activation functions. More
precisely, for each sample s0, the network provides a vector of n probabilities ŷ = (ŷ1, . . . , ŷn)

where ŷk represents the predicted probability that the variable Xk is true for the input s0. The
semantic loss function Losss (where s stands for “semantic”), associated with the constraint, named
α, saying that only one variable among X1, . . . , Xn should be true (denoted x |= α, moreover the
fact that the precise variable is Xk is denoted by x |= Xk), is defined by:

Losss = − log
∑
x|=α

∏
k:x|=Xk

ŷk
∏

k:x|=¬Xk

(1− ŷk)

In other words, let x be a vector with a single 1 and 0’s everywhere else (representing what the
ideal output would be), let us say that the 1 is at position k in x, then the value ŷk obtained by the
sigmoid is multiplied by all the 1 − ŷi for all i ̸= k, this represents the discrepancy between the
obtained vector and an ideal one. The semantic loss Losss is the sum of this computation for any
possible ideal vector x (i.e., any x s.t. x |= α).

Example 4. Suppose that we have a vector x of dimension 2. The two ideal possible vectors for x
are (1,0) and (0,1) (i.e., satisfying that only one variable is true)

— Suppose that ŷ = (0.7, 0.8) the loss function defined above gives: Losss(ŷ) = − log(0.7 ∗
0.2 + 0.8 ∗ 0.3) ∼ 0.42

— Suppose that ŷ = (1, 1). It leads to Losss(ŷ) = − log(0) ∼ +∞
— As expected if ŷ = (1, 0) then Losss(ŷ) = − log(1 ∗ 1 + 0 ∗ 0) = 0

This example allows us to understand the behavior of this loss function which penalizes the
violation of exclusive membership to a unique class. This paper presented a new way to translate
the fact that there is only one output value into a Boolean constraint, and this encoding can be
generalized to represent any logical constraint the predicted classes of a sample.

6.2 Principles and notations about hierarchical dataset labeling

In this section, we introduce the notations that we will adopt to handle the HMC problem. We
consider a dataset D = {s1, s2, ..., sn} of n samples, with a hierarchy of labels C = C 1∪C 2∪ ...∪
CC , the labels are organized in a tree of depth C ∈ N, where the more general labels are the nodes
of the first stratum (or level) C 1 and the most specific ones are the leaves (or terminal nodes) which
are situated in the last stratum CC . The set of classes in a strata is called a category. Each stratum
C i is composed of a number Ni of classes: |C i| = Ni and

∑C
i=1 Ni = |C | . The classes are

uniquely identified by two numbers: the index i of the level and the absolute index j of the class in
this level (j ∈ [1,Ni]): cij denotes the jth class of the ith hierarchy level. The hierarchical relations
between classes are described by two functions ch (for children) and pa (for parent) where ch(cij)

gives the list of the indexes of the classes of level i+1 that are subclasses of the class cij , and pa(cij)

is the superclass of cij at level i− 1. Figure 6.2 illustrates the hierarchy structure of labels.
In this tree hierarchy, it is assumed that all leaves are situated at level C, and that each node of

any other level has at least one child (in this case, it is called an internal node), and that, at each
level, at least one node has more than one child (otherwise this level should be the last one 2. If there

2. This assumption is done without loss of generality, since every hierarchical tree can be transformed for verifying it:
once the depth C of the hierarchy is established (it is the greatest level such that there is at least one node with a sibling).
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Figure 6.3 – Hierarchy structure of labels (0 being the fictive root, it is the first node of each path to
any node in the hierarchy), for example, ch(c11) = {1, 2, . . . , k} and pa(c2l ) = c1N1

. (A fictive node
c3e was added as a virtual child of the node c2k to transform this latter into an internal node)

is a node cij from a level i ∈ [1, C − 1] that has no child then this node can be replicated as many
time as necessary in all the following levels to create fictive descendant nodes until the last level C.

Under this convention, it holds that:

Ni < Nj when i < j (6.1)

Also, in this study, we assume that each sample s of the dataset D, is associated to a ground-truth
label which is a C-uplet, given by the attribute glabel, such that: s.glabel = (c1, . . . , cC) where each
ci ⊆ C i is the ith label of the C-uplet, abbreviated s.glabel(i), which corresponds to the ground-
truth classes of the sample at the ith level. Here we consider that ci is a set of classes in C i, since
we want to cover the most general case where one sample can belong to several classes at the same
level. However, this situation will be forbidden by the intra-category exclusivity (ILE) principle.
Indeed, in this data labeling, two fundamental principles must hold:

— At each level i, any sample s from D has a unique ground-truth class given by s.glabel(i): 3

∀s ∈ D,∀i ∈ [1, C] : |s.glabel(i)| = 1 (ILE principle)

— For any sample s from D, the ground-truth label is hierarchically organized and its compo-
nent labels represent a correct path from the root to a leaf in the hierarchy i.e. s.glabel =

(c1j(1), c
2
j(2), . . . , c

C
j(C)) is s.t.:

c1j(1) ∈ C 1 and ∀i ∈ [2, C], j(i) ∈ ch(ci−1
j(i−1)) and cij(i) ∈ C i (ILH principle)

Example 5. Se recall that in the BreakHis dataset (See Section 3.1), each sample s is double-
labeled, benign subtypes are Adenosis (A), Fibro Adenoma (F), Tubular Adenoma (TA) and Phyl-
lodes Tumor (PT); and malignant sub-types are Ductal Carcinoma (DC), Lobular Carcinoma (LC),
Mucinous Carcinoma (MC) and Papillary Carcinoma (PC). The hierarchy has two levels C = 2:
the category C 1 which represents the tumor type, and the category C 2 which is the category of the

3. Note that the assumption of exclusivity of label, ILE principle, is done without loss of generality. Any dataset where
a sample is affected with several labels of the same category, could be redesigned in order to satisfy this principle (e.g. by
creating a new label joining these labels).
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tumor subtype. More precisely, C 1 = {B,M} with N1 = 2 and C 2 = {A, F , TA, PT , DC, LC,
MC, PC} with N2 = 8.

Here, c11 = B and ch(c11) = {1, 2, 3, 4}, i.e., the subtypes of the benign class are the four first
classes of category C 2 namely: A, F, TA and PT respectively corresponding to c21, c22, c23 and c24.
Similarly, ch(c12) = {5, 6, 7, 8} contains the indices of the classes of the malign subtypes. Moreover
Fibroadenoma is a benign tumor, is translated into pa(c22) = c11 = B, while Lobular Carcinoma is
malign is translated into pa(LC) = pa(c25) = c12 = M .

B M

A F TA PT DC LC MC PC

C 1 :

C 2 :

In this example, the dataset respects the ILE and ILH principles. Indeed, concerning the ILE
principle, each sample of BreakHis dataset has only one unique label per level [107]. Concerning
the ILH principle, for any sample, the tumor type and subtype are consistent since there is no benign
sample with a malign subtype and conversely.

Imagine that BreakHis would contain a sample labeled A and also labeled DC then it would
violate ILE. Moreover the existence of a sample labeled (B,DC) in BreakHis dataset would violate
ILH.

In the previous example, the violation of ILE or ILH would imply that the categorization is not
exclusive or the dataset is noisy (some samples are incorrectly labeled).

Example 6. Another example of violation of ILE would be a zoological dataset with an animal that
would be both a mammal and a fish (such as a dolphin).

In the following, we assume that all the considered datasets comply with ILE and ILH principles,
this will imply that classifiers should obey the corresponding constraints, as explained in Section 6.4.

6.3 The probabilistic view of HMC classification

The aim of this section is to situate a HMC classifier in the context of probability theory. More
precisely, we are interested in the prediction of all the classes at each level of the tree, i.e., we focus
on non-MLNP global hierarchical classification where the dataset D respects the labeling principles
defined in Section 6.2).

In this case, as presented in Section 1.2, we define a classifier as a function that associates a
sample s with a predicted label, denoted s.plabel or ĉ, which is a C-tuple of sets of the different
classes predicted across the C levels. The classification decision to affect a class ĉ to a sample s is
based on the vector of vectors ŷ(s) = (ŷ1, . . . ŷC). In this section, without loss of generality, we
consider a fixed level i, hence we focus on the determination of the predicted classes ĉi at level i. At
each level of the tree, we can adopt the vision described in Section 1.2, then, ŷi(s) is the probability
vector, such that each value ŷij(s) represents the probability with which the sample s can be affected
to the class cij . Proposition 1.2 can then be projected at each level i:
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Corollary 6.3.1: Of Proposition1.2

For any level i in [1,C], for any j in [1,Ni], ŷij (resp. ŷi) based on a sigmoid (resp. softmax)
activation function is a probability function.

— A sigmoid activation function associates to any event θij(s) a probability where θij(s)
is the event of affecting the class cij to a sample s at level i.

— A softmax activation function associates to any event θi(s) a probability where θi(s)
is the event of affecting a class in {c1, . . ., cNi

} to a sample s at level i.

Example 7. Based on the the context of Example 5, we suppose that:
— The hierarchical classifier is activated with sigmoid functions. After forwarding the sample

s, the event θ11(s) is the event of affecting the sample s to the the class c11 (which corresponds
to the benign class). Suppose that we got at the first level: ŷ1 = (0.65, 0.85), that means that
P(θ11(s)) = 0.65. The sample s has a probability of 0.65 to be affected to the benign class
and a probability of 0.35 to not be affected to it. In this example, with the sigmoid function,
the sample s will be affected to both benign and malignant class (since there is no exclusivity
in the same level and both values exceed 0.5.

— The hierarchical classifier is activated with a softmax function. the event θ1(s) = 1 is the
event of affecting the sample s to the the class c11 (which corresponds to the benign class).
Suppose that we got at the first level: ŷ1 = (0.65, 0.35), that means that P(θ1(s) = 1) =

0.65 and P(θ1(s) = 2) = 0.35. The sample s has a probability of 0.65 to be affected to the
benign class and a probability of 0.35 to be affected to the malignant class. In this example,
with the softmax function, the sample s will be affected to the benign class (since the decision
policy is based on argmax function).

Corollary 6.3.2: of Proposition 1.2

Given a network activated by a final softmax activation function, for any level i ∈ [1, C],
and for any distinct j1, j2 in [1, Ni], for any sample s the events θi(s) = j1 and θi(s) = j2

are mutually exclusive.

These results allow us to use the term probability in the rest of this document and will help us to
define the Bayesian adjustment in the next chapter.

6.4 The two constraints of a hierarchical classifier

In this study, we identify and formalize two constraints to deal with the HMC problem and
to adapt to the labeling principles. We recall that s.plabel returns the C-uplet of predicted labels
(ĉ1, ĉ2, . . . ĉC) given by the classifier, from now on, s.plabel(i) denotes the predicted class of the
ith category (which is a set because some decision policies may allow to affect more than one class
at each level): s.plabel(i) = ĉi. The two following constraints should be satisfied by a rational
hierarchical classifier in order to comply with the two principles defined in Section 6.2.
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Definition 6.4.1: ILE constraint

A classifier complies with the exclusivity intra-level (ILE) constraint if each sample s of the
dataset D has a unique predicted label per level:

∀s ∈ D,∀i ∈ [1, C] : |s.plabel(i)| = 1 (ILE constraint)

In other words, it means that ĉi is a singleton containing only one predicted class per level.

