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Abstract

This paper considers the simple problem of abduction in the framework of Bayes theorem,
when the prior probability of the hypothesis is not available, either because there are no
statistical data to rely on, or simply because a human expert is reluctant to provide a sub-
jective assessment of this prior probability. This abduction problem remains an open issue
since a simple sensitivity analysis on the value of the unknown prior yields empty results.
This paper tries to propose some criteria a solution to this problem should satisfy. It then
surveys and comments on various existing or new solutions to this problem: the use of
likelihood functions (as in classical statistics), the use of information principles like max-
imum entropy, Shapley value, maximum likelihood. Finally, we present a novel maximum
likelihood solution by making use of conditional event theory. The formal setting includes
de Finetti’s coherence approach, which does not exclude conditioning on contingent events
with zero probability.
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1 Introduction

Abductive reasoning tries to find plausible explanations for observed evidence. In
the framework of probability theory, Bayes theorem may help solving the problem,
provided that enough information is available, which is, however, rarely the case.
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To put the basic problem of Bayesian abduction in more formal terms, assumeH
to be a Boolean proposition interpreted as a hypothesis, a disease, a fault, a cause,
etc. pertaining to the state of a system. LetE be another proposition representing a
hypothetically observed (that is, observable) fact, a symptom, an alarm, an effect,
etc. Numerical assessments of positive conditional probability valuesP (E|H) = a
andP (E|Hc) = b ≤ a are supplied by an agent, who either uses available statisti-
cal data or proposes purely subjective assessments. The problem is to evaluate the
relative plausibility of the hypothesis and its negation after observing eventE. If a
prior probabilityP (H) is assigned andb > 0, the question is solved by Bayes the-
orem. But, due to sheer ignorance, suppose no prior probabilityP (H) is assigned
and observationE is made, or that probabilitiesa or b are set to zero. What can
be said about the support given to hypothesesH vs. Hc upon observingE? For
instance, a roadwork (H) might cause a traffic jam (E). Having assigned all neces-
sary probabilities above and being stuck in a traffic jam, with which probability do
we expect a roadwork ahead, i.e. how to estimateP (H|E) in a reasonable way?

In this work, we discuss thoroughly past proposals for dealing with this problem
and develop either new solutions or rigorous formalization of previously proposed
solutions. To this aim, we review various approaches to probability theory, and
to imprecise probabilities, such as maximum entropy, Shapley value, conditional
events, de Finetti’s coherence setting, possibility theory and the like, and include
an in-depth comparison. As a main contribution of this paper, we present a novel
maximum likelihood approach by making use of conditional event theory, viewing
conditional probabilities as a kind of midvalues. Although we might want to deal
with more complex abduction problems, investigating these methods in this simple
context already helps clarifying substantial differences between them.

Here, by definition, we do not take for granted the Bayesian credo according to
which whatever their state of knowledge, rational agents should produce a prior
probability. Indeed the idea that point probability functions should be in one to one
correspondence with belief states means that a probability degreeis equatedto a de-
gree of belief. Then, in case of total ignorance aboutH, agents should assign equal
probabilities toH and its complement, due to symmetry arguments. This claim can
be challenged, and has been challenged by many scholars (e.g., [33,15,37,39]): In-
deed agents must assign equal probabilities toH and its complement, when they
know that the occurrence ofH is driven by a genuine random process, and when
they know nothing. The two epistemic states are different but result in the same
probability assessment. Here, we take ignorance aboutH for granted, assuming
P (H) is unspecified (in other words the agent refuses to bet on a value ofP (H)).
We review what was done in the past, and what can legitimately be done to cope
with ignorance, trying to formally justify various solutions to this problem.

Investigating the problem of abduction in a formal Bayesian framework here allows
us to deal both with consistency based diagnosis (i.e. when evidence contradicts
some hypotheses made about a system) and purely abductive reasoning (i.e. finding
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a minimal set of faults that explain the observations) in a common framework.

This paper is organized as follows: We put the problem into formal terms in the
next section, and some criteria are laid bare for a solution to the problem to be
acceptable. We continue by recalling three classical approaches for its solution.
Afterwards, various information principles are applied to solve the problem, and
compared with each other. Finally, we present our novelrelaxed maximum likeli-
hood approach. We conclude the paper with a summary and an outlook on further
work.

2 Methodology

In this paper, the following notations are adopted:Ω is the sure event,AB is short
for A ∧ B (conjunction), and the complement of an eventA is denotedAc. More-
over, we use the same symbol to denote an event and its indicator.

2.1 Formalizing the problem

The basic variables in the problem are denoted

x = P (EH) ; y = P (EcH) ; z = P (EHc) ; t = P (EcHc).

Let P = {P, P (E|H) = a, P (E|Hc) = b} be the set of probability functions
described by the constraints expressing the available knowledge. The variables
x, y, z, t are thus linked by the following constraints:

x + y + z + t = 1 (normalization),

x = a(x + y) corresponding toP (E|H) = a,

z = b(z + t) corresponding toP (E|Hc) = b.

The problem of finding probability distributions which are solutions to a set of con-
straints has been addressed by many authors working on imprecise probabilities;
see e.g. [8,9,14,17,28,31,24,38]. The setP is clearly a segment on a straight line in
a 4-dimensional space(x, y, z, t), namely, the intersection of the hyperplanes with
equationsx + y + z + t = 1, x = a(x + y) andz = b(z + t).

In the most general case, assuming0 < a, b < 1, the constraints can be written

y =
1− a

a
x , z =

b

1− b
t ,

x

a
+

z

b
= 1 ,
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or equivalently

x =
a

1− b
(1− b− t) , y =

1− a

1− b
(1− b− t) ,

z =
b

1− b
t , 0 ≤ t ≤ 1− b .

Then, the setP is the segment bounded by the probabilities(a, 1 − a, 0, 0) and
(0, 0, b, 1− b). It can be checked that this result still holds whena = b = 1: In this
particular case, the constraints

x = a(x + y) , z = b(z + t) , x + y + z + t = 1 ,

becomex = x + y , z = z + t , x + z = 1 . Then, the setP is the segment
bounded by the probabilities(1, 0, 0, 0) and(0, 0, 1, 0). We also note that, as it could
be easily verified, the initial assessmentP (E|H) = a, P (E|Hc) = b is coherent
in the sense of de Finetti [22] for everya ∈ [0, 1], b ∈ [0, 1]. The consistency of
conditional probability assessments can be checked by a geometrical approach (see
Appendix), or considering suitable sequences of probability functions (see, e.g.,
[13]). Hence, the constraints are always satisfiable.

Note thatP (E|H), P (E|Hc) often reflects generic knowledge (sometimes inter-
preted causally) expressing the probabilities of observing events of the formE
whenH occurs or when its contrary occurs, respectively. Then these probabilities
refer to a population of situations where the occurrence of events of the formE was
checked whenH was present or absent. This population may be explicitly known
(as in statistics) or not (for instance we know that birds fly but the concerned pop-
ulation of birds is ill-defined). On the contrary, the observationE is contingent, it
pertains to the current situation, and nothing is then assumed on the probability of
occurrence of events of the formE in the population. In this case, it is not legiti-
mate to interpret the observationE as a (new) constraintP (E) = 1, which would
mean that events of the formE are always the case, while we just want to represent
the fact that eventE has been observed now.1

Suppose the prior probabilityP (H) is provided by an agent. Clearly it must be
interpreted in a generic way (in general, events of the formH have this propensity
to be present); otherwise, ifP (H) were only the contingent belief of the agent now,
one may not be able to use it on the same grounds as the conditional probabilities
so as to uniquely define a probability function inP (since we do not interpret the
contingent but sure observationE as having probability1). As a consequence, when
the prior probabilityP (H) is specified, our generic knowledge also includes the
posterior probabilityP (H|E), which we extract for the reference classE (as we

1 AssumingP (E) = 1 is often done in probability kinematics [41], where conditioning is
understood as revising a probability function
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know the current situation is in the class of situations whereE is true). In a second
(inductive) step, the valueP (H|E) can be used by the agents for measuring their
belief in the hypothesisH to be present now, given thatE is observed.