Definition 6.4.2: ILH constraint

A classifier complies with the Hierarchy inter-levels (ILH) constraint if for any sample
s, its predicted labels represent a correct path from the root to a leaf in the hierarchy i.e.
s.plabel = (ĉ1j(1), ĉ

2
j(2), . . . , ĉ

C
j(C)) is s.t.:

ĉ1j(1) ∈ C 1 and ∀i ∈ [2, C], j(i) ∈ ch(ĉi−1
j(i−1)) and ĉij(i) ∈ C i (ILH constraint)

Example 8. In the case of BreakHis classification for example, we suppose that, forwarding a
sample through a network associated with the hierarchy of Example 5 yields these outputs: ŷ1 =

(0.6, 0.4) and ŷ2 = (0.2, 0.2, 0.1, 0.1, 0.3, 0.025, 0.025, 0.05). This means that the sample s has a
probability of 60% to be benign and a probability of 40% to be malignant. The sample s is then
assigned to the class "benign" and the subclass “Ductal Carcinoma” which violates ILH since it is
a malignant subtype.

In this chapter, we first reviewed the literature and summarized the most relevant related works,
we analyzed the existing solutions and define aspects to improve. Starting by formalizing the HMC
problem by abstracting the dataset principles, then we extracted the constraints that the classifier
should satisfy in order to address the hierarchical classification. We note that the articles we have
summarized, do not satisfy the ILH and ILE principles because they either use a sigmoid output
activativation function (which does not ensure ILE constraint), or they do not pay attention to the
hierarchical conformity (violating ILH constraint). Thhe third kind of approach, the B-CNN’s take
into account the ILH and ILE constraints, but the architecture is not exploited efficiently by over-
specializing some parts of the network.

In the next chapter, and taking into account these limitations, we present a new global approach
for handling the HMC problem inspired by the B-CNN approaches and show that this model behaves
well, since the output provides a unique predicted class by level (contrarily to the approaches based
on sigmoid functions) and respects the hierarchy constraints (contrarily to some local approaches of
the literature) i.e., we show that the new model satisfies the ILE and ILH constraints.
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Chapter 7

An architecture compliant with ILE
and ILH constraints

Résumé en français du Chapitre 7 : "Une architecture conforme aux contraintes ILE et ILH"

Après avoir situé le contexte de la classification hiérarchique et mis en place le formalisme néces-
saire pour aborder la problématique, nous proposons dans ce chapitre une solution répondant aux
contraintes imposées. Pour cela, nous avons d’une part conçu une architecture particulière, renfor-
cée par un ajustement bayésien au niveau de la dernière couche. D’autre part, nous avons défini
une fonction de perte personnalisée, composée de deux parties : une partie responsable de capturer
les erreurs de prédiction et une partie responsable de pénaliser le réseau en cas de violation de la
hiérarchie.
Afin d’évaluer l’efficacité de notre solution, des expérimentations sont conduites sur les 5 jeux de
données hiérarchiques présentés au chapitre 3.
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In this chapter, in order to overcome some limitations of local classifiers and based on the idea
that conditional probabilities should play a role to constrain the links between a superclass and its
subclasses, we propose a new architecture called “Globally Hierarchically Coherent”-CNN (GHC-
CNN) which exploits both Bayes’ rule and branching CNN, yielding an efficient architecture with a
suitable semantic loss function. This new classifier can be considered global since in the architecture
that we propose the whole network is involved in the prediction of the entire label of a sample (i.e.,
from its class in the top level of the hierarchy to its class in the bottom level). GHC-CNN can also
be considered as local since it is based on a Bayesian adjustment (which encodes the hierarchy in
terms of conditional probabilities together with a customized semantic loss function that penalizes
drastically the hierarchy violation. A teacher-forcing strategy learning (which uses the ground truth
class of the superclass in order to predict the subclass) is used to enhance the learning quality.

We expose the proposed architecture and the customized loss function. Then, we describe the
experiments done on two hierarchical datasets and the obtained results. Finally, we mention some
perspectives that would be fruitful to explore in future works.

7.1 General architecture for GHC-CNN

The GHC-CNN architecture is designed to guarantee compliance with the hierarchical constraint
between superclasses and subclasses (ILH) and the constraint of exclusivity within the same cate-
gory (ILE). Given a sample s as input, an output is produced by the GHC-CNN network which is
composed as follows:

— A set of hidden layers described in Section 1.1.1 with a final hidden layer whose output is
denoted z(s).

— A penultimate primary output layer (PNPO) with C outputs : v1, v2, . . . , vC , each output
vi is a vector of length Ni (containing the Ni membership probabilities for the sample to
belong to each class of C i), see Section 7.1.2.

— The final adjusted finer output layer (FAFO) is a layer composed of C − 1 outputs adjusted
from the PNPO corresponding layers. The aim of this adjustment is to impose the respect of
the ILH constraint. This adjustment is performed with a Bayesian update that encodes the
hierarchical constraint, see Section7.1.3.

— A particular loss function that penalizes both hierarchy violation and classification errors
(weighted wrt the depth in the hierarchy), see Section 7.2.

— The final output vector is che C-uplet GHC-CNN(s) = (ĉ1, ĉ2, . . . , ĉC), denoted ĉ(s), de-
fined by the argmax decision policy where each ĉi = cik with k = argmax ŷi.

Figure 7.1 illustrates the GHC-CNN general architecture.
To sum up, PNPO(s) = (v1, v2, . . . , vC), with vi = softmax(zi) (see Section 1.1.3), then

FAFO(s) = (ŷ1, ŷ2, . . . , ŷC) is the C-uplet of probability distributions associated to each level
after the Bayesian adjustment. The final output, denoted GHC-CNN(s), corresponds to the the
C-uplet of predicted classes GHC-CNN(s) = (ĉ1, ĉ2, . . . , ĉC).

7.1.1 The hidden layers (HL)

Any neural network backbone can be used for the first layers, the particularity of GHC-CNN
architecture only appears at the penultimate and last layers of the network. In practice, we opted
for the VGG19 model introduced in 1.1.6. We recall that this model is a pre-trained CNN, with 19
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Figure 7.1 – The GHC-CNN general architecture. The nodes |⃝ represent the Bayesian adjustment.

learnable layers: 16 convolutional layers followed by 3 fully connected layers, with a total of 144M
parameters. VGG19 was also used for fashion images hierarchical classification by Kolisnik et al
[54] and by Seo and Shin [98] with a promising learning behavior. As a consequence, this model is
supposed to have the faculty to identify the basic image features.

Let us denote by z(s), the output of the last fully connected layer. z(s) is then projected C times
to give the C vectors (z1, z2, . . . , zC). For each level i, zi is a vector of dimension Ni obtained by
projecting the initial vector z(s) of the last fully-connected hidden layer into a vector of dimension
Ni. The output of this part is given by:

HL(s) = (z1, z2, . . . , zC)

7.1.2 The penultimate layer of primary outputs (PNPO)

In the GHC-CNN architecture, the PNPO layer produces C penultimate outputs denoted vi with
i ∈ [1, C], one for each category C i present in the dataset. The inputs of PNPO are activated with a
softmax function (described in Section 1.1.1).

According to the probability vision of a hierarchical classifier, adopted in Section 6.3 and more
precisely Corollary 6.3, at each level i ∈ [1, C], vi is a probability vector of dimension Ni, i.e. vi =
softmax(zi) = (Pi

1,Pi
2, . . . ,Pi

Ni
). Each Pi

j corresponds to the probability of the event θi(s) = j

(defined in Section 6.3) for a sample s to be assigned to the class cij : Pi
j = P(θi(s) = j) = vij .

Hence, the output of the PNPO layer is given by:

PNPO(s) = v(s)

7.1.3 The final adjusted finer output layer (FAFO)

The FAFO layer takes as input the vector of vectors v(s) = (v1, v2, . . . , vC). and aims at
adjusting each vector vi through a Bayesian update in order to encode the hierarchical constraint.
Then, the new final output vector is denoted ŷi:

FAFO(v(s)) = ŷ(s)
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We propose to adjust each vector vi such that it corresponds to the probability of assigning
classes at level i under the ILH constraint. The idea of this adjustment comes from the probability
domain. Indeed, the probability vector vi (obtained in the PNPO layer) represent the probability
distribution (as proven in Corollary 6.3) for the sample s to be classified by the network over the
classes of the level i. Similarly vi+1 is the probability distribution over the following level (i + 1)
in the hierarchy.

If we considered that the predicted class at level i should be cik such that k = argmaxk∈[1,Ni](v
i)

and similarly for the level i+1 then these predicted classes would not have taken into account the fact
that the class at level i should be the parent of the one at level i+ 1. However, in our consideration,
for the top-down strategy, the knowledge of the superclass must condition the knowledge of its
subclasses. In terms of probabilities, the aim of the adjustment is to propagate the probability of the
super-class over the probabilities of its children. In this view ŷij is considered as acting as a kind of
conditional probability. The top-down Bayesian adjustment is defined as follows:

Definition 7.1.1: The Bayesian adjustment

Given a vector of vectors v(s) = (v1, v2, . . . , vC), the top-down Bayesian adjustment of
v(s) is starting from the highest level of the hierarchy, as follows:

a. ŷ1 = v1

b. ŷi+1
k =

ŷi
j×vi+1

k∑
t∈ch(ci

j
)
vi+1
t

for all i, j, k ∈ [2, C], [1,Ni], [1,Ni+1] s.t. k ∈ ch(cij)

(7.1)

According to this update, we first show (in Lemma 7.1.3, Equation 7.2.a) that the adjustment has
performed a transformation such that any parent class probability value is the sum of the probability
of its children, the second bullet shows that the ratio between a class and its siblings is preserved,
this means that the rescaling is rational and conserves the distribution of the values inside a set of
siblings.

Lemma 7.1.1

a. ŷij =
∑

k∈ch(cij)
ŷi+1
k

b.
ŷi+1
k∑

k∈ch(ci
j
)
ŷi+1
k

=
vi+1
k∑

k∈ch(ci
j
)
vi+1
k

(7.2)

Proof. First, let us prove 7.2.a. for all i, j, k ∈ [2, C], [1,Ni], [1,Ni+1] s.t. k ∈ ch(cij). We have:

∑
k∈ch(cij)

ŷi+1
k =

∑
k∈ch(cij)

ŷij × vi+1
k∑

t∈ch(cij)
vi+1
t

= ŷij ×

∑
k∈ch(cij)

vi+1
k∑

t∈ch(cij)
vi+1
t

= ŷij

Second, let us prove 7.2.b for all i, j, k ∈ [2, C], [1,Ni], [1,Ni+1] s.t. k ∈ ch(cij), we have:

ŷi+1
k∑

k∈ch(cij)
ŷi+1
k

=
ŷi+1
k

ŷij
=

ŷi
j×vi+1

k∑
t∈ch(ci

j
)
vi+1
t

ŷij
=

vi+1
k∑

k∈ch(cij)
vi+1
k
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□

This lemma is crucial to show the achievement of the Bayesian adjustment goal. For a better
explanation of the goal of this Bayesian adjustment, let us consider two successive levels i and
i + 1. Let us assume that at the PNPO layer, the sample s is affected to the class cij1 at the ith

level and to the class ci+1
j2 for the (i + 1)th level, in other words: P(θi(s) = j1) = vij1 and

P(θi+1(s) = j2) = vi+1
j2 . After the top-down Bayesian adjustment, we are now considering the

NEW events Θi(s) = j1 and Θi+1(s) = j2 that the FAFO layer affects the class cij1 at the ith level
(note that we use Θ instead of θ to underline that the events are not the same), these new probabilities
are denoted by P∗(Θi(s) = j1) and P∗(Θi+1(s) = j2 respectively.

From Lemma 7.1.3 Equation 7.2.a we have:

P∗(Θi(s) = j1) =
∑

j2∈ch(cij1)

P∗(Θi+1(s) = j2) (7.3)

Due to Corollary 6.3, all the events at level i and all the events at level i + 1 are mutually
exclusive. Hence, due to the law of total probabilities, Equation 7.4 holds after the adjustment:

P∗(Θi(s) = j1) =
∑

j2∈ch(cij1)
P∗(Θi(s) = j1|Θi+1(s) = j2)× P∗(Θi+1(s) = j2) (7.4)

From 7.3 and 7.4, we conclude, that this top-down Bayesian adjustment imposes:

P∗(Θi(s) = j1 |Θi+1(s) = j2) = 1 (7.5)

Equation 7.5 justifies that after the update, knowing a subclass, i.e. Θi+1(s) = j2 occurred,
should make the event (Θi(s) = j1) certain to occur in order to respect the ILH constraint.

Let us illustrate the Bayesian adjustment mechanism:

Example 9. Similarly with the BreakHis context, suppose that forwarding a sample through the
network yields to a probability distributionP1 of the tumor type equal to 0.6 for the Benign class and
0.4 for the malignant one: P1 = (0.6, 0.4) and P2 = (0.3, 0.025, 0.025, 0.05, 0.2, 0.2, 0.1, 0.1).

After the top-down Bayesian adjustment of P2, we obtain P2∗= (0.45 1, 0.0375, 0.0375, 0.075,
0.13 , 0.14, 0.066, 0.068).The reader can check that: P2∗(1) + P2∗(2) + P2∗(3) + P2∗(4) = 0.6
= P1∗(1) and P2∗(5) + P2∗(6) + P2∗(7) + P2∗(8) = 0.4 = P1∗(2).

However, we note that imposing this Bayesian adjustment is necessary to impose the IHL con-
straint, since it allows the network to integrate the hierarchical link, but this is still not a sufficient
condition to guarantee perfect compliance with hierarchical constraints as shown on the following
example.

Example 10. Continuing in the same vein as in the previous example, now suppose that, after for-
warding another sample s, we got a probability distribution P1 of the tumor type equal to 0.4 for the
Benign class and 0.6 for the malignant one: P1 = (0.4, 0.6) andP2= (0.3, 0.025, 0.025, 0.05, 0.2, 0.2, 0.1, 0.1)

After the Bayesian adjustment, we get: P1∗ = (0.4, 0.6) and P2∗= (0.3, 0.025, 0.025, 0.05,
0.2, 0.2, 0.1, 0.1)

The sample s will then be affected to the tumor type "Malignant" but to the tumor subtype
Adenosis (A); which is a benign subtype, violating the hierarchy.

1. 0.45 = 0.3× 0.6/(0.3 + 0.025 + 0.025 + 0.05)
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This counter-example shows that this Bayesian adjustment is not sufficient to guarantee the
absence of any violation. However, the experiments show that this adjustment improves hierarchical
constraint compliance.

This top-down Bayesian adjustment is a way to encode the ILH constraint, such that the super-
class is guiding the subclass.

This Bayesian adjustment at the FAFO layer is a way of presenting the ILH constraint to the
network. However, the network must first learn to correctly classify the samples in the hierarchy by
giving the right class at each level. To do this, we will need to customize a loss function to ensure
successful learning. In the following section, we present the customized loss function.

7.2 Hierarchical loss functions

In order to support the ILH constraint and to take into account the different levels of robustness
required at different levels of the hierarchy, the hierarchical loss function Lossh.v is composed of
two parts Lossh that penalizes the errors with respect to the ground truth, this penalty is weighted
according to the hierarchy level, and Lossv that translates the semantic constraint ILH.

Losshv = Lossh + Lossv (7.6)

7.2.1 Level weighted loss function

Lossh is the part that guarantees the learning of the classification at each level of the hierarchy.
It is a linear combination of the cross-entropy distance between the prediction and the ground truth
at each level:

Lossh =

C∑
i=1

αi × d(yi, ŷi), with αi ∈ N (7.7)

where d(q, q̂) is the cross-entropy between the two vectors q and q̂: d(q, q̂) = −
∑k

j=1 q[j] log(q̂[j])

(See Section 1.1.3). According to the nature of the hierarchy, several configurations of the weights
αi are worth noticing:

— Egalitarian penalty: all αi are equal. The loss function considers errors made on super-
classes or subclasses to be of equal importance (in the experiments, see Section 7.4, it is
implemented with αi = 1 for all i).

— Superclass/subclass enhanced penalty These variants are proposed when superclasses (re-
spectively subclasses) are considered as more important than the subclasses (respectively
superclasses) for guiding the learning, the weights should be decreasing (respectively in-
creasing) along the hierarchy. In Section 7.4, it is implemented with αi = C − i + 1 (or
αi = i respectively) for all i. Note that the setting of alphai depends on the needs (for
example, if we want to avoid compensation between levels, we have to choose the right
combination).

— Finest/Coarsest basic model: we denote by "coarsest" (resp. "finest") basic model, the modl
without any FAFO update; i.e. ŷ = v, by setting (α1, α2, . . ., αC) = (1, 0, . . . , 0) (or resp.
by setting (α1, . . ., αC−1, αC) = (0, . . . , 0, 1) ), we obtain then, the basic neural network
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that classifies the coarsest class (respectively the finest class) without taking into account its
subclasses (respectively its superclasses), recovering a “local classifier” (as defined in the
introduction of Chapter 6).

7.2.2 Hierarchy violation loss function

Since we are proposing a Bayesian adjustment layer (the FAFO layer which may lead to hierar-
chy violation, we introduce a loss term that penalizes the hierarchy violation: it is the highest error
done on a prediction at a level where the predicted class and subclass are not consistent, (the subclass
is not a child of the class). There is a lot of ways to define the Lossv . At the beginning, we thought
about a big fixed value to add to the Lossh, by setting Lossv =∞ in case of a hierarchy violation.
However, this definition of Lossv leads to a divergence of the gradient. To overcome this problem,
we thought about a term Lossv which is of the same order of magnitude as the term Lossh, in order
to simplify the optimization phase, namely:

Lossv = max
i∈[1,C−1] s.t. ĉi+1 not child of ĉi

max(d(yi, ŷi), d(yi+1, ŷi+1)) (7.8)

where d(q, q̂) is the cross-entropy distance (see Section 1.1.3).
The meaning of this loss defined by Equation7.8 is that each time there is a violation between

a level and its successor, the value of the largest prediction error between these two levels is taken
as the penalty to be paid for this violation. Then, by traversing the tree vertically, and capturing all
the levels where there is a violation, we assign the largest error among these violation errors to the
Lossv term.

7.3 Compliance with ILE and ILH constraints

In this section, we study the theoretical compliance of our solution with ILE and ILH con-
straints.

Proposition 7.3.1: ILE Compliance

A GHC-CNN network satisfies the ILE constraint.

Proof. Due to the decision policy based on the argmax function associated to the softmax function
(done by the PNPO layer), only one predicted class ĉi (see Section 1.2) is predicted at each level.
Hence, |s.plabel| = 1: ILE constraint is respected. □

Concerning the ILH constraint, we have seen that even with a Bayesian adjustment, in some
cases (see Example 10), some violation errors can occur. In order to overcome this problem, the
hierarchy violation loss function term Lossv is designed to penalize hierarchy violation occurrence.
Hence, during the training, the network weights are adjusted in order to reduce these cases of hier-
archy violations.

Note that, as a perspective of this chapter, we are proposing other variants
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7.4 Experiments

In this section, we expose the experiments done on the five datasets described in Chapter 3
namely BreakHis, Kaggle Fashion Product, Fashion-MNIST, prime-MNIST and Hzoo.

7.4.1 Data preparation and computational details

For the data preparation details, each of the five datasets was split into 70% for the training, 10%
for the validation, and 20% for the test set. Then, the data preparation is as follows:

— For BreakHis data preparation: we applied the same data preparation detailed in Algorithm
3, since the dataset is balanced and sufficiently augmented through this algorithm.

— For Kaggle Fashion Product dataset: we took 500 images per category from the 45 categories
of this dataset, leading to a dataset size of 22500 images. The images of the training set were
flipped horizontally in order to proceed to a data augmentation that doubled the number of
samples.

— For Hzoo dataset, the images of the training set were flipped horizontally for performing a
data augmentation (i.e., doubling the number of samples of the training set).

— For both Fashion-MNIST and prime-MNIST datasets, images were resized to 64x64 pixels
in order to get larger images. The number of images being sufficient, we did not perform any
data augmentation.

— For Kaggle Fashion datasets, and Hzoo, the images were resized to 250x250 pixels, and for
BreakHis to 250x164 pixels. This resize is adopted to deal with the computational constraints
(GPU memory limitation).

The algorithms were implemented using the Keras library with Python 3 on Osirim platform [86].
The training period of each experiment contains 1000 epochs, with Adam optimizer, and a train
batch size of 128 samples.

7.4.2 Training strategy

Preliminary experiments launched on BreakHis and Fashion-MNIST with a raw training strategy
(a standard training without any warm-up or particular strategy) produced highly disturbed training
curves, as shown in Figures 7.2, 7.3 and 7.4.

Figure 7.2 illustrates the evolution of the training loss of GH-CNN on both BreakHis (in blue)
and Fashion-MNIST (in orange) datasets. Figure 7.3 illustrates the evolution of the validation ac-
curacies of GH-CNN for the two hierarchy levels of the BreakHis dataset, and Figure 7.4 illustrates
the evolution of the validation accuracies of GH-CNN for the three hierarchy levels of the BreakHis
dataset. We deduce from these disturbed curves, that this raw learning is not convenient for GHC-
CNN, since the network does not stabilize even after 1000 epochs. In order to solve this issue, we
propose a training strategy to improve learning quality. This strategy divides the training into three
phases:

1. A preliminary warm-up (during 15% of the training phase): Where the model is only trained
on the coarsest category to ensure a more accurate classification at this level (which will
guide the next levels).

2. A teacher-forcing strategy during 25% of the training phase): The superclass is responsible
for guiding the learning of the subclasses. However, at an early stage of the training, the
model is not yet able to produce accurate predictions of superclasses, which prevents proper
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Figure 7.2 – Training loss and training accuracy curves for GHC-CNN with a raw training strategy.

Figure 7.3 – Training loss and training accuracy curves for GHC-CNN with a raw training strategy.

Figure 7.4 – Training loss and training accuracy curves for GHC-CNN with a raw training strategy.
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adjustment of the subclasses. To overcome this problem, we proposed a teacher-forcing
strategy (inspired by RNNs training [59]). The teacher-forcing strategy uses the ground truth
about the superclass (instead of its prediction) in order to minimize errors and enable sub-
classes to rely on correct superclass predictions (which are their groud-truth), thus avoiding
the propagation of superclass errors. This teacher-forcing strategy is applied during 25% of
the training phase, in order to adapt the learning.

3. During the remaining time: The model is trained with one of the variants of Losshv .

We define the hierarchy violation rate metric (HV) in order to evaluate the variants of GHC-
CNN. Note there are a lot of ways to define HV, (we can also consider the number of violations
in the predicted path). For our experiments, HV is defined as the number of predicted samples
disrespecting the hierarchy (at least between two successive levels) divided by the total number of
wrongly classified samples in the test set.

Definition 7.4.1: Hierarchy violation rate (HV)

Given a dataset D, a hierarchy with C hierarchical levels, and a hierarchical classifier whose
prediction at level i is denoted ĉi, the hierarchy violation rate is defined by:

HV =
|s ∈ D, s.t. ∃i ∈ [1, C] : ĉi(s) ̸= pa(ĉi+1(s))|

|s ∈ D|

For each dataset, we experimented the GHC-CNN with several versions of the loss function, by
choosing different combinations of (αi)i∈[1,C]) for the Lossh term, as follows:

— The coarsest basic model which is the GHC-CNN which lossh is defined by setting (α1, α2) =

(1, 0) for the BreakHis and Prime-MNIST datasets (recall that they both have a 2 level hier-
archy) and (α1, α2, α3) = (1, 0, 0) for the other 3-level hierarchy datasets: the aim of this
loss function variant is to train the model only on the coarsest classes, then test this new
model on subsequent hierarchical levels.