A common, but fallacious objection to the above remark can be as follows: sup-
pose that the agent interpretsP (E|H), P (E|Hc) as contingent conditional belief
degrees of observingE if H is present or not present in the current situation. In that
case, since these values are interpreted as contingent uncertain beliefs, one may be
tempted to interpret the observation of evidence in a strong way, asP (E) = 1, es-
pecially in the case where the prior probability ofH is unknown. Unfortunately, the
equalityP (E) = 1 is inconsistent withP (E|H) = a andP (E|Hc) = b since they
imply a ≥ P (E) ≥ b. So the formal framework cannot support the interpretation
of P (E|H), P (E|Hc) as contingent conditional belief degrees, unless we interpret
conditioning as probability revision [41].

2.2 Requirements for cogent abduction without prior

The following conditions could be considered as minimal prerequisites for an ab-
duction method to qualify as being reasonable:

(1) The formal model should be faithful to the available information: it should not
select a unique probabilistic model if there is no reason for it. The assignment
of a unique probabilistic prior in the situation of ignorance can be seen as a
useful suggestion to apply Bayes theorem. But it then should be justified in
some reasonable way.

(2) The solution should be non-trivial: the approach should not result in total ig-
norance, whenP (E|H) 6= P (E|Hc), since likelihood functions do express
information. The fundamental Polya abductive pattern in the logical setting,
whereby ifH implies E andE is true thenH becomes plausible should be
retrieved.

(3) The chosen approach should always provide a solution: it should not lead
to a logical contradiction, since likelihood functions are consistent with any
prior probability, and the case where the prior probability is assigned is one of
maximal information.

(4) The method should be principled: there should be a formal framework that can
support the inference results of the abduction process, no ad hoc solution is
searched for.

(5) The solution should be intuitive and plausible: the method should not yield an
unreasonable result that commonsense would obviously dismiss.

In the following we first check if past proposals to the problem satisfy these re-
quirements.
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3 Three standard approaches

In the literature, three approaches exist that try to cope with ignorance of the prior
probability. The first approach is based on varying the prior probability on the
expression ofP (H|E) derived from Bayes theorem. Unfortunately the posterior
probability remains totally unknown in this case, even if some zero probabilities
prevent the standard approach from being carried out, as shown in the second ap-
proach, using de Finetti’s coherence framework [22]. Another classical approach in
non-Bayesian statistics relies on the relative values ofP (E|H) andP (E|Hc) being
interpreted as the likelihood ofH and its complement. In this approach, the idea
of computing a posterior probability is given up. The only way of ascertaining a
hypothesis under this approach is by rejecting its complement. It turns out that this
approach is consistent with possibility theory [19].

In the following, we recall these approaches in some detail.

3.1 Imprecise Bayes

The most obvious thing to do in the absence of prior is to perform sensitivity anal-
ysis on Bayes theorem. LetP (H) = p be an unknown parameter. Then

P (H|E) =
P (E|H) · P (H)

P (E)
=

a · p
a · p + b · (1− p)

·

But the valuep is anywhere between0 and1. Clearly the corresponding range of
P (H|E) is [0, 1]. So this approach brings no information on the plausibility of the
hypothesis, making the observation of evidence and the presence of the generic
knowledge useless, in contradiction with requirements 2 and 5. Indeed, one feels
prone to consider that evidenceE should confirmH if for instancea is high andb
is low. The above analysis presupposesa · p + b · (1− p) 6= 0.

Two cases result ina·p+b·(1−p) = 0. First the case whenP (E | Hc) = b = 0 and
P (H) = p = 0 (the case whenP (E | H) = a = 0 impliesb = 0 by construction);
finally the case whena = b = 0, while p > 0.

First consider the case

P (E|H) = a > 0 , P (E|Hc) = 0 , P (H) = 0 ,

(so thatP (E) = 0); what can be said aboutP (H|E)? It can be proved that
P (H|E) ∈ [0, 1]. We observe thatP (E|Hc) = 0 implies z = 0 ; P (H) = 0
implies x + y = 0. So,t = 1. Since the only constraint acting onP (H | E) is
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x = P (H | E)(x + z), the latter just reduces to0 = P (H | E) · 0, soP (H | E) is
unconstrained.

Now, what can be said if we assumeP (E|H) = P (E|Hc) = 0, so thatP (E) = 0,
without assumingP (H) = 0? It impliesx = z = 0 so thatt + y = 1. Then since
by definitionx = P (H|E)(x + z), it all reduces to0 = P (H|E) · 0 again. So, the
range ofP (H|E) still remains[0, 1].

However we cannot fully rely on the above approach in the case when some prob-
abilities are zero. Suppose for instance the assessmentP (H | E ∨ H) = 1

2
were

added to the two current ones. It can be shown that the assessmentP (H | E) =
p1 , P (H | E ∨ H) = p2 is coherent if and only ifp1 ≤ p2. If there are no zero
probabilities, this is obvious since we know thatP (H|E) ≤ P (H|E ∨ H). The
conclusion0 ≤ P (H | E) ≤ 1

2
is then obvious. But if

P (E|H) = a > 0 , P (E|Hc) = 0 , P (H) = 0 , P (H|E ∨H) =
1

2

which impliesP (E) = P (H) = P (E ∨H) = 0, it follows x = y = z = 0, t = 1;
then the assessments above, andP (H|E) = γ, lead to the constraints

x = a(x + y) , z = 0(z + t) , x + y = 0 ,

x + y =
1

2
(x + y + z) , x = γ(x + z) ,

that is

0 = a · 0 , 0 = 0 · 1 , x = y = 0 , 0 =
1

2
· 0 , 0 = γ · 0 .

Hence, there is no way to obtainP (H | E) ≤ 1
2

since this system only implies
0 ≤ γ ≤ 1. Only by using a general methodology, such as the coherence-based
approach of de Finetti, may we be sure of properly handling all (explicit or implicit)
constraints.

3.2 Coherence approach

The coherence setting of de Finetti [22] allows a sound handling of zero prob-
abilities of conditioning events. In fact, zero probabilities on relevant relation-
ships might occur easily in practice. For instance, Bernard [3] referred to a sta-
tistical investigation on the religious behaviour of people, in which no individu-
als were present that pray often, while not going to church regularly nor giving
their children any religious education. Nevertheless, one might be interested in
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elaborating relationships between the eventE = pray often∧ ¬regular church∧
¬religious educationand the eventH = Believingin paradise, also studied in that
investigation. If the expert directly evaluates probabilities by observed frequencies,
she obtainsP (EH) = P (EHc) = 0 and so areP (E|H) andP (E|Hc). Then
the conditional probabilityP (H|E) is the indeterminate form0

0
; hence a difficulty.

Now suppose that some expert assesses the probabilitiesP (E|H) andP (E|Hc),
based on some general information. These assessments would not depend on the
fact that in some data collection experiment, the frequencies of relevant events
are zero. In general, not excluding zero probabilities is often needed for hypo-
thetical or counterfactual reasoning. However, the problem of zero probabilities
could arise again, for instance in the (extreme) case in which the expert asserts
P (H) = P (E|Hc) = 0. In such cases, direct reasoning as in the previous subsec-
tion in general may fail, as shown above.