— The finest basic model is a GHC-CNN with lossh defined by setting (α1, α2) = (0, 1) for
the BreakHis and Prime-MNIST datasets and (α1, α2, α3) = (0, 0, 1) for the other datasets:
the aim of this loss function variant is to train the model only on the finest classes, then to
test this new model on all the levels.

— The egalitarian loss function is experimented with αi = 1,∀i ∈ [1, 3].
— The superclass enhanced penalty is experimented with (α1, α2) = (2, 1) for the BreakHis

and Prime-MNIST datasets and (α1, α2α3) = (3, 2, 1) for the other datasets.

7.4.3 Results and discussion

Table 7.1 represents the accuracy per level and the hierarchy violation rate results obtained with
a GHC-CNN for which the loss function is varied. The parameters of the loss function are inside
parenthesis, (α1, α2[, α3]). Acci is the accuracy percentage for classes of level i. The * means that
the model was only tested (but not trained) for this level.

Table 7.1 and Figures 7.2, 7.3, 7.4 and 7.5 shows that:
— For the three first datasets, the coarsest basic model approach is less accurate for classifying

in the finest class than the finest basic model one, even if the first approach has a greater
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Dataset Loss variant Acc1 Acc2 Acc3 HV
Lossh (1,0) 97.03 76.45* - 58.13
Lossh (0,1) 85.83* 95.49 - 65.14

BreakHis Lossh(1, 1) 97.65 94.91 - 11.06
Lossh(2, 1) 98.43 96.78 - 9.15

Lossv 67.03 58.91 - 66.25
Losshv(2, 1) 98.46 96.81 - 4.39
Lossh (1,0,0) 99.98 85.14* 69.03* 69.45
Lossh (0,0,1) 80.13* 78.02* 93.12 71.43

Fashion Lossh (1,1,1) 99.47. 86.63 91.79 18.67
Kaggle Lossh (3,2,1) 99.81 88.95 94.61 10.19

Lossv 71.15 58.21 69.43 78.84
Losshv (3,2,1) 99.31 98.74 95.06 3.45
Lossh (1,0,0) 98.13* 86.43* 85.01* 63.07
Lossh (0,0,1) 89.12* 67.31* 93.12 85.44

Fashion Lossh (1,1,1) 99.47. 86.63 91.79 18.67
MNIST Lossh (3,2,1) 99.81 88.95 94.61 10.19

Lossv 25.62 18.13 31.38 91.16
Losshv (3,2,1) 98.37 92.74 97.16 8.24

Lossh (1,0) 95.32 70.32 - 65.92
Lossh (0,1) 80.32 99.73 - 58.42

Prime- Lossh(1, 1) 92.65 98.96 - 27.12
MNIST Lossh(2, 1) 92.34 96.24 - 69.185

Lossv 35.96 21.71 - 83.75
Losshv(2, 1) 90.92 97.65 - 15.74
Lossh (1,0,0) 96.13 85.23* 76.62* 71.89*
Lossh (0,0,1) 70.13* 69.92* 98.12 64.03

Hzoo Lossh (1,1,1) 93.45 88.67 97.51 43.22
Lossh (3,2,1) 92.23 90.19 94.35 36.76

Lossv 31.15 28.21 11.43 78.84
Losshv (3,2,1) 92.31 90.56 94.23 22.67

Table 7.1 – Performances of a GHC-CNN

Figure 7.5 – Training loss curves of GHC-CNN with/without Bayesian adjustment ((blue/green) for
the BreakHis dataset
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performance on the coarsest level. It seems that the network needs to be fine-tuned on finer
classes in order to be more efficient.

— For the two last datasets, namely Prime-MNIST and HZoo, the finest basic model approach
is less accurate for classifying in the coarsest class than the coarsest basic model, also From
the basic models, it seems that the network performs better in the finest level than in the
coarsest one.

— For all datasets, the basic models have the highest rate of hierarchy violation compared to
the other loss function variants (with the exception of lossv). This is because not only is the
network not trained at all levels simultaneously, but also the learning of hierarchical links
has not yet been established.

— Training the model with only the lossv term yields very poor performance, as the model is
not even trained to accurately determine the classes by level, let alone discover the hierarchi-
cal links that connect them.

— For BreakHis, Fashion-MNIST, and FashionKaggle, GH-CNN with Losshv clearly outper-
forms the basic models. However, for Prime-MNIST and Hzoo, specifically at the coarsest
level, this variant appears to perform slightly less well in terms of Acc1 compared to the
coarsest basic model. We can conjecture that perhaps in these hierarchy definitions, the
coarsest level may not effectively guide the finest model. It might be easier to learn the finest
classes than the coarsest ones. This could be due to factors such as primality not being a
strong visual criterion for Prime-MNIST and the lack of a strong visual dangerosity criterion
for Hzoo. One perspective to explore this hypothesis is to consider a bottom-up adjustment
where the subclasses guide the superclasses.

— We also note that the HV rate drastically decreases when using Losshv compared with the
basic models, since the network is learning simultaneously superclasses and classes, the
wrong classifications are decreasing and thanks to the Bayesian adjustment, the model is
implicitly integrating hierarchical links.

— The superclass enhanced penalty loss function improves the performances on the super-
classes, then improves the performances on subclasses due to the Bayesian adjustment.

— The hierarchy violation loss function can only be used as a complement it is not useful in
itself in terms of classification because the model does not have any feedback about the
accuracy of the class predictions. However, the model GHC-CNN trained with Losshv has
the greatest performances in terms of accuracy and F1-score for all the levels because the
hierarchy violation loss forces the CNN to discover and respect the hierarchical link between
labels.

— Experiments done without the warm-up phase showed unstable loss values which leads us to
believe that warm-up helps the network to find the right starting weights for classifying the
coarsest classes, then the teacher forcing strategy improves the learning of the subclasses.

— Experiments done without the Bayesian adjustment using the Losshv showed a very dis-
turbed training loss curve (the green curve in Figure 7.5 compared with the Bayesian adjust-
ment training (the blue one in 7.5) attesting the crucial role of this Bayesian adjustment.

— Overall, GHC-CNN with losshv variant remains fruitful for all datasets, especially as it can
outperform the accuracy and significantly reduce the violation rate.

— Comparing with state-of-the-art works, we can see that, for BreakHis dataset, almost all of
the approaches did not pay attention to the hierarchical link between classes, except for [79]
where the hierarchy question was addressed (achieving an accuracy of 95.48% of the tu-
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mors type detection and 94.62% for the subtypes), while we obtained, with Losshv , 98.46%
and 96.81% accuracy rates respectively. Concerning the Fshion-MNIST dataset, in [98] a
B-CNN model was used (giving an accuracy of 93.33% for the finest level). In [54], a con-
ditional probability update was used also with a B-CNN (achieving an accuracy of 99.75%,
98.06% and 91.04%) for the three levels respectively, while the GHC-CNN achieved an
accuracy of 99.71%, 98.94% and 95.06% respectively.

This chapter presents the GHC-CNN, a new architecture, that encodes the labels hierarchy inside
the network using both a Bayesian adjustment and a particular loss function penalizing hierarchy vi-
olations. GHC-CNN outperforms the state-of-the-art results for both BreakHis and Fshion-MNIST
datasets. In conclusion, GHC-CNN is well designed such that all the layers of the network are in-
volved in the determination of the classes at all levels. Also, the hierarchical consistency is imposed
by the Bayesian adjustment before the back-propagation and guaranteed thanks to the well-designed
loss functions. An additional novelty of this chapter is the flexibility of Losshv which can be cus-
tomized according to the nature of the task.

One primary perspective of this chapter is to compare GHC-CNN with a CNN in which the loss
function encodes the hierarchical constraint using boolean logic, as proposed in [129]. A second
perspective involves exploring different combinations of Lossh. A third perspective of this work is
to investigate alternative adjustment variants. For instance, we may consider a bottom-up adjustment
where subclasses guide the superclasses, allowing us to assess the impact of the finest model on the
coarser ones. Additionally, from a different standpoint, we can address the ILH constraint, inspired
by [36]. Here, we can propose an adjustment variant in which no violation can occur and observe
its impact on the quality of classification.
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Chapter 8

Abstention mechanism for a robuster
hierarchical classification

Résumé en français du Chapitre 8 : "Mécanisme d’abstention pour une classification
hiérarchique plus robuste"

Le but de ce chapitre est d’exposer une façon de prendre en compte les connaissances haut-niveau
afin de permettre d’avoir du recul sur la sortie du réseau de neurones. Pour cela, nous nous sommes
placés dans le contexte de la classification hiérarchique avec le réseau GHC-CNN proposé dans le
chapitre précédent. L’objectif est de post-traiter les prédictions de la classification afin d’accroître la
robustesse du réseau en omettant toutes les classifications déclarées avec une probabilité inférieure
à un seuil de confiance prédéfini. Ce traitement est effectué grâce à la mise en place d’un mécanisme
d’abstention. Nous avons établi des propriétés en relation avec le contexte hiérarchique des classes
que le seuil prédéfini devrait respecter.
Les expérimentations sont conduites sur les mêmes cinq ensembles de données hiérarchiques pré-
sentés au chapitre 3, et des métriques d’évaluation prenant en considération ce mécanisme sont
définies.
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As neural network applications expand into critical fields, the quality of predictions and the
model’s confidence in its assertions have become increasingly necessary. Particularly in sectors
such as healthcare, where an erroneous decision can compromise a patient’s vital prognosis, finance,
where a false prediction can disrupt monetary transactions, or security, where recognition errors can
compromise the integrity of a system. Errors can arise from the fact that large-scale real data is
unbalanced or incorrect (noise, missing data, mislabeling). In addition, never-encountered inputs
can deviate significantly from the distribution of training data, leading to erroneous outputs even
in well-trained models. One solution is to prevent the model from making predictions in overly
uncertain situations. By doing so, the model can achieve higher accuracy by abstaining on some
samples. Thus, the optimal strategy is to minimize rejection while maintaining a high accuracy.

Abstention, also called “prediction with a reject option” or “selective prediction”, or “IDK mech-
anism” for "I don’t know"), in the context of classification, refers to the ability of a classifier to
abstain from making a prediction in order to provide more cautious responses. According to [48],
there are several approaches to implementing this mechanism, we highlight the most common ones
(see Figure 8.2 for a diagram of the different types of approaches).

— Threshold-based approaches: involve setting a predefined confidence threshold. When the
model’s confidence in its prediction falls below this predefined threshold, it refrains from
providing a prediction. Numerous studies have examined various threshold-based strategies
(see next Section).

— Uncertainty estimation approaches: aim at estimating the global uncertainty associated with
the model predictions. In these methods, the classifier assigns a numerical score that quan-
tifies how uncertain or ambiguous the model is about its prediction. The classifier can then
refrain from making predictions in the event of a high uncertainty score.

The main difference between the threshold-based approaches and the uncertainty esti-
mation approaches lies in how they determine when to abstain. Uncertainty approaches base
their decisions on the model’s estimation of uncertainty, which can provide a finer-grained
understanding of prediction reliability. Threshold-based approaches, on the other hand, rely
only on predefined cutoffs and do not consider the model’s uncertainty explicitly.

— Ensemble-based approaches: take advantage of the collective decision-making of several
models to determine whether to refrain from making predictions. The “ensemble” can be
made up of several distinct models, or of models trained on different subsets of the data.
By measuring disagreement or consensus between ensemble members, models can abstain
when there is no agreement, indicating uncertainty or ambiguity in the classification of the
instance.