So, our abduction problem must be treated in the coherence framework of de Finetti
to make sure results we found in the zero probability cases are correct. Theoretical
details on this approach are given in the Appendix. Two cases must be considered :
P (H) = b = 0, andP (H) > 0, a = b = 0. We analyze the first pathological case.
The second pathological case can be analyzed by similar reasoning. So consider
the problem:

P (E|H) = a > 0 , P (E|Hc) = 0 , P (H) = 0 .

It corresponds to the assignmentp = (a, 0, 0, γ) to the tuple

F = (E|H , E|Hc , H|Ω , H|E).

To check coherence ofp, as a first step we have to consider the “constituents” (in-
terpretations) generated byF and contained in the disjunction of the conditioning
eventsH ∨Hc ∨ Ω ∨ E = Ω (here, the sure event), which are

C1 = EH , C2 = EcH , C3 = EHc , C4 = EcHc ,

(in the case we are examining, the complementC0 of the disjunction of the con-
ditioning events is not a constituent, as it coincides with the impossible event∅).
Let

E1|H1 = E|H, E2|H2 = E|Hc, E3|H3 = H|Ω, E4|H4 = H|E.

To each basic constituentCh assign a vectorQh = (qh1, qh2, qh3, qh4), where, for
each conditional indexed byj = 1, 2, 3, 4, componentqhj is defined as in equation
(A.3) in the Appendix. Namely

• h = 1: C1 = EH ⊆ E1H1, E3H3, E4H4;
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• h = 2: C2 = EcH ⊆ E3H3, H
c
4;

• h = 3: C3 = EHc ⊆ Hc
1, E2H2;

• h = 4: C4 = EcHc ⊆ Hc
1, H

c
4.

Then, in geometrical terms, we get the points

Q1 = (1, 0, 1, 1), Q2 = (0, 0, 1, γ), Q3 = (a, 1, 0, 0), Q4 = (a, 0, 0, γ),

and, denoting byI the convex hull ofQ1, . . . , Q4, we check the (necessary) coher-
ence conditionp ∈ I, that is the existence of a non-negative vector(x, y, z, t) such
that

p = xQ1 + yQ2 + zQ3 + tQ4 , x + y + z + t = 1.

This comes down to writing exactly the system of equations defining the set of
probabilitiesP in section 2.1. Of course, the consistency of this system is in general
necessary but not sufficient for the coherence ofp; it becomes sufficient when, like
in the previous subsection, we exclude conditioning events of zero probability. In
our pathological case the system becomes:

x = a(x + y), z = 0, x + y = 0, x = γ(x + z),

x + y + z + t = 1, x ≥ 0, y ≥ 0, z ≥ 0, t ≥ 0.
(1)

As p = Q4, the conditionp ∈ I is satisfied (i.e., the system is solvable), with
x = y = z = 0 , t = 1, for everyγ ∈ [0, 1]. Notice that the solution of the above
system,(x, y, z, t) = (0, 0, 0, 1) is a probability function on the set of constituents
{C1, C2, C3, C4}. With this probability function are associated, for the conditioning
eventsH, Hc, Ω, E, the following probabilities

P (H) = x + y = 0 , P (Hc) = z + t = 1 ,

P (Ω) = x + · · ·+ t = 1 , P (E) = x + z = 0 .

Then, we must continue to check coherence on the sub-family of conditional events
whose conditioning events have zero probability; that is, we have to check as a
second step the coherence of the assessmentp0 = (a, γ) to F0 = (E|H, H|E).
Constituents inH ∨ E are C1 = EH ,C2 = EcH , C3 = EHc , with associated
points:Q1 = (1, 1) , Q2 = (0, γ) , Q3 = (a, 0) (in the case we are examining, the
disjunction of the conditioning events isH∨E, so thatm = 3 andC0 = (H∨E)c =
HcEc). As we can verify, the conditionp0 ∈ I0 holds, that is

p0 = xQ1 + yQ2 + zQ3 , x + y + z = 1 ,

x ≥ 0 , y ≥ 0 , z ≥ 0 ,
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(whose geometrical meaning is thatp0 belongs to the triangleQ1Q2Q3). It amounts
to solving the linear system

x = a(x + y), x = γ(x + z),

x + y + z = 1, x ≥ 0, y ≥ 0, z ≥ 0,
(2)

solvable with

x =
aγ

a + γ(1− a)
, y =

(1− a)γ

a + γ(1− a)
, z =

a(1− γ)

a + γ(1− a)
,

for everyγ ∈ [0, 1].

Notice that the vector(x, y, z, t) =
(

aγ
a+γ(1−a)

, (1−a)γ
a+γ(1−a)

, a(1−γ)
a+γ(1−a)

, 0
)

is a prob-
ability function on the set of constituents{C1, C2, C3, C0}, whereC0 = EcHc.
With this probability function, the following probabilities are associated with the
conditioning eventsH, E:

P (H) = x + y =
γ

a + γ(1− a)
≥ 0 ,

P (E) = x + z =
a

a + γ(1− a)
> 0 .

As the set of conditioning events with zero probability is empty or equal to{H},
the assessmentp0 = (a, γ) is coherent for everyγ ∈ [0, 1]; therefore, the initial
assessmentp = (a, 0, 0, γ) is coherent for everyγ ∈ [0, 1]. In other words, the
range ofP (H|E) remains[0, 1].

We observe that in the above checking of coherence we used the following sequence
of two probability functions:

P0 = (0, 0, 0, 1), P1 =

(
aγ

a + γ(1− a)
,

(1− a)γ

a + γ(1− a)
,

a(1− γ)

a + γ(1− a)
, 0

)
.

We remark that: (i) at the second step the study is restricted to the sub-family
F0 = {E|H, H|E}; (ii) the probabilities of the constituents not contained in (the
disjunction of conditioning events)E ∨ H are equal to zero; in fact, the variable
t, associated with(E ∨ H)c = EcHc, is zero. Using the notion of zero-layer (see
[13]), with the above probability functions the following holds: Ifγ > 0, Hc (and
of courseΩ) belongs to the most normal zero-layer with level 0, while at the second
zero-layer with level 1 areE andH; if γ = 0, Hc (andΩ) is in the zero-layer of
level 0,E is at level 1, and the zero-layer ofH is at level 2.
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As shown above, differently from what happens in the usual approach to proba-
bilistic reasoning, in the more general setting of coherence (where conditioning
events are allowed to have zero probability) the admissibility of a given probability
assessment on a family of conditional events amounts to the existence of (in gen-
eral infinite) sequences of probability distributions defined on the relevant context
(set of constituents). In fact, the machinery of coherence has the “minimal” aim of
determining the set of all admissible probability assessments, without specifying a
particular status for any of them. The choice of a particular assessment in such set
mainly depends on how the expert weighs his information. In other words, coher-
ence is a syntactic (not semantic) tool and, like with imprecise probabilities, it does
not suggest a particular way of solving the abduction problem forP (H|E).

3.3 Likelihood approach

Non-Bayesian statisticians (e.g. [20], [1]) considerP (E|H) to be the likelihood of
H, denoted byL(H). WhenP (E|H) = 1, H is only fully plausible. When it is0
(the probabilityP (E|Hc) being positive) it rules out hypothesisH upon observing
E. But there is no formal justification given to the notion of likelihood, usually, thus
violating requirement 4. We are in a dilemma as the sensitivity approach is prob-
abilistically founded but provides no information while the likelihood approach is
informative but looks ad hoc in a probabilistic setting.

Note that the likelihood approach is also in agreement with a default Bayesian ap-
proach: in the absence of a prior probability, assume it is uniformly distributed.
Then the posterior probability isP (H|E) = a

a+b
, so that it is equivalent to renor-

malize the likelihood functions in the probabilistic style. This fact has been re-
currently used to claim that the likelihood approach is like the Bayesian approach
with a uniform prior. Even if the likelihood approach looks consistent with the uni-
form prior (Bayes) method, the former has no pretence to compute precise posterior
probabilities: results it provides are informative only if one ofa or b is small (and
not the other). Saying that the likelihood approach is a special case of the Bayesian
approach is like saying that an unknown probability distribution and a uniform
probability distribution mean the same thing.