It is worth noting that threshold-based approaches are widely adopted in state-of-the-art works.
Consequently, our study will primarily focus on these approaches. In threshold-based methods, two
prominent strategies are employed to implement the abstention mechanism [48]:

— The post-training abstention strategy: Within this category, the abstention function is applied
after the completion of training. A specific metric is formulated to determine the acceptance
or rejection of predictions based on this preliminary output, using a predefined threshold.
The adoption of this approach can be observed in the majority of literature works in this
field.

— The During-training abstention strategy: few recent studies have embraced this strategy
where there is no post-training processing. Within this category, researchers have adopted
two distinct approaches:
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— the negative extra-class: In this approach, rather than introducing a separate metric, an
additional class is added to the existing class categories within the prediction function.
The entire model, including the extra class, is developed using the training data. If the
extra class receives the highest score for a given test sample, the prediction for that input
is considered rejected.

— the abstention loss function: In this approach, a new loss function is adopted, which
incorporates both the prediction function and the rejection function. By optimizing this
new loss function, the model is trained to simultaneously learn the prediction function
and the rejection function.

The aim of this chapter is to refine the GHC-CNN by integrating the abstention mechanism through
a threshold-based approach, allowing the model to abstain from making a decision at given levels of
the hierarchy. The new model with this additional abstention mechanism is called GHA-CNN for
"Global Hirerachical CNN with abstention mechanism".

We begin this chapter by discussing the most relevant state-of-the-art CNN approaches using
abstention with a particular focus on threshold-based approaches. Then, we present our solution
by highlighting a set of properties that our solution should satisfy in relation to the threshold. The
experiments on GHA-CNN are conducted on the five datasets. experimented in the previous chapter,
namely BreakHis, Fashion-MNIST, Kaggle Fashion, Prime MNIST, and HZoo datasets in order to
compare the results with the ones obtained with the GHC-CNN.

8.1 State of the art about abstention in machine learning

The concept of machine learning with a reject option was initially studied in 1970 by Chow
[23], who first described the mechanism of abstention in a recognition system, it has recently gained
considerable attention.

This cautious system has generated interest in various fields, including medical diagnosis (e.g.,
Kompa and his colleagues, in [55], proposed an uncertainty score to guide decision abstention), the
financial sector (e.g., Habibpour and his colleagues, in [44] designed an uncertainty quantification
metric for credit card fraud detection), and other domains such as climate change (e.g., Barnes and
his colleagues, in [12], implemented a specific abstention loss function to improve predictions of
anomalous global sea surface temperature).

According to [49], incorrect predictions may occur for two main reasons: ambiguity rejection
(inability to distinguish two samples of distinct classes) and novelty rejection (inability to classify
a never-encountered sample). Figure 8.1 taken from [49] provides an illustration of a classification
scenario where two classes overlap in a given region. The figure shows different situations related to
the abstention mechanism. The dotted lines represent the boundaries of the abstention mechanism,
the dash-dotted line represents the boundary predicted by the classifier, and the solid line represents
the ground truth relation. In the first image (a), ambiguity rejection occurs due to a non-deterministic
relation between sample X and its ground truth label Y. The dotted lines enclose the rejection region,
and examples within this region (marked with cross symbols) are rejected. This non-deterministic
relation between X and Y can refer to noisy or unclean labeling. The second image (b), introduces
ambiguity rejection caused by model bias. Similarly, the rejection region is bounded by the dotted
lines, and examples within this region are rejected. In this case, the classifier has not learned enough
to be able to achieve accurate discrimination. The last image (c) illustrates an example of novelty
rejection. The rejected examples (marked with star symbols) are located outside the dotted line,

114



Figure 8.1 – Illustration of a binary classification scenario where the two classes overlap in a region
[49]

representing novel instances that do not fit within the trained model abilities.
.
In this chapter, our primary focus will shift towards investigating the advancements and appli-

cations of abstention in neural networks, since our main objective is to enhance the GHC-CNN
robustness.

First of all, let us recall Chow’s rule [23]. As described in [41], to achieve a binary classification
objective, in 1969, Chow established a decision rule d : X → A, where A represents a set of actions
typically involving the assignment of a label to a sample x ∈ X . In this context, the two classes
are denoted as +1 and −1. There are two types of errors to consider. The first one is false positive
(when an example labeled −1 is predicted +1), Chow associates it with a cost c−. The second
type is false negative (when an example labeled +1 is predicted −1), associated with a cost c+. The
author introduces a reject option represented by the value 0, which involves associated costs denoted
as r− and r+ for examples labeled as −1 and +1, respectively.

The decision with abstention option d∗, known as Chow’s rule is defined by:

d∗(x) =


+1 if P (Y = 1|X = x) > p+

−1 if P (Y = 1|X = x) < p−

0 Otherwise.
(8.1)

where: p+ = c−−r−

c−−r−+r+ and p+ = c−−r−

c−−r−+r+ . p+ and p− represent the thresholds that are derived
from the costs and risks associated with false positive and false negative predictions. The study in
In [41] focuses on the problem of binary classification by exploring Chow’s rule, In order to design
an effective SVM that is both consistent and sparse, the researchers derived a special loss function
that focuses on estimating conditional probabilities in the vicinity of the threshold points defined by
this decision rule.

Concerning the abstention in NNs, we will only focus on the threshold-based abstention mech-
anism, which consists of defining a threshold on the confidence score given by the classifier. If the
confidence falls below the threshold, the classifier abstains from making a prediction. This approach
allows the classifier to be more cautious when it lacks sufficient confidence in its predictions. A
commonly used approach to determining the threshold is to use the posterior probability generated
by neural networks (NNs). Several techniques have been proposed in the literature, we mention the
most relevant ones:

— The fixed threshold: where a fixed value based on the top prediction value is used to refine
the classification results, as adopted in [72, 4, 26].

115



Figure 8.2 – Abstention mechanism approaches and techniques inspired by [48]
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— The class-specific threshold: where there is a specific threshold for each class, as done in
[34].

— The dynamic threshold: where the threshold is a function of the probability distribution of
all the classes, several formulas are proposed, like in [99].

— The margin-based threshold: where the threshold integrates the difference between the two
top values of the prediction as done in [88].

As mentioned in Figure 8.2, there are two main ways to implement the abstention mechanism
inside the classifier. The first one is the post-training implementation, where the aim of the “rejection
model”, a neural network dedicated to deciding whether or not to abstain, is to refine the classifica-
tion results, once the training is over. Recent studies have looked at implementing threshold-based
abstention at the same time as training takes place. The aim of these approaches is to make the model
learn when to abstain from making a prediction. The reader may refer, e.g., to [8], which is one of
the first approaches where the abstention constraint was integrated into the loss function. Indeed, in
this work, a meta loss function is introduced to simultaneously train two joint neural networks: one
for the prediction model f(x, θf ) and the other for the rejection model g(x, θg),

Based on these studies, we propose the use of a post-training abstention mechanism with class-
specific thresholds. We justify this approach by considering the hierarchical nature of the context
(HMC), which requires specific evaluations for each level.

8.2 Introducing an abstention layer in the GHC-CNN

Our objective is to enhance the solution described in 7.1 by making more confident outputs.
We propose to abstain from making a classification decision ĉi at level i if the maximal prediction
probability at this level i, given by max(ŷi), is lower than a predefined confidence threshold τi. To
achieve this, we introduce an additional layer called the Decision with Optional Abstention Output
(DOAO) layer, which further refines the outputs of the FAFO layer according to this new constraint,
that we call the "Indside-Level Abstention (ILA)" constraint, given by Definition 8.2. In practice, the
DOAO layer takes as input the outputs of the FAFO layer ŷ and generates the final output ˆ̂c which
is a C-uplet of decided classes (ˆ̂ci)i∈[1,C], based on the predefined abstention threshold τi at each
level, as follows:

Definition 8.2.1: ILA constraint

A classifier complies with the indside-level abstention (ILA) (ILA) constraint if:

∀s ∈ D,∀i ∈ [1, C] : ˆ̂ci =

{
ĉi if max(ŷi) > τi

⊥ otherwise
(ILA constraint)

We recall that ”∀i ∈ [1, C] : ĉi = cij s.t. j = argmaxj∈[1,Ni](ŷ
i)

8.2.1 Towards rational thresholds

In this section, we propose several formulas for τi and we look for the most suitable ones. For
this last aim, we define rational properties that the threshold should satisfy.

The first threshold considered is the egalitarian threshold τi based on an assumption of uniform
distribution of the classes at each level.
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Definition 8.2.2: The egalitarian threshold

Given a tree hierarchy of C levels, the egalitarian threshold assumes a uniform distribution
at each level i among the Ni classes of this level i.e.: τi = 1

Ni
for all i ∈ [1, C].

To augment the robustness of the classifier, the abstention threshold should increase with the
level, because in this study, we assume that it is more difficult to predict a specific class rather than
a general one.

Definition 8.2.3: level-increasing property

Given a tree hierarchy of C levels, for all i ∈ [1, C], the threshold τ i is strictly increasing
with the level if

∀i1, i2 ∈ [1, C], if i1 < i2 then τi1 < τi2

Proposition 8.2.1

The egalitarian threshold is not strictly increasing with the level.

Proof. let us take i1, i2 from [1, C], s.t. i1 < i2, due to the assumptions done in Chapter 6 leading
to Equation 6.1, t1 < t2 =⇒ Ni1 < Ni2 =⇒ 1

Ni1
> 1

Ni2
=⇒ τi1 > τi2 □

We now introduce another threshold called ratio threshold, which represents the ratio between
the cardinality of the ith level and the one of the Cth level, as follows:

Definition 8.2.4: The ratio threshold

Given a sample s, at a given level i (i ∈ [1, C]), τi = Ni

Nc
.

Proposition 8.2.2

The ratio threshold is strictly increasing with the level.

Proof. let us take i1, i2 from [1, C], s.t: i1 < i2, still due to Equation 6.1, it holds that i1 < i2

=⇒ Ni1 < Ni2 =⇒ Ni1

NC
< Ni2

NC
=⇒ τi1 < τi2 □

Despite the fact that this threshold is strictly increasing with the level, it is a too strong constraint
for imposing abstention in the DOAO layer because, at level C, the value of the threshold τC will be
equal to 1, meaning that, only the predictions with a weight ŷCj higher than 1 (which is impossible)
will be accepted, see the following proposition:
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Proposition 8.2.3

Given a tree hierarchy of C levels, any threshold-based abstentionist neural network with a
decision rule based on a sigmoid or on a softmax function that uses a ratio threshold τi is
systematically abstaining at level C: ˆ̂cC = ⊥, where ˆ̂cC is the output of the network, i.e.,
the final predicted class, at level C.

Proof. The ratio threshold is such that τi = Ni

N C ,∀i ∈ [1, C]. Any network with a decision rule
based on a sigmoid or a softmax produces an output ŷ ∈]0, 1[ (due to Proposition 1.2). Hence,
∀i ∈ [1, C], j ∈ [1,Ni], 0 < ŷij < 1. Now, since τC = 1,∀j ∈ [1,NC ], ŷCj < τC . □

Another property that we thought interesting to impose in a context where the finest classes are
more difficult to predict, is that, for a given sample s and a level i, if the classification decision is to
abstain at this level, then the decision classification is to abstain for all the following levels:

Definition 8.2.5: Cascading abstention on finer levels property

Given a tree hierarchy of depth C, for all i1 ∈ [1, C], a threshold-based abstentionist neural
network satisfies the cascading abstention on finer levels property if

ˆ̂ci1 = ⊥ =⇒ ˆ̂ci2 = ⊥ for all i2 ∈ [1, C] s.t. i2 > i1 (cascading abstention)

where ˆ̂ci denotes the output of the network at level i.

To sum up, we need a threshold-based abstention neural network with an increasing threshold by
level, which does not drastically abstain at a given level and which respects the cascading abstention
property.

8.2.2 A non-drastic, level increasing and cascading threshold

In order to avoid a systematic abstention at level C, we propose to relax the ratio threshold by a
factor of 1/C, as follows:

Definition 8.2.6: The cascading threshold

Given a tree hierarchy of depth C, the cascading threshold is τi = Ni

CNC
.

Proposition 8.2.4

A threshold τ such that τi = Ni

CN C ,∀i ∈ [1, C] is increasing with the level.

Proof. From Equation 6.1, it holds that: ∀i1, i2 ∈ [1, C]: if i1 < i2 then Ni1 < Ni2 , hence
Ni1

CNc
<

Ni2

CNc
, thus τi1 < τi2 . □

Remark 3. At level C, the cascading threshold is such that τC = 1
C ̸= 1. Hence it is possible to

design a threshold-based abstention network that does not abstain systematically at level C.

119



Proposition 8.2.5

Given a tree hierarchy of depth C, a threshold-based abstentionist neural network with a
decision rule based on a sigmoid or on a softmax function which uses a threshold τ such that
τi = Ni

CN C ,∀i ∈ [1, C] does not systematically abstain at level C.

Proof. At level C, the cascading threshold τC = 1
C ̸= 1 □

We now show that a GHC-CNN with a DOAO layer based on a cascading threshold is rational
with respect to abstention on finer levels.

Proposition 8.2.6

Given a tree hierarchy of depth C, the GHA-CNN with a DOAO layer based on a cascading
threshold satisfies cascading abstention on levels property 8.2.5.

Proof. Let τi and τi+1 be the thresholds of two successive levels respectively. Due to the fact that
the threshold is strictly increasing with the level, we have τi+1 > τi. For a given sample s, suppose
that at level i, the classification decision is “abstain", i.e: ˆ̂ci = ⊥. Let j be the index of a maximum
element of ŷi: j ∈ [1,Ni] is such that maxk∈[1,Ni](ŷ

i[k]) = ŷij , the abstention means that ŷij < τi.
According to the Bayesian adjustment done in the FAFO layer, for all k in ch(cij): ŷ

i+1
k ≤ ŷij , thus:

ŷi+1
k ≤ ŷij < τi < τi+1, i.e., ˆ̂ci+1 = ⊥. Hence the result for any i1 < i2 by transitivity. □

By contraposition, we obtain the following corollary.

Corollary 8.2.1: Of Proposition 8.2.4

Given a tree hierarchy of depth C, the GHA-CNN with a DOAO layer based on a cascading
threshold is such that: For any i1, i2 ∈ [1, C], if ˆ̂ci1 = ⊥ and ˆ̂ci2 ̸= ⊥ then i2 < i1

where ˆ̂ci is the output of the GHA-CNN at level i.

The following corollary considers a GHA-CNN with a cascading threshold and shows that if the
network abstains at a given level for a sample but does not abstain for another sample at this same
level, then it means that the confidence in the prediction for the first sample is greater than the one
for the second sample at this precise level.

Corollary 8.2.2: Of Definition 8.2.1

Given a tree hierarchy of depth C, the GHA-CNN with a DOAO layer based on a cascading
threshold is such that, for two samples s1 and s2 and any level i,
if ˆ̂c(s1)i ̸= ⊥ and ˆ̂c(s2)i = ⊥ then max(ŷ(s1)i) > max(ŷ(s2)i).
(where ˆ̂ci(s) is the class predicted by the GHA-CNN for sample s at level i and ŷi(s) is the
vector obtained by the FAFO layer for the sample s at level i).

Proof. Assume that ˆ̂c(s1)i ̸= ⊥, ˆ̂c(s2)i = ⊥ and that max(ŷ(s1)i) ≤ max(ŷ(s2)i), this would
mean that max(ŷ(s1)i) ≤ max(ŷ(s2)i) < τi hence that ˆ̂c(s1)i = ⊥. □
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8.2.3 Hierarchically uncertainty alignment

The following definition is inspired by the definition of N’Guyen et al. [83] stating that a well
founded abstention should correspond to abstain when the sample has a prior probability (to belong
to the targeted class) lower than one half, we generalize this definition to hierarchical classification.
As N’Guyen et al. introduced the utility to abstain on a class. In our case it becomes the utility to
abstain at a given level i for a given sample s; Since this utility concerns the classification decision at
the level i, it will be function of the maximal probability value at this level, here denoted by denoted
by ŷim(s) such that: ŷim(s) = max(ŷi(s)) The utility to abstain for a given sample s at a given level
i is denoted by u⊥(s, ŷ

i
m(s)) and should respect the following two constraints:

— u⊥(s, 1) = 0

— u⊥(s,
1

Ni
) = 1

The idea is to maximize the gap between yim and 1
Ni

. The simplest way to represent the absten-
tion utility of a prediction, is a linear function. By solving the constraints, we get: u⊥(s, ŷ

i
m(s)) =

Ni

Ni−1 (1− ŷim(s)).

Definition 8.2.7: The utility to abstain

Given a tree hierarchy of depth C, given a hierarchical GHA-CNN classifier, given a samples
s, given a level i, the utility to abstain for a sample s at level i is given by:

u⊥(s, ŷ
i
m(s)) =

Ni

Ni − 1
(1− ŷim(s))

Definition 8.2.8: Hierarchically uncertainty aligned classifier property

Given a tree hierarchy of depth C, given a hierarchical GHA-CNN classifier, given two
samples s1 and s2. The classifier is hierarchically uncertainty aligned if and only if:

∀i ∈ [1, C], if ˆ̂ci(s1) = ⊥ and ˆ̂ci(s2) ̸= ⊥ then =⇒ u⊥(s1, ŷ
i
m(s1)) > u⊥(s2, ŷ

i
m(s2))

Proposition 8.2.7

The system GHA-CNN is hierarchically uncertainty aligned.

Proof. Given a tree hierarchy of depth C, given a hierarchical GHA-CNN classifier, given two
samples s1 and s2,

Suppose that at a given level i, we have: ˆ̂ci(s1) = ⊥ and ˆ̂ci(s2) ̸= ⊥.
It means that (from Corollary 8.2.2): max(ŷi(s2)) > max(ŷi(s1)). Then we have: ŷim(s2) >

ŷim(s1) =⇒ 1− ŷim(s2) < 1− ŷim(s1) =⇒ Ni

Ni−1 (1− ŷim(s2)) < Ni

Ni−1 (1− ŷim(s1)) =⇒

u⊥(s2, ŷ
i
m(s2)) < u⊥(s1, ŷ

i
m(s1))

.
GHA-CNN is then uncertainty aligned.

□
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8.2.4 New metrics for compliance with ILA constraint

Let us recall that the accuracy (Acc) refers to the ratio between the correctly predicted samples
in the dataset over the number of samples in the test set. In chapter 7, we introduced the accuracy by
level Acci compliant with the hierarchy levels. In the following definition, we extend the accuracy
measure in order to integrate abstention, we also introduce three new measures for assessing the
behavior of abstentionist models.

Definition 8.2.9: Abstention measures

For a neural network, using the abstention mechanism, we define:
— The ratio of correct declared predictions (by level) denoted by Acci⊥:

Acci⊥ =
|{(s, i), s ∈ D s.t argmax(ŷi) = argmax(yi) and ˆ̂ci ̸= ⊥|

|D|

— The ratio of missed correct predictions by abstention (by level) denoted by Mcpi:

Mcpi =
|{(s, i), s ∈ D s.t. argmax(ŷi) = argmax(yi) and ˆ̂ci = ⊥|

|D|

— The ratio of avoided wrong predictions by abstention (by level) denoted by Awpi:

Awpi =
|{(s, i), s ∈ D s.t. argmax(ŷi) ̸= argmax(yi) and ˆ̂ci = ⊥|

|D|

— The abstention gain by level denoted Agi is the ratio between the avoided wrong
predictions and the missed correct predictions by abstention (by level). It reflects
how useful the abstention has been :

Agi =
Awpi

Mcpi

For a fruitful abstention at a level i, Agi must exceed 1.

Proposition 8.2.8

Given a tree hierarchy of C levels, We have that: ∀i ∈ [1, C]:

Acci⊥ = Acci −Mcpi

Proof. Given, a tree hierarchy of C levels,
∀i ∈ [1, C]: Acci −Mcpi =

|{(s,i),s∈D, s.t argmax(ŷi)=argmax(yi)
|D| − |{(s,i),s∈D| argmax(ŷi)=argmax(yi) and ˆ̂ci=⊥|

|D| =

|{(s,i),s∈D, s.t argmax(ŷi)=argmax(yi) and ˆ̂ci ̸=⊥|
|D| = Acci⊥ □
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8.3 Experimental protocols

The experimental part of this chapter is an extension of the experimental part of the previous
chapter, where we base our work on experiments carried out on the five datasets used in Chapter 7
with the GHC-CNN. We chose to evaluate the abstention mechanism on the GHC-CNN with Losshv

variant, where Lossh is the superclass enhanced penalty loss. The aim of these experiments is to
evaluate the efficiency of the abstention mechanism added at the last layer, leading to GHA-CNN.

Table 8.1 represents the value of the cascading threshold τ i = Ni

CNC
at each level for each

dataset, this value is compared with the egalitarian threshold 1
Ni

to decide whether or not the ab-
stention is ignored at each level, according to the following proposition.

Proposition 8.3.1

Given a tree hierarchy of depth C, given a GHA-CNN classifier,

if ∃i ∈ [1, C], s.t.τi <
1

Ni
=⇒ ˆ̂ci ̸= ⊥

The abstention at this ith level is ignored.

Proof. Given a tree hierarchy of depth C, given a GHA-CNN classifier, Suppose that at a given level
i, we have uptaui < 1

Ni
, but we know that max(ŷi) ≤ 1

|ŷi| =
1

Ni

This leads to uptaui < 1
Ni
≤ max(ŷi) =⇒ ˆ̂ci ̸= ⊥ □

This proposition means that if at a given level, the value of the threshold is lower than the value
of a uniform distribution 1

Ni
, for this level, the abstention process will be ignored.

That is why, we will compare the value of the cascading threshold with 1
Ni

to figure out if the
abstention is ignored or not.

BreakHis Kaggle Fashion Fashion-MNIST Prime-MNIST HZoo
τ1 1

8
4

135
1
15

1
10

1
12

1
N1

1
2

1
4

1
2

1
2

1
3

Abstain ignored(Y/N) Y Y Y Y Y
τ2 1

2
7
45

1
5

1
2

1
6

1
N2

1
8

1
21

1
6

1
10

1
6

Abstain ignored(Y/N) N N N N Y
τ3 - 1

3
1
3 - 1

3
1

N1
- 1

45
1
10 - 1

12

Abstain ignored(Y/N) - N N - N

Table 8.1 – Cascading threshold values at each of of the five datasets to figure out if the abstention
is ignored (Y) or not (N).

From Table 8.1, we observe that, for the first level, the cascading threshold is ineffective for 4/5
of the datasets used. This leads us to the conclusion that the definition of such a threshold does not
align well with the first level. However, the abstention process is taken into account for 80% of the
datasets at the second level and for 100% of the datasets at the third level.
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The abstention results in term of accuracy of the GHA-CNN are summarized in Table 8.2.