Dubois, Moral, and Prade [18] suggested thatL(H) can be viewed as an upper
probability bound and also a degree of possibility: generally the quantityP (A|B)
is upper bounded bymaxx∈B P (A|x), and as pointed out by [13], if set-functionL
is assumed to be inclusion-monotonic (as expected if we take it for granted thatL
means likelihood), thenP (A|B) = maxx∈B P (A|x) is the only possible choice if
only P (A|x) is known for allx.

In this sense the likelihood approach, common in non-Bayesian statistics comes
down to interpreting conditional probabilities in terms of possibility theory [19].
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The quantityP (E|H) can be used to eliminate assumptionH if it is small enough
in front of P (E|Hc), but evaluating thatP (E|H) = 1 is not sufficient to ascertain
H.

4 Relying on information principles

One way out of the dilemma of abduction without priors is to introduce additional
information by means of default assumptions that are part of the implicit back-
ground knowledge. The idea is that in the absence of prior probability, one finds
a (default) probability measure inP in some way, relying on principles of in-
formation faithfulness, maximal independence assumptions, or symmetry assump-
tions, respectively [32]. Then the posterior beliefs of agents is dictated by the de-
fault probability thus selected. Unfortunately, as seen below the results obtained by
means of the various principles are not fully consistent with each other.

4.1 The maximum likelihood principle

The maximum likelihood principle says that if an event occurred then this is be-
cause it was at the moment the most likely event. So the best probabilistic model in
a given situation is the one which maximizes the probability of occurrence of the
observed evidence. This principle is often used to pick a probability distribution
in agreement with some data. For instance, assume we observek heads andn − k
tails from tossing a coinn times. The probability function underlying the process is
completely determined by the probability of heads, sayx. To find the best value of
x, one maximizes the likelihoodL(x) = P (E|x) = xk · (1− x)n−k, whereE = “k
heads andn− k tails” and we findx = k

n
. Interestingly, sincex completely defines

the probability measureP on {tail, head}, P (E|x) = L(P ), i.e. the likelihood of
modelP .

So, the maximum likelihood approach selects a plausible probabilistic model, with
a view to solve the abduction problem in a second step. In our problem, we in-
terpretP (E) as the likelihood of the probability functionP after E occurred. In
our case,E occurred, so it is legitimate to establish the agent’s posterior (contin-
gent) belief aboutH assumingP (E) is as large as possible under the constraints
P (E|H) = a < 1 andP (E|Hc) = b ≤ a. Again, in that case we interpretP (E)
as the likelihood of the probability functionP to be selected among those such that
P (E|H) = a, P (E|Hc) = b, while the non-Bayesian statistics approach directly
chooses betweenH andHc on the basis of their likelihoods. Here we first try to
select a plausible probabilistic model, and then, solve the abduction problem.

Note thatP (E) = a · p + b · (1 − p) whose maximum isP (E) = a, which
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unfortunately enforcesp = 1. It comes down to assumingP (H) = 1, so that
P (H|E) = 1, too. This is clearly too strong to be credible, even under a weak
interpretation of the posterior probability (H is present in the situation whereE
was observed). However note that in this approach the constraintP (E) = a is not
added to mean that the probability ofE is indeeda in the population. It just assumes
that the population of realizations relevant for the current situation is the one where
E is as likely as possible, so that in the current situation,P can be restricted to
{P ∈ P, P (E) is maximal}.

In any case, this approach violates requirement 5, as being counterintuitive. A way
out of this difficulty will be proposed later on in this paper, as therelaxed maximum
likelihood approach.

4.2 Maximizing entropy

A fairly popular informational principle is the maximization of entropy (e.g. [32]).
Entropy quantifies the indeterminateness inherent to a probability distributionP by
H(P ) = −∑ω P (ω) log P (ω). Given a setR = {(B1|A1)[x1], . . . , (Bn|An)[xn]}
of probabilistic conditionals, theprinciple of maximum entropy

max H(Q) = −
∑
ω

Q(ω) log Q(ω),

s.t.Q is a distribution satisfyingR

solves (uniquely) the problem of representingR by a probability distribution with-
out adding information unnecessarily. The resulting distribution is denoted by
ME(R). The maximum entropy solution is often interpreted as a least commit-
ted probability, i.e. the one involving maximal indeterminateness in a subsequent
decision process. In fact, maximum entropy processes conditional dependencies
especially faithfully, and independence between events is implemented only if no
information to the contrary can be derived. We will recall very briefly some facts on
the principle of maximum entropy that are needed to solve the problem considered
here; for further details, maximum entropy distribution, see e.g. [29].

Using well-known Lagrange techniques, we may representME(R) in the form

ME(R)(ω) = λ0

∏
i:ω|=AiBi

α1−xi
i

∏
i:ω|=AiBc

i

α−xi
i (3)

with theαi’s being exponentials of the Lagrange multipliers, one for each condi-
tional inR, andλ0 simply arises as a normalizing factor.

The maximum entropy solution to our problem can be computed as follows. Let
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Pme be the maxent distribution inP and we use the notationα = a
1−a

, β =
b

1−b
. Here, the probabilistic information given is represented byR = {(E|H)[a],

(E|Hc)[b]}, soPme = ME(R). Let λ+
a = α1−a, λ−

a = α−a, λ+
b = β1−b, λ−

b =
β−b with a normalizing constantλ0 = (α−a(1 − a)−1 + β−b(1 − b)−1)−1. Using
equation (3) we get the following probabilities:

ω Pme(ω) ω Pme(ω)

EH λ0λ
+
a EcH λ0λ

−
a

EHc λ0λ
+
b EcHc λ0λ

−
b

Now, it immediately follows that

Pme(H|E) =
α1−a

α1−a + β1−b
=

a · a−a(1− a)a−1

a · a−a(1− a)a−1 + b · b−b(1− b)b−1
,

and

Pme(H) = λ0(λ
+
a + λ−

a ) =
a−a(1− a)a−1

a−a(1− a)a−1 + b−b(1− b)b−1
.

Furthermore, also the maxent probability ofE can be calculated, and it turns out
that this probability is obtained by ME-fusing the given probabilitiesa andb (in the
sense of [30]):

Pme(E) = λ0(λ
+
a + λ+

b ) =
a1−a(1− a)a−1 + b1−b(1− b)b−1

a−a(1− a)a−1 + b−b(1− b)b−1
. (4)

Remark A more elementary approach, only good for the particular problem at
hand, is as follows. Every probability inP has the form

(ka, k(1− a), (1− k)b, (1− k)(1− b))

wherek = P (H), and its entropy amounts to

H = H(k) =−ka log ka− k(1− a) log k(1− a)− (1− k)b log(1− k)b

−(1− k)(1− b) log(1− k)(1− b)

=−k log k − (1− k) log(1− k)− ka log a− k(1− a) log(1− a)

−(1− k)b log b− (1− k)(1− b) log(1− b).

The principle of maximum entropy selects the unique probability distributionPme

with maximum entropy inP : so let us compute the value ofk where the derivative
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dH

dk
=−(log k − log(1− k) + a log a + (1− a) log(1− a)

−b log b− (1− b) log(1− b))

vanishes. SolvingdH
dk

= 0 for k yields

k

1− k
=

bb(1− b)1−b

aa(1− a)1−a
,

which is equivalent to

k =
bb(1− b)1−b

aa(1− a)1−a + bb(1− b)1−b
=

a−a(1− a)a−1

a−a(1− a)a−1 + b−b(1− b)b−1
.

With thatk, we obtain, as expected,

Pme(H|E) =
ka

ka + (1− k)b
=

a1−a(1− a)a−1

a1−a(1− a)a−1 + b1−b(1− b)b−1
.

Example 1 We will study the example from the introduction in this framework,
considering a roadwork as a possible explanation for a traffic jam. HereE =
traffic jam, H = roadwork, and we assumeP (E|H) = 0.9, P (E|Hc) = 0.2. Using
the formal machinery from above, the maximum entropy probabilityPme(H|E)
turns out to be0.791. Therefore, roadwork appears to be a suitable explanation for
the traffic jam.

4.3 Shapley value as pignistic probability

The Shapley value was first proposed in cooperative game theory [34], to extract
from a set of weighted coalitions of agents (a non-additive set-function), an assess-
ment of the individual power of each agent (a probability distribution).

The Shapley value is defined as follows. Consider the lower probability function
induced by the setP, i.e∀A ⊆ Ω(= {E, Ec}×{H, Hc}) P∗(A) = inf{P (A), P ∈
P}. For each permutationσ of elements ofΩ, a probability distributionpσ can be
generated fromP∗, letting, fori = 2, . . . n,

pσ(ωσ(i)) = P∗({ωσ(1), . . . , ωσ(i)})− P∗({ωσ(1), . . . , ωσ(i−1)}).

The Shapley value is the average of thesen! (possibly identical) probability distri-
butions, and it can be written, ifω ∈ Ω,

pSh(ω) =
s!(n− s− 1)!

n!

∑
S⊆Ω,ω /∈S

(P∗(S ∪ {ω})− P∗(S)),
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wheres andn are cardinalities ofS andΩ, respectively.

For convex capacities, it is the center of mass of the setP (which then coincides
with set of probability functions{P ≥ P∗}[35]). In the theory of belief functions,
it is known as the “pignistic transformation” [37].

Selecting the Shapley value comes down to assuming that all probabilities inP are
equally probable so that by symmetry the center of mass of this polyhedron can
be chosen by default as the best representative probability function in this set. This
is similar as replacing a solid by its center of mass for studying its kinematics. As
shown above,P is a segment on a straight line, bounded by the probabilities(a, 1−
a, 0, 0) and(0, 0, b, 1− b). It can be routinely proved using the above equation, that
the Shapley value is the midpoint of this segment, i.e.(a

2
, 1−a

2
, b

2
, 1−b

2
). Under this

default probability,

PSh(H|E) =
a

a + b

that is, the Shapley value supplies the same response as the Bayesian approach
where a uniform prior is assumed! This is not too surprising as the Shapley value
can be seen as assuming a uniform metaprobability over the probability set induced
by the constraints, and considering the average probability resulting from this meta-
assessment. The above result suggests that assigning a uniform prior to assumptions
and assuming a uniform metaprobability over the probability polygon come down
to the same result.

Example 2 We consider Example 1 in the Shapley framework. Here, we find easily
PSh(H|E) = 0.818. The result is similar to that calculated by the maximum entropy
approach.

4.4 Comparative discussion

Contrary to the simple form, in some sense natural, of the Shapley value, the maxi-
mum entropy solution looks hard to interpret in the problem at hand, at first glance.
But there is a similarity of form between them, except that the maxent solution
distorts the influences of the probabilitiesa andb by the function

f(x) =
(

x

1− x

)1−x

so that the maxent solution forP (H|E) takes the same form as the Shapley value,
after distortion, namely, f(a)

f(a)+f(b)
. Alternatively, one may see the maxent solution

16



as defining a default prior, assumingP (H) = w(a)
w(a)+w(b)

depending on coefficients

a andb, wherew(x) = x−x(1−x)x−1, so thatP (H|E) takes the form a·w(a)
a·w(a)+b·w(b)

.

Note thatlog w(x) is the entropy of the probability distribution(x, 1− x). Sow(x)
is all the higher as the distance betweenx and0.5 is smaller. So the prior prob-
ability selected by the maxent approach basically reflects the relative proximity
from P (E|H) to 0.5, andP (E|Hc) to 0.5, regardless of their being greater or less
than 0.5. For instance the cases wherea = b = 0.9, a = b = 0.1 and where
a = 0.9, b = 0.1 yield the same default prior probabilities. The value of weighting
functionw is not altered by exchanginga and1− a, (andb and1− b); w(x) takes
on values in[1, 2] so thatP (H) lies in the interval[1

3
, 2

3
] with Pme(H) = 0.5 if and

only if a = b or a = 1 − b. In other words, this weighting function shrinks the
[0, 1] range of prior probabilities symmetrically around0.5. This makes maximum
entropy more cautious, i.e. returning in general probabilities which are closer to
0.5, according to the maxent philosophy of not introducing determinateness unnec-
essarily. In the Shapley approach,PSh(H) = 0.5 is an invariant, independent ofa
andb.

As a andb approach the extreme probabilities1 resp.0, the maxent solution ap-
proaches the Shapley value. In fact, we havePSh(H|E) = Pme(H|E) if and only
if a = b, or a = 1 − b. In the first case,H andE are statistically independent,
in the second case, the influence ofH on E is symmetrical – its presence makes
E probable to the same extent as its absence makes it improbable, which can be
understood as a generalization of logical equivalence to the probabilistic case. This
reflects a strong symmetric dependence betweenE andH. What makes Shapley
value bolder in the scope of maxent is that both approaches coincide only when
E andH are either independent, or very strongly related. In fact,a (the degree of
the presence ofH) has a positive effect throughout on the probabilityPSh(H|E)
whereasb (the degree of the absence ofH) has a negative effect. This means that
increasinga or decreasingb always results in an increase ofPSh(H|E) which can
be explained, e.g., by assumingH to be an essential cause ofE.

As opposed to this, the maximum entropy probability processes information in a
more unbiased way, i.e. without assuming either strong dependence or indepen-
dence in general. But note, that when such a relationship seems plausible (in the
casesa = b or a = 1− b), then it coincides with the Shapley value.

A general comparison between the inference process based on center of mass prop-
agation (resulting in the Shapley value) and that by applying the maxent principle
was made in [32]. Paris showed that center of mass inference violates some proper-
ties that reasonable probabilistic inference processes should obey. More precisely,
in general, center of mass inference can not deal appropriately with irrelevant infor-
mation and with (conditional) independencies. For the problem that we focus on in
this paper, however, the Shapley value seems to be as good a candidate for reason-
able inference as the maximum entropy value, regarding invariance with respect to
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irrelevant evidence.

Overall, it seems that the maximum entropy approach is syntactically similar to
both the Shapley approach (since there exists similar implicit default priors in both
approaches) and the maximum likelihood approach (posterior probabilities are pro-
portional to likelihoods or some function thereof) for solving the abduction prob-
lem.

However, the particular form of the maximum entropy solution is hard to interpret
in the problem at hand. So, requirement 5 is met better by the Shapley value than by
the maximum entropy solution. As to the other requirements, these two approaches
are quite similar: Both always provide a solution, rely on formal frameworks and
are non-trivial (requirements 2,3, and 4). Since they pick unique probability dis-
tributions for solving the problem, both methods violate requirement 1 in a strict
sense, although one might argue that they do so for good reasons.

5 A relaxed maximum likelihood approach

The reason why the maximum likelihood fails is that maximizingP (E) onP en-
forcesP (H) = 1. It may mean that the available knowledge is too rigidly modelled
as precise conditional probability values.

As pointed out in [21], the symbolE|H stands as a three-valued entity, not a
Boolean one as it distinguishes between examplesEH, counterexamplesEcH and
irrelevant situationsHc. Authors like [27] and [16] have claimed thatE|H can
be identified with the pair(EH,EH ∨ Hc) of events (an interval in the Boolean
algebra), or with the triple(EH,EcH, Hc) that forms a partition of the universal
set. And indeed (provided thatP (H) > 0) P (E|H) is a function ofP (EH) and
P (E ∨Hc); namely

P (E|H) =
P (EH)

P (EH) + 1− P (E ∨Hc)
.