Metric BreakHis Fashion Kaggle Fashion-MNIST Prime-MNIST HZoo
Acc1 98,46 99,31 98.37 90,92 92,31
Acc2 96,81 98,74 92.74 97,65 90,56
Acc3 - 95,06 97.16 - 94,23
Acc1bot 98.46 99.31 98.37 90.92 92.31
Acc2bot 92,16 96,85 99,85 96.34 90.56
Acc3bot - 79,34 83,34 - 89.44
Mcp1 0 0 0 0 0
Mcp2 4,65 1,89 2.89 1.31 0
Mcp3 - 15.72 12.03 - 4.79
Awp1 0 0 0 0 0
Awp2 2,55 0,47 4,96 1.83 0
Awp3 - 3,36 1.89 - 2.36
Ag1 - - - - -
Ag2 0.54 0.25 1.71 1.48 -
Ag3 - 0.21 0.16 - 0,49

Table 8.2 – Abstention results for GHA-CNN

From Table 8.2, we remark that:
— The abstention mechanism was ineffective at the first level for all the datasets.
— For the BreakHis dataset, where the abstention mechanism was only effective at the last

level, we observe that 2.55% of correctly classified classes were lost, while only 0.54% of
misclassifications were avoided, resulting in an abstention gain lower than 1.

— For Fashion Kaggle, the abstention gain for the last two levels was also lower than one, in-
dicating that we omitted correct classifications more often than we avoided incorrect ones.
Additionally, for this dataset, we note that it has the highest rate of ignored correct classi-
fications among all the datasets, with a rate of 15.72%. This high rate may be attributed to
the fact that the cascading threshold τ3 is very high compared to the uniform distribution,
suggesting that at this level with 45 classes, a threshold equal to 1/3 is overly cautious.

— Fashion-MNIST and Prime-MNIST are the only datasets with an abstention gain higher than
one, demonstrating that the abstention mechanism was more helpful in avoiding mistakes
than in losing correct classifications. Moreover, the highest rate of avoided misclassifica-
tions, equal to 4.96%, was observed at the second level of Fashion-MNIST.

— For the Hzoo dataset, the abstention mechanism was ignored at both the first and second
levels, and at the last level, the abstention gain was lower than one.

In this chapter, we have successfully incorporated an abstention layer into the GHC-CNN model
to enhance the robustness of its outputs. We could discover the vast field of abstention in neural net-
works and the several techniques and approaches surrounding it. We have established a theoretical
framework with specific properties for assessing the relevance of a threshold formula. Additionally,
we have developed new metrics to evaluate the performance of an abstentionist network.

We conclude from these observations that, on a global scale, all the datasets were receptive to
the abstention mechanism, successfully avoiding misclassifications and abstaining from uncertain
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but correct classifications. However, it’s important to note that the choice of the threshold is not
universally suitable for all datasets. For instance, in the case of the first-level dataset, the abstention
mechanism was ineffective due to an insignifiant threshold. Additionally, in three out of five datasets,
employing such a threshold resulted in a higher likelihood of disregarding correct decisions rather
than preventing incorrect ones.

These observations lead us to consider the need for a more suitable threshold formula that ad-
heres to the properties defined in Definitions 8.2.3 and 8.2.5. Such a formula should be better aligned
with the experimental context and the specific dataset in question. One potential avenue for explo-
ration in this regard is to evaluate the utility of each sample and devise a formula based on both this
utility and the empirical distribution of predictions.

Another perspective to ensure the robustness of the classifier involves the introduction of an
additional loss function term, exploring the "during-training" approach, denoted as Lossa. This
term is designed to minimize the gap between the calculated probability and the uniform distribution
at each level.

Lossa = −
∑

i∈C,ˆ̂ci ̸=⊥

log(
yim
τi

) (8.2)

However, after implementing this loss function, we observed that the training process was dis-
rupted, as the loss curve exhibited significant fluctuations, indicating a challenging learning process.
This disturbance can be attributed to the additional constraint of abstention introduced by the loss
function. A thorough investigation of this issue and potential solutions will be explored in future
work, drawing inspiration from the "during-training" state-of-the-art approaches.
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In this part, we explored the integration of high-level knowledge at the neural network concep-
tion stage, through the design of a specific architecture and a customized loss function. High-level
knowledge is also introduced at the output of the neural network, to enhance its robustness by adding
the possibility for the network to abstain. We have chosen a particular kind of knowledge represent-
ing hierarchical links between labels. Multi-label hierarchical classification was therefore a very
good choice through which we explored the integration of this external knowledge. In Chapter 6,
we set up a formalization of the problem, which enabled us to encode formally two main constraints
governing this type of classification. Inspired by existing solutions from the state of the art of multi-
label hierarchical classification, we have proposed in Chapter 7 a new architecture, in which instead
of sectioning the neural network into independent parts linked to a loss function, we have proposed
a global architecture where all layers are involved in the prediction of all levels. To this end, we
proposed a PNPO layer from which the primary prediction vector tree emerges. A Bayesian adjust-
ment of these vectors is then performed at the FAFO layer level. The purpose of the adjustment is to
impose that the probability of the superclass guides the prediction of the subclass. Next, we defined
a two-part loss function, customized in order to impose hierarchy constraints, and to ensure correct
learning. Several variants were tested, and experiments showed that taking additional knowledge
into account further improved classification results.

Through the implementation of an abstention mechanism, in Chapter 8, we were able to encode a
third constraint allowing the network to abstain from assigning a classification if the prediction con-
fidence is below a pre-defined confidence threshold. We then developed properties that the threshold
should respect. We also introduced new metrics among which: the rate of correct classifications ig-
nored and the rate of incorrect classifications avoided. The results demonstrated the importance of
implementing this abstention mechanism. Nevertheless, the theoretical definition of the threshold
may not always align with the dataset and the prediction distribution. Therefore, we recommend an
empirical determination of the threshold for improved consistency.
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Conclusion (en français)

À travers les huit chapitres de cette thèse, nous avons exploré les différents aspects et domaines
d’intégration des connaissances expertes au sein d’un réseau de neurones convolutif. Dans le pre-
mier chapitre, nous avons présenté les notions de base du fonctionnement d’un réseau de neurones
convolutif en général, afin d’établir les fondements pour la suite de la thèse.

Le deuxième chapitre aborde certains aspects des connaissances de haut-niveau selon notre point
de vue, en utilisant des exemples de travaux de la littérature. Nous avons catégorisé les connaissances
supplémentaires en deux catégories : les connaissances humaines supplémentaires et les connais-
sances boîte-noire générées par le réseau de neurones. Nous avons présenté des exemples de ces
connaissances ainsi que les approches utilisées pour les exploiter. Ce chapitre a souligné le manque
d’études explicites sur le rôle des connaissances dans les réseaux de neurones, ce qui ouvre la voie
à une étude plus approfondie pour recenser les types et aspects de connaissances utilisées dans les
réseaux de neurones convolutifs et en général.

Le troisième chapitre a présenté les bases de données hiérarchiques utilisées dans cette thèse.
Parmi celles-ci, deux jeux de données sont intrinsèquement hiérarchiques, tandis que les trois autres
ont été modifiés pour incorporer une structure hiérarchique. Nous avons également présenté une mé-
thode pour créer des liens hiérarchiques dans un jeu de données. D’autres types de liens pourraient
être explorés, et des connaissances de haut-niveau pourraient être exploitées. Par exemple, le jeu de
données IMAGENET contient diverses métadonnées telles que la couleur, le motif, la forme et la
texture. Il serait possible d’établir des liens entre ces métadonnées et de générer des connaissances
de haut-niveau sous forme de règles pour une classification multi-labels multicritères. En outre, il
convient de noter qu’il existe des erreurs d’étiquetage signalées dans plusieurs études, en particulier
dans la base de données ImageNet. Cela suggère la nécessité d’explorer des méthodes de nettoyage
pour ces jeux de données.

Le quatrième chapitre traite de la préparation des données et aborde la question de ce qu’est
une bonne préparation de données. Nous avons proposé un ensemble de principes à valider avec des
protocoles correspondants. De plus, nous avons exploré des métriques pour quantifier l’informativité
du jeu de données en utilisant des indices de similarité. Cependant, lors de la comparaison des
métriques théoriques avec les métriques empiriques de la classification, les métriques théoriques se
sont révélées peu informatives pour caractériser le jeu de données. Cette question d’informativité
mérite une investigation approfondie. Nous proposons d’y donner suite en utilisant des métriques
basées sur la comparaison des vecteurs latents à la dernière couche avant la sortie du réseau, car ces
vecteurs résument les données après leur passage dans le réseau.

Nous avons également abordé la question de la data augmentation. Pour ce faire, nous avons
proposé un ensemble de principes rationnels régissant la préparation des données. Pour mieux com-
prendre l’impact des augmentations nous avons expérimentés différents protocoles d’augmentation
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et avons proposé une approche basée sur la technique LRP (Layer-wise Relevance Propagation), qui
est une technique d’explication en IA. Cette nouvelle approche proposée se base sur la métrique de
similarité définie précédemment afin de comparer les pixels discriminants dans l’image d’origine et
dans sa version transformée. Les expérimentations ont permis de conjecture que les transformations
géométriques pour la tâche de classification abordée ont tendance à avoir un effet exploiratoire puis-
qu’ils permettent de découvrir d’autres régions de l’image. Tandis que les opérateurs colorimétriques
ont tendance à avoir un effet mémoire puisqu’ils pointent des regions similaires. Ces résultats mé-
ritent d’être explorés sur d’autres jeux de données d’images histopathologiques, et le protocol dans
la visée de l’explication de l’effet de la data augmentation mérite d’être généralisé sur d’autres da-
tasets. De plus, d’autres techniques de visualisation pourraient être testées en lieu de la LRP. Une
autre perspective intéressante serait d’explorer le travail de Ekin D. Cubuk et al. [24], qui proposent
un algorithme de recherche pour trouver la meilleure politique d’augmentation de données afin que
le réseau de neurones obtienne la meilleure précision de validation sur un jeu de données cible.

Le cinquième chapitre a exploité la connaissance de haut-niveau liant le grossissement micro-
scopique à la qualité de la classification. Cela a conduit à la mise en place d’un algorithme d’ap-
prentissage par curriculum incremental pour les données en entrée. Les expérimentations sur le jeu
de données BreakHis ont confirmé l’efficacité de la technique en améliorant la classification et la
convergence. Cependant, il serait intéressant d’utiliser d’autres jeux de données d’images histopa-
thologiques (ou d’images quelconques présentant différents grossissements possibles pour étudier
la généralisabilité de cette méthode.

Dans la dernière partie de cette thèse, nous avons exploré l’intégration de la connaissance au
niveau de la conception de l’architecture du réseau de neurones et de la personnalisation de la fonc-
tion de perte. Nous avons choisi le contexte de la classification hiérarchique, où le lien hiérarchique
représente la connaissance de haut-niveau. Nous avons formalisé le contexte hiérarchique pour poser
les concepts nécessaires à la présentation de notre solution. Dans le chapitre 7, nous avons conçu un
réseau spécifique appelé GHC-CNN, inspiré des B-CNN présents dans la littérature, qui est global,
c’est-à-dire que toutes les couches du réseau contribuent simultanément à la génération de toutes
les étiquettes. Pour cela, nous avons ajouté deux couches spéciales : la couche PNPO qui génére
les prédictions préliminaires données par la fonction softmax, et la couche FAFO qui ajuste ces
predictions en prenant compte de la contrainte hiérarchique à travers un ajustement Bayesien. Nous
avons proposé différentes variantes personnalisées de la fonction de perte permettant d’apprendre la
prédiction appropriée à chaque niveau ainsi que de capturer les éventuelles violations hiérarchiques.
Les expérimentations avec les variantes de GHC-CNN sur les cinq jeux de données ont montré que
l’apprentissage avec ajustement bayésien obtient de meilleures performances que l’apprentissage
sans prise en compte des connaissances externes. Plusieurs perspectives pour ce travail sont envisa-
geables. Nous pourrions commencer par explorer d’autres types d’ajustements ainsi que différentes
méthodes pour définir la fonction de perte. De plus, il serait pertinent de développer des métriques
d’évaluation plus adaptées à la classification hiérarchique. L’expérimentation avec d’autres jeux de
données hiérarchiques permettrait de confirmer le bon comportement du modèle GHC-CNN.