If P (H) = 0, i.e.,P (EH) = 0, P (E ∨Hc) = 1, it can be verified that the assess-
ment(0, 1, z) on {EH,E ∨ Hc, E|H} is coherent for everyz ∈ [0, 1]. Moreover,
under minimal positivity conditions [27],P (A|B) ≤ P (C|D),∀P if and only if
AB ⊆ CD andA∨Bc ⊆ C ∨Dc (or, equivalently,AB ⊆ CD andCcD ⊆ AcB).

Now, it is important to realize thatE|H is a kind of mid-term betweenEH and
E ∨ Hc sinceP (E ∨ Hc) ≥ P (E|H) ≥ P (EH). So it makes sense to interpret
the conditional knowledge asP (E ∨ Hc) ≥ a ≥ P (EH) andP (E ∨ H) ≥ b ≥
P (EHc), respectively. This is consistent with the original data due to the above
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remarks, which also show that the new formulation is a relaxation of the previous
one.

According to the maximum likelihood principle, the default probability function
should now be chosen such thatP (E) = x + z is maximal, under constraints:

P (E ∨Hc) ≥ a ≥ P (EH); P (E ∨H) ≥ b ≥ P (EHc)

and we assume here a positive likelihood functiona ≥ b > 0. The problem then
reads:

maximizex + z such that1− y ≥ a ≥ x; 1 ≥ x + y + z ≥ b ≥ z.

Sincea ≥ x, b ≥ z, x + z ≤ a + b, the maximal value ofP (E) is P ∗(E) =
min(1, a + b).

Now there may be more than one probability measure maximizingP (E). In or-
der to compute the posterior probability,P (H|E), we are led to the problem of
maximizing and minimizingP (EH) = x subject to

1− y ≥ a ≥ x, 1 ≥ x + y + z ≥ b ≥ z, x + z = min(1, a + b).

Proposition 1 Under the conditional event approach, assuming a positive likeli-
hood functionP (E|Hc) = b ≤ a = P (E|H), for the maximum likelihood poste-
rior probability, P (H|E), we have

(1) if a + b ≥ 1 thenP (H|E) ∈ [1− b, a].
(2) P (H|E) = a

a+b
, otherwise.

Proof.Whena+b ≥ 1 thenx+z = 1, theny = 0 is enforced. Hence the constraints
of the problem reduce to:

a ≥ x, b ≥ 1− x.

Thenx = P (EH) = P (H | E) ∈ [1− b, a].
If a + b < 1, thenP (E) = x + z = a + b. From this anda ≥ x, b ≥ z, it follows
directly, thatx = a, z = b must hold, which yieldsP (H|E) = x

x+z
= a

a+b
. 2

Example 3 Studying our running example 1 in this framework is easily done. For
the hypothesis roadwork, we havea + b ≥ 1, so it is straightforward to see that
here,P (roadwork|traffic jam) ∈ [0.8, 0.9].

Framing the problem within the setting of the de Finetti coherence approach encom-
passes the case of zero probabilities. Given two quantitiesa andb in the interval
[0, 1], we assign the unspecified quantitiesp = (x, z, α, β, γ, p) to the vector of
conditional events(EH, EHc, E ∨Hc, E ∨H, E, H|E) , whereEH = EH|Ω,
and so o n. We want to obtain all the coherent values ofp under the constraints
P (E ∨Hc) ≥ a ≥ P (EH) , P (E ∨H) ≥ b ≥ P (EHc) and the condition that
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γ is maximum. Then, we obtain the following proposition, that takes into account
all cases.

Proposition 2 In the framework of coherence, the maximum likelihood posterior
probability,P (H|E), is only known to lie in the interval[p′, p′′] such that :

(1) if a = b = 0, thenp′ = 0, p′′ = 1;
(2) if a > 0, b = 0, thenp′ = p′′ = 1;
(3) if a > 0, b > 0, a + b ≥ 1, thenp′ = 1− b, p′′ = a;
(4) a > 0, b > 0, a + b < 1, thenp′ = p′′ = a

a+b
.

Proof.To check the coherence ofp we use again the constituentsC1 = EH , C2 =
EcH , C3 = EHc , C4 = EcHc, and the associated6-dimensional pointsQ1, . . . ,
Q4. For example,Q1 = (1, 0, 1, 1, 1, 1), and so on. Then, at the first step we check
the conditionp ∈ I, which amounts to the solvability of the following system (in
the unknownsx, y, z, t, with non negative parametersα, β, γ, p)

α = x + z + t , β = x + y + z , γ = x + z , x = p(x + z) ,

x + y + z + t = 1 , x ≥ 0, y ≥ 0, z ≥ 0, t ≥ 0 ,

subject to maximize(x + z) whenx ≤ a ≤ x + z + t , z ≤ b ≤ x + y + z . Now,
let us consider the different cases:

Case 1:a = b = 0; in this casex = z = max(x+z) = 0; then, the system becomes

α = t , β = y , γ = 0 , 0 = p · 0 ,

y + t = 1 , x = 0, y ≥ 0, z = 0, t ≥ 0 ,

and, of course, is solvable for everyp ∈ [0, 1]; hence the range ofP (H|E) is
[p′, p′′] = [0, 1].

Case 2:a > 0, b = 0; in this casez = 0, max(x + z) = max x = a and the
system can be written as

α = a + t , β = a + y , γ = a , a = p · a ,

x + y + t = 1 , x = a, y ≥ 0, z = 0, t ≥ 0 .

Of course, the system is solvable if and only ifp = 1, soP (H|E) = p′ = p′′ = 1.

Case 3:a > 0, b > 0, a + b ≥ 1; in this casemax(x + z) = 1, y = t = 0 and the
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system becomes

α = 1 , β = 1 , γ = 1 , x = p ,

x + z = 1 , 0 ≤ x ≤ a, y = 0, 0 ≤ z = 1− x ≤ b, t = 0 .

Then, the system is solvable for every1 − b ≤ p = x ≤ a, so that the range of
P (H|E) is [p′, p′′] = [1− b, a].

Case 4:a > 0, b > 0, a + b < 1; in this casemax(x + z) = a + b, x = a, z = b
and the system becomes

α = a + b + t , β = a + b + y ,

γ = a + b , a = p(a + b) ,

a + b + y + t = 1 , x = a, y ≥ 0, z = b, t ≥ 0 .

Then, the system is solvable if and only ifp = a
a+b

, so thatP (H|E) = p′ = p′′ =
a

a+b
.2

While confirming the results of the previous proposition, the coherence approach
solves three additional cases with zero probabilities. Whena = 0 andb 6= 0 or
whena 6= 0 andb = 0, one of the assumptionsH or its contrary are eliminated.
Whena = b, we get eitherP (H|E) = P (Hc|E) = 1

2
if a ∈ (0, 1

2
); equal upper

probabilitiesa onH and its contrary ifa > 1/2; we also get the same result (upper
probabilities1, that is, total ignorance) for botha = b = 0 and fora = b = 1.

These results are not so surprising, even if new to our knowledge. This approach,
in opposition to the ones in the previous section does not necessarily enforce a de-
fault prior. WhenP (E|H) andP (E|Hc) are large, we only find upper probabilities
P ∗(H|E) = a andP ∗(Hc|E) = b (since the lower probabilityP∗(H|E) = 1− b),
which is in agreement with the interpretation of the likelihoodsL(H) = P (E|H)
and L(Hc) = P (E|Hc) as degrees of possibility (or upper probabilities). The
larger they are the less information is available on the problem. In particular when
a = b = 1, the likelihood function is a uniform possibility distribution on{H, Hc}
that provides no information (indeedP (E|H) = P (E|Hc) = 1 means that bothH
andHc are possible). It is natural that the observationE should not inform at all
aboutH in this case, that is, it is intuitively satisfying thatP (H|E) ∈ [0, 1] (total
ignorance) even assumingP (E) = 1. If a = b both increase from0.5 to 1, our
knowledge on the posterior evolves from equal probabilities on the hypothesis and
its contrary to higher order uncertainty about them, ending up with total ignorance.

On the contrary, whenP (E|H) andP (E|Hc) are small, the maximum likelihood
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solution in this case is a unique probabilityP (H|E) = a
a+b

. This is the result
obtained by the Bayesian approach under uniform priors and by the Shapley value
of the probability sets induced by the likelihood functions. In this case the available
knowledge, under maximum likelihood assumption, is rich enough to provide much
information upon observing evidence, under the maximum likelihood principle.

WhenP (E|Hc) is much smaller thanP (E|H), the maximum likelihood principle
enables hypothesisHc to be eliminated. It supplies a unique probability measure
proportional to(a, b) if both values are small enough.

This new approach to handling abduction without priors has some advantages. It
reconciliates the maximum likelihood principle (that failed due to an overcon-
strained problem) and the ad hoc likelihood-based inference of non-Bayesian statis-
tics. But it also recovers the Shapley value and the Bayesian approach with a uni-
form prior in some situations. It confirms the possibilistic behavior of likelihood
functions, being all the more uninformative as the likelihood of the hypothesis and
of its complement are both close to1. When they are both low but positive, the
Bayesian approach with a uniform prior is recovered. When one ofa andb is zero,
then the hypothesis with zero likelihood is unsurprisingly disqualified by observ-
ing E. However, in the case when both likelihoods are zero or one, it results in
total ignorance about the posterior probability of the hypothesis. So even if it is
in partial agreement with some of the other techniques, this new approach is, in
its spirit, also at odds with the maximum entropy method, with Shapley value and
the uniform Bayes approach as well, all of which treat the casesa = b < 0.5 and
a = b > 0.5 likewise.

The relaxed maximum likelihood approach is similarly well-behaved as Shapley
value and maximum entropy, but it avoids sticking to the idea of selecting a unique
probabilistic model. So, it satisfies all of our requirements, though it is not axiom-
atized, as Shapley value or the maximum entropy solution are. But it follows the
maximum likelihood principle, as opposed to the simple ad hoc use of likelihood
functions.

6 Conclusion

One of the traditional disputes in probability theory opposes the Bayesian approach
whereby any state of knowledge can be characterized by a single probability func-
tion on the suitable space, and classical statistics where likelihood functions are
often empirically estimated but subjective prior probabilities are not considered to
be relevant information. The Bayesian approach has the merit of offering a com-
plete and harmonious solution, but the price paid is, as already stressed in the past,
that either a full data collection is needed or a debatable representation of ignorance
in the form of prior probabilities must be adopted. The classical statistics approach
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Method Faithful Non-trivial Principled Plausible

Uniform Bayes NO YES YES YES

Imprecise Bayes YES NO YES NO

Likelihood Reasoning YES YES usually NO YES

Maximum Likelihood NO NO YES NO

Maximum Entropy NO YES YES Debatable

Laplace-Shapley NO YES YES YES

Relaxed Maximum Likelihood YES YES YES YES

Fig. 1. Comparison of different approaches

may look as lacking formal foundations despite the existing rationales for this prag-
matic approach. This paper has tried to put together many tools proposed in additive
and non-additive probability theories so as to sort out the issue of unknown priors.

Several approaches to the problem of probabilistic abduction have been reviewed,
and some novel solutions have been proposed, based on maximum entropy, Shap-
ley value and maximum likelihood reasoning. This study suggests that the key issue
is a suitable representation of the available probabilistic knowledge, and a suitable
choice of a reasoning principle. Table 1 summarizes the performance of the consid-
ered approaches with respect to the criteria 1, 2, 4, 5 laid bare in the methodology
section. As a result of this paper, some light is shed on the classical statistics ap-
proach and the maximum likelihood principle, by casting them in the framework of
possibility and imprecise probability theories. The paper also shows the noticeable
agreement between the use of Shapley value and the classical Bayesian assumption
of uniform priors under ignorance. The maximum entropy approach is shown to sig-
nificantly differ from the Bayesian tradition of uniform priors and the non-Bayesian
approach based on likelihoods. Indeed, the selectedP (H) depends on the relative
distance between the likelihoods ofH andHc and0.5. The fartherP (E|H) to 0.5
compared toP (E|Hc) the more informativeH turns out to be. Only the maximum
likelihood bluntly applied when likelihoods are known leads to a contradiction (cri-
terion 3). Our new maximum likelihood approach under a relaxed interpretation of
the causal knowledge provides an original solution to the probabilistic abduction
problem that bridges the gap between the straightforward use of likelihood func-
tions and the assumption of a uniform prior, being more informative than the pure
sensitivity analysis approach but less precise than the Bayesian, Shapley and max-
ent solutions when the likelihoods are too high to enable any hypothesis rejection.

It could be interesting to develop the work made in this paper by applying the re-
laxed maximum likelihood approach to more general knowledge bases, and also
for notions of coherence other than coherent inference. In particular, the case of
multiple-valued universes for hypotheses and pieces of evidence is worth investi-
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gating.

More work is also needed to fully interpret the obtained results. In particular, a
systematic comparative study of first principles underlying the Shapley value and
the maximum entropy approach is certainly in order. We should also compare our
results with what the imprecise probability school [39] and the Transferable Belief
Model [36] have to say about this problem in a more careful way. The problem
discussed in this paper is indeed closely connected with the issue of statistical in-
ference with binomial data, when little knowledge about prior uncertainty is avail-
able. In the standard statistical literature, the so-called ’objective Bayesian aproach’
(starting with works by Jeffreys) is devoted to the search of alleged uninformative
priors. More recently, the imprecise Dirichlet model of Walley (see a survey paper
by Bernard [2] and Utkin and Augustin [38]) deals with how to infer information
about the parameterx ruling a binomial experiment, given some observations (mod-
elled by likelihood functionsL(x) as in section 4.1) and prior information given
under the form of a set of priors each having the form of a beta distribution. It is
clearly related with our concerns here, since it includes the case when all possible
beta priors are allowed. Here we do not assume any prior at all. Moreover Bernard’s
paper also recalls a set of principles that statistical inference without prior informa-
tion should obey (symmetry, representation invariance, dependence on likelihood
function, and coherence in the sense of Walley), that complement and refine the
more general criteria discussed here.

Moreover, another point to study is the influence of irrelevant information on the re-
sults of the various approaches. Finally, in order to evaluate the cognitive plausibil-
ity (see Requirement 5) of the different approaches more thoroughly, psychological
testing could be carried out with experts.
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A Appendix: Coherent conditional probability assessments

We recall basic results on the handling of linear equations in checking coherence of
conditional probability assessments stemming from conditional probability assess-
ments, as pioneered by de Finetti (see, e.g., [5], [10], [11–13], [22], [25,26], [40]).
Given an arbitrary family of conditional eventsK and a real functionP : K → R,
let us consider a sub-familyF = {E1|H1, . . . , En|Hn} ⊆ K, and the vector
p = (p1, . . . , pn), wherepi = P (Ei|Hi) , i = 1, . . . , n . We denote byHn the
disjunctionH1 ∨ · · · ∨Hn. Notice that, asEiHi ∨Ec

i Hi ∨Hc
i = Ω , i = 1, . . . , n,

by expanding the expression
∧n

i=1(EiHi ∨ Ec
i Hi ∨ Hc

i ) , we can representΩ as
the disjunction of3n logical conjunctions, some of which may be impossible. The
remaining ones are the constituents generated by the familyF . We denote by
C1, . . . , Cm the constituents contained inHn and (ifHn 6= Ω) by C0 the further
constituentHc

n = Hc
1 · · ·Hc

n, so thatHn = C1 ∨ · · · ∨ Cm , Ω = Hc
n ∨ Hn =

C0 ∨ C1 ∨ · · · ∨ Cm , m + 1 ≤ 3n .