Le chapitre 8 constitue une extension du chapitre 7, où nous avons envisagé un mécanisme
d’abstention pour ajuster la sortie. Ce mécanisme permet au réseau de s’abstenir de donner une pré-
diction lorsque la confiance associée à la prédiction est inférieure à un seuil prédéfini. Nous avons
observé un grand nombre de travaux sur l’abstention, mais malheureusement, nous n’avons pas pu
explorer toutes les approches disponibles. Nous nous sommes focalisés sur les approches basées sur
le seuil de confiance pour les classifieurs par réseau de neurones. Le contexte hiérarchique nous a
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guidé dans la définition des propriétés que devrait respecter le seuil de confiance. Nous avons iden-
tifié deux propriétés : tout d’abord, le seuil devrait augmenter en fonction du niveau hiérarchique,
car les classes deviennent généralement plus complexes à mesure que l’on descend dans la hiérar-
chie. Deuxièmement, si l’abstention est effectuée à un niveau donné, elle devrait être appliquée à
tous les niveaux suivants. Ces propriétés ont orienté notre choix de seuil pour nos expérimentations.
Nous avons également défini des métriques appropriées liées à l’abstention, notamment le taux de
classifications correctes ignorées et le taux de classifications erronées évitées grâce au mécanisme
d’abstention. L’évaluation de ce mécanisme s’appuie sur les expérimentations réalisées dans le cha-
pitre 7 sur les cinq jeux de données mentionnés précédemment. Les expériences ont démontré que le
mécanisme d’abstention basé sur la définition théorique du seuil conduit davantage à l’ignorance de
classes correctement prédites qu’à l’évitement de classes incorrectement prédites. Néanmoins, l’idée
d’explorer le mécanisme d’abstention reste très prometteuse, en particulier dans un contexte hiérar-
chique. Nous suggérons donc comme perspective d’envisager une définition empirique du seuil de
confiance, basée sur la distribution des probabilités. De plus, il serait intéressant d’explorer d’autres
approches d’abstention basées sur le seuil, comme celles fondées sur les écarts entre les valeurs
maximales du vecteur de probabilités. Une autre voie serait d’explorer les approches d’abstention
basées sur l’incertitude et la logique floue, où les frontières entre les classes sont mal connues. Enfin,
il il nous semblerait pertinent d’étudier les méthodes d’apprentissage de l’abstention en définissant
une fonction de perte permettant au réseau d’apprendre quand il est judicieux de s’abstenir.

En résumé, cette thèse représente une première incursion dans le vaste domaine de l’intégration
des connaissances de haut-niveau au sein des réseaux de neurones. Nous avons exploré différentes
approches pour tirer parti de ces connaissances : à l’entrée du réseau, dans la conception de l’archi-
tecture et dans la personnalisation de la fonction de perte, ainsi qu’à la sortie du réseau pour affiner
les prédictions. De nombreuses perspectives restent à explorer pour exploiter au mieux les connais-
sances externes afin d’améliorer l’apprentissage et ainsi d’être un jour capable de gouverner et de
donner un éclairage sur le comportement de ces systèmes dits “boîtes-noires”.

Cette thèse a abouti à la publication de trois articles scientifiques, dont deux au niveau interna-
tional et un au niveau national, ainsi qu’à la création d’un référentiel GitHub où sont répertoriés tous
les codes utilisés dans les expérimentations de cette thèse :

— MAYOUF, Mouna Sabrine et DE SAINT CYR-BANNAY, Florence Dupin. On Data-Preparation
Efficiency Application on Breast Cancer Classification, 2021 [65].

— MAYOUF, Mouna Sabrine et DUPIN DE SAINT-CYR, Florence. Curriculum Incremental
Deep Learning on BreakHis DataSet. In : Proceedings of the 2022 8th International Confe-
rence on Computer Technology Applications. 2022. p. 35-41 [67].

— MAYOUF, Mona-Sabrine et DUPIN DE SAINT-CYR, Florence. GH-CNN : A new CNN
for coherent hierarchical classification. In : International Conference on Artificial Neural
Networks. Cham : Springer Nature Switzerland, 2022. p. 669-681 [64].

— Repertoire Githib accessible à l’adresse [62].

129



Conclusion (in English)

Throughout the eight chapters of this thesis, we have explored the different aspects and domains
of expert knowledge integration within a convolutional neural network. In the first chapter, we
introduced the basic notions of how a neural network (and especially a convolutional neural network)
works in general, in order to lay the foundations for the rest of the thesis.

The second chapter discusses some aspects of high-level knowledge from our point of view,
using examples from work in the literature. We have categorized additional knowledge into two cat-
egories: additional human knowledge and black-box knowledge generated by the neural network.
We presented examples of this knowledge and the approaches used to exploit it. This chapter high-
lighted the lack of explicit studies on the role of knowledge in neural networks, paving the way for
further study to identify the types and aspects of knowledge used in neural networks.

The third chapter introduced the hierarchical databases used in this thesis. Two of these datasets
are intrinsically hierarchical, while the three others have been modified to incorporate a hierarchical
structure. We have also presented a method for creating hierarchical links in a dataset. Other types
of links can be explored, and other high-level knowledge can be exploited. For example, the IMA-
GENET dataset contains a range of metadata such as color, pattern, shape, and texture. It would be
possible to establish links between these metadata and generate high-level knowledge in the form of
rules for multi-label, multi-criteria classification.

The fourth chapter deals with data preparation, addressing the question of what constitutes good
data preparation. We have proposed a set of principles to be validated with corresponding protocols.
In addition, we have explored metrics to quantify the informativeness of the dataset using similarity
indices. However, when comparing theoretical metrics with empirical classification metrics, the
theoretical metrics were found to be uninformative in characterizing the dataset. This question of
informativeness merits further investigation. We propose to address it by using metrics based on the
comparison of latent vectors at the last layer before network output since these vectors summarize
the data after their forwarding through the network.

We also addressed the issue of data augmentation. To this end, we proposed a set of rational
principles governing data preparation. To better understand the impact of augmentation, we ex-
perimented with different augmentation protocols and proposed an approach based on Layer-wise
Relevance Propagation (LRP), an AI explanation technique. This new approach uses the previously
defined similarity metric to compare discriminating pixels in the original image and its transformed
version. Experiments have shown that geometric transformations for the classification task under
consideration tend to have an exploitative effect since they allow the discovery of other regions of
the image. Color operators, on the other hand, tend to have a memory effect, since they point to
similar regions. These results deserve to be explored on other histopathological image datasets,
and the protocol aimed at explaining the effect of data augmentation deserves to be generalized to
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other datasets. In addition, other visualization techniques could be tested instead of PRL. Another
interesting perspective would be to explore the work of Ekin D. Cubuk et al. [24], who propose a
search algorithm to find the best data augmentation policy so that the neural network obtains the best
validation accuracy on a target dataset.

The fifth chapter exploited the high-level knowledge linking microscopic magnification to clas-
sification quality. This led to the implementation of an incremental curriculum learning algorithm
for the input data. Experiments on the BreakHis dataset confirmed the effectiveness of the tech-
nique in improving classification and convergence. However, it would be interesting to use other
histopathological image datasets (or any images with different possible magnifications) to study the
generalizability of this method.

In the final part of this thesis, we explored the integration of knowledge at the level of neural
network architecture design and loss function customization. We chose the context of hierarchi-
cal classification, where the hierarchical link represents high-level knowledge. We formalized the
hierarchical context to lay down the concepts needed to present our solution. In Chapter 7, we de-
signed a specific network called GHC-CNN, inspired by the B-CNNs found in the literature, which
is global, i.e. all layers of the network contribute simultaneously to the generation of all labels. To
this end, we have added two special layers: the PNPO layer, which generates the preliminary predic-
tions given by the softmax function, and the FAFO layer, which adjusts these predictions by taking
into account the hierarchical constraint through a Bayesian adjustment. We have proposed various
customized variants of the loss function to learn the appropriate prediction at each level and capture
any hierarchical violations. Experiments with the GHC-CNN variants on the five datasets showed
that learning with Bayesian adjustment outperforms learning without taking external knowledge into
account. There are several possible perspectives for this work. We could begin by exploring other
types of adjustment and different methods for defining the loss function. It would also be useful to
develop evaluation metrics better suited to hierarchical classification. Experimentation with other
hierarchical datasets would confirm the good behavior of the GHC-CNN model.

Chapter 8 is an extension of Chapter 7, where we considered an abstention mechanism for ad-
justing the network’s output. This mechanism allows the network to abstain from giving a prediction
when the confidence associated with the prediction is below a predefined threshold. We observed
a large amount of research on forbearance, but unfortunately, we were not able to explore all the
available approaches. We focused on threshold-based approaches for neural network classifiers.
The hierarchical context guided us in defining the properties that the confidence threshold should re-
spect. We identified two properties: first, the threshold should increase with the hierarchical level, as
classes generally become more complex as one moves down the hierarchy. Second, if abstention is
performed at a given level, it should be applied to all subsequent levels. These properties guided our
choice of threshold for our experiments. We also defined appropriate metrics related to abstention,
including the rate of correct classifications ignored and the rate of incorrect classifications avoided
thanks to the abstention mechanism. The evaluation of this mechanism is based on the experiments
carried out in Chapter 7 on the five datasets mentioned above. The experiments demonstrated that the
abstention mechanism based on the theoretical definition of the threshold leads more to the ignoring
of correctly predicted classes than to the avoidance of incorrectly predicted classes. Nevertheless,
the idea of exploring the abstention mechanism remains very promising, especially in a hierarchical
context. We therefore suggest the prospect of considering an empirical definition of the confidence
threshold, based on the probability distribution. In addition, it would be interesting to explore other
threshold-based abstention approaches, such as those based on deviations between maximum values
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of the probability vector. Another avenue would be to explore abstention approaches based on un-
certainty and fuzzy logic, where the boundaries between classes are poorly known. Finally, it would
seem appropriate to study abstention learning methods by defining a loss function that enables the
network to learn when it makes sense to abstain.

In summary, this thesis represents a first incursion into the vast field of high-level knowledge
integration within neural networks. We have explored different approaches to taking advantage of
this knowledge: at the input of the network, in the design of the architecture, and in the customization
of the loss function, as well as at the output of the network to refine predictions. There are still many
perspectives to be explored in order to make the best use of external knowledge to improve learning
and thus one day be able to govern and shed light on the behavior of these so-called "black-box"
systems.

This thesis has resulted in the publication of three scientific articles, two at the international level
and one at the national level, as well as the creation of a GitHub repository where all the codes used
in the experiments of this thesis are cataloged:

— MAYOUF, Mouna Sabrine et DE SAINT CYR-BANNAY, Florence Dupin. On Data-Preparation
Efficiency Application on Breast Cancer Classification, 2021 [65].

— MAYOUF, Mouna Sabrine et DUPIN DE SAINT-CYR, Florence. Curriculum Incremental
Deep Learning on BreakHis DataSet. In : Proceedings of the 2022 8th International Confer-
ence on Computer Technology Applications. 2022. p. 35-41 [67].

— MAYOUF, Mona-Sabrine et DUPIN DE SAINT-CYR, Florence. GH-CNN: A new CNN
for coherent hierarchical classification. In: International Conference on Artificial Neural
Networks. Cham: Springer Nature Switzerland, 2022. p. 669-681 [64].

— A Githib directory accessible at [62].
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