Coherence with betting scheme:Using the same symbols for the events and their
indicators, with the pair(F ,p) we associate the random gain

G =
n∑

i=1

siHi(Ei − pi) ,

where s1, . . . , sn are n arbitrary real numbers. Letgh be the value ofG when
Ch is true. Of courseg0 = 0 (notice thatg0 will play no role in the definition
of coherence). We denote byG|Hn the restriction ofG to Hn; henceG|Hn ∈
{g1, . . . , gm}, min G|Hn = min {g1, . . . , gm}, max G|Hn = max {g1, . . . , gm}.
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Then, the functionP defined onK is saidcoherentif and only if, for every integer
n, for every finite sub-familyF ⊆ K and for everys1, . . . , sn, one has

min G|Hn ≤ 0 ≤ max G|Hn , (A.1)

or equivalently

max G|Hn ≥ 0 (min G|Hn ≤ 0) . (A.2)

Coherence with penalty criterion:de Finetti [22] has proposed another operational
definition of probabilities, which can be extended to conditional events [25]. With
the pair(F ,p) we associate the lossL =

∑n
i=1 Hi(Ei − pi)

2 ; we denote byLh

the value ofL if Ch is true. If You specify the assessmentp onF as representing
your belief’s degrees, You are required to pay a penaltyLh whenCh is true. Then,
the functionP is saidcoherentif and only if do not exist an integern, a finite sub-
family F ⊆ K, and an assessmentp∗ = (p∗1, . . . , p

∗
n) onF such that, for the loss

L∗ =
∑n

i=1 Hi(Ei − p∗i )
2 , associated with(F ,p∗ ), it resultsL∗ ≤ L andL∗ 6= L;

that isL∗
h ≤ Lh , h = 1, . . . ,m , with L∗

h < Lh in at least one case.
Notice that the betting scheme and the penalty criterion are equivalent [25]; this
means that a probability assessmentp is coherent under the betting scheme if and
only if it is coherent under the penalty criterion.
If P is coherent, then it is called aconditional probabilityonK. Notice that, ifP is
coherent, thenP satisfies all the well known properties of conditional probabilities
(while the converse is not true; see [26], Example 8; or [13], Example 13).

We can develop a geometrical approach to coherence by associating, with each
constituentCh contained inHn, a pointQh = (qh1, . . . , qhn) , where

qhj =


1, if Ch ⊆ EjHj,

0, if Ch ⊆ Ec
jHj,

pj, if Ch ⊆ Hc
j .

(A.3)

Denoting byI the convex hull of the pointsQ1, . . . , Qm, based on the penalty
criterion, the following result can be proved ([25])

Theorem 1 The functionP is coherent if and only if, for every finite sub-family
F ⊆ K, one hasp ∈ I.
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Notice that, ifF = {E | H}, p = (P (E | H)) = (p), we have

p ∈ I ⇐⇒


p = 0, EH = ∅,

p = 1, EH = H,

p ∈ [0, 1], ∅ ⊂ EH ⊂ H.

Then, by Theorem 1, it immediately follows

Corollary 3 A probability assignmentP (E | H) = p is coherent iff it holds that
p = 0, EH = ∅,

p = 1, EH = H,

p ∈ [0, 1], ∅ ⊂ EH ⊂ H.

The betting scheme and the penalty criterion areequivalent, due to the following
results:
(i) the conditionp ∈ I amounts to solvability of the following system(S) in the
unknownsλ1, . . . , λm

∑m
h=1 qhjλh = pj , j = 1, . . . , n ;∑m
h=1 λh = 1 , λh ≥ 0 , h = 1, . . . ,m.

(ii) let x = (x1, . . . , xm), y = (y1, . . . , yn)t and A = (aij) be, respectively, a
row m−vector, a columnn−vector and am × n−matrix. The vectorx is said
semipositiveif xi ≥ 0, ∀ i, and x1 + · · · + xm > 0 . Then, we have (cf. [23],
Theorem 2.9)

Theorem 2 Exactly one of the following alternatives holds.
(i) the equationxA = 0 has asemipositivesolution;
(ii) the inequalityAy > 0 has a solution.

We observe that, choosingaij = qij − pj, ∀ i, j, the solvability ofxA = 0 means
that p ∈ I, while the solvability ofAy > 0 means that, choosingsi = yi, ∀ i,
one hasmin G|Hn > 0 (and hencep would be incoherent). Therefore, applying
Theorem 2 withA = (qij − pj), we obtainmax G|Hn ≥ 0 iff (S) is solvable, that
is, max G|Hn ≥ 0 iff p ∈ I.

Checking coherence.It could seem that, in order to verify coherence, we should
check the conditionp ∈ I for everyF ⊆ K (which tends to become intractable).
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We show that this is not the case, by restricting the attention to the checking of co-
herence of the assessmentp onF . Let S be the set of solutionsΛ = (λ1, . . . , λm)
of the system(S). Then, defineΦj(Λ) = Φ(λ1, . . . , λm) =

∑
r:Cr⊆Hj

λr , j =
1, . . . , n ; Mj = max Φj(Λ) , j = 1, . . . , n ; I0 = {j ∈ J : Mj = 0} . Notice
that I0 is a strict subset of{1, . . . , n}. We denote by(F0,p0) the pair associated
with I0.
Given the pair(F ,p) and a subsetJ ⊂ {1, . . . , n}, we defineHJ =

∨
j∈J Hj.

Moreover, we denote by(FJ ,pJ) the pair associated withJ and by(SJ) the corre-
sponding system.
We observe that(SJ) is solvable if and only ifpJ ∈ IJ , whereIJ is the convex
hull associated with the pair(FJ ,pJ). Then, it can be proved:

Theorem 3 Given the assessmentp onF , assume that(S) is solvable, i.e.p ∈ I,
and letJ be a subset of{1, . . . , n}. If there exists a solution(λ1, . . . , λm) of (S)
such that

∑
r:Cr⊆HJ

λr > 0 , then(SJ) is solvable, i.e.pJ ∈ IJ .

Theorem 4 Given the assessmentp onF , assume that(S) is solvable, i.e.p ∈ I.
Then, for everyJ ⊂ {1, . . . , n} such thatJ \ I0 6= ∅, one haspJ ∈ IJ .

By the previous results, we obtain:

p coherent⇐⇒

p ∈ I ;

if I0 6= ∅, thenp0 is coherent.

Then, we can check coherence by the following procedure:

Algorithm 1 Let the pair(F ,p ) be given.

(1) Construct the system (S) and check its solvability;
(2) If the system (S) is not solvable thenp is not coherent and the procedure

stops, otherwise compute the setI0;
(3) If I0 = ∅ thenp is coherent and the procedure stops; otherwise set(F ,p) =

(F0,p0) and repeat steps 1-3.

Notice that similar results and methods can be used for checking generalized coher-
ence and for propagation of imprecise conditional probability assessments ([26]).
The coherence-based approach to probabilistic reasoning with imprecise proba-
bilities has been studied in many papers ([4,5], [13], [39], [40]). In particular,
modelling uncertainty by conditional probability bounds, the relationship between
coherence-based probabilistic reasoning and model-theoretic probabilistic reason-
ing has been examined in [6]. In [7], among other things, a complete study of the
complexity of coherence-based probabilistic reasoning has been made.
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