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Abstract

This paper considers the simple problem of abduction in the framework of Bayes theorem,
when the prior probability of the hypothesis is not available, either because there are no
statistical data to rely on, or simply because a human expert is reluctant to provide a sub-
jective assessment of this prior probability. This abduction problem remains an open issue
since a simple sensitivity analysis on the value of the unknown prior yields empty results.
This paper tries to propose some criteria a solution to this problem should satisfy. It then
surveys and comments on various existing or new solutions to this problem: the use of
likelihood functions (as in classical statistics), the use of information principles like max-
imum entropy, Shapley value, maximum likelihood. Finally, we present a novel maximum
likelihood solution by making use of conditional event theory. The formal setting includes
de Finetti's coherence approach, which does not exclude conditioning on contingent events
with zero probability.
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1 Introduction

Abductive reasoning tries to find plausible explanations for observed evidence. In
the framework of probability theory, Bayes theorem may help solving the problem,
provided that enough information is available, which is, however, rarely the case.
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To put the basic problem of Bayesian abduction in more formal terms, asgume

to be a Boolean proposition interpreted as a hypothesis, a disease, a fault, a cause,
etc. pertaining to the state of a system. E&lbe another proposition representing a
hypothetically observed (that is, observable) fact, a symptom, an alarm, an effect,
etc. Numerical assessments of positive conditional probability vali&sH) = a
andP(E|H¢) = b < a are supplied by an agent, who either uses available statisti-
cal data or proposes purely subjective assessments. The problem is to evaluate the
relative plausibility of the hypothesis and its negation after observing &velfita

prior probability P(H) is assigned andl > 0, the question is solved by Bayes the-
orem. But, due to sheer ignorance, suppose no prior probabi(ify) is assigned

and observatiory is made, or that probabilities or b are set to zero. What can

be said about the support given to hypotheless. H¢ upon observingt? For
instance, a roadworki{) might cause a traffic jamK). Having assigned all neces-

sary probabilities above and being stuck in a traffic jam, with which probability do
we expect a roadwork ahead, i.e. how to estitfat& | £) in a reasonable way?

In this work, we discuss thoroughly past proposals for dealing with this problem
and develop either new solutions or rigorous formalization of previously proposed
solutions. To this aim, we review various approaches to probability theory, and
to imprecise probabilities, such as maximum entropy, Shapley value, conditional
events, de Finetti’'s coherence setting, possibility theory and the like, and include
an in-depth comparison. As a main contribution of this paper, we present a novel
maximum likelihood approach by making use of conditional event theory, viewing
conditional probabilities as a kind of midvalues. Although we might want to deal
with more complex abduction problems, investigating these methods in this simple
context already helps clarifying substantial differences between them.

Here, by definition, we do not take for granted the Bayesian credo according to
which whatever their state of knowledge, rational agents should produce a prior
probability. Indeed the idea that point probability functions should be in one to one
correspondence with belief states means that a probability desgrgaatedo a de-

gree of belief. Then, in case of total ignorance abidutgents should assign equal
probabilities toH and its complement, due to symmetry arguments. This claim can
be challenged, and has been challenged by many scholars (e.g., [33,15,37,39]): In-
deed agents must assign equal probabilitie&/tand its complement, when they
know that the occurrence df is driven by a genuine random process, and when
they know nothing. The two epistemic states are different but result in the same
probability assessment. Here, we take ignorance abotdr granted, assuming
P(H) is unspecified (in other words the agent refuses to bet on a valk¢/oy).

We review what was done in the past, and what can legitimately be done to cope
with ignorance, trying to formally justify various solutions to this problem.

Investigating the problem of abduction in a formal Bayesian framework here allows
us to deal both with consistency based diagnosis (i.e. when evidence contradicts
some hypotheses made about a system) and purely abductive reasoning (i.e. finding



a minimal set of faults that explain the observations) in a common framework.

This paper is organized as follows: We put the problem into formal terms in the
next section, and some criteria are laid bare for a solution to the problem to be
acceptable. We continue by recalling three classical approaches for its solution.
Afterwards, various information principles are applied to solve the problem, and
compared with each other. Finally, we present our noe@ixed maximum likeli-
hood approachWe conclude the paper with a summary and an outlook on further
work.

2 Methodology

In this paper, the following notations are adoptds the sure eventd B is short
for A A B (conjunction), and the complement of an evéns denotedA¢. More-
over, we use the same symbol to denote an event and its indicator.

2.1 Formalizing the problem

The basic variables in the problem are denoted

x=P(EH);y=P(E°H);z = P(EH);t = P(E°H®).

Let P = {P,P(E|H) = a,P(E|H®) = b} be the set of probability functions
described by the constraints expressing the available knowledge. The variables
x,y, z,t are thus linked by the following constraints:

x+y+ z+t=1(normalization)

x = a(x + y) corresponding toP(E|H) = a,
z = b(z + t) corresponding toP(E|H¢) = b.

The problem of finding probability distributions which are solutions to a set of con-
straints has been addressed by many authors working on imprecise probabilities;
see e.g. [8,9,14,17,28,31,24,38]. TheBes$ clearly a segment on a straight line in

a 4-dimensional spade, y, z, t), namely, the intersection of the hyperplanes with
equationst +y+ z+t =1,z =a(z +y) andz = b(z + t).

In the most general case, assuming a, b < 1, the constraints can be written

1—a y x+z 1
r, z=-——0 -+ - =
a ’ 1—b " a b ’

y:



or equivalently

a 1—a
1—-b—t =

t0<t<l1-—b.

Then, the sef is the segment bounded by the probabilitiesl — «,0,0) and
(0,0,b,1 —b). It can be checked that this result still holds whes b = 1: In this
particular case, the constraints

r=alzx+y), z=bz+t), z+y+z+t=1,

becomer = x+y, z=2z4+t, x+2z=1.Then,the seP isthe segment
bounded by the probabilitigs, 0, 0,0) and(0, 0, 1, 0). We also note that, as it could

be easily verified, the initial assessméntE|H) = a, P(E|H¢) = b is coherent

in the sense of de Finetti [22] for evetyc [0,1],b € [0, 1]. The consistency of
conditional probability assessments can be checked by a geometrical approach (see
Appendix), or considering suitable sequences of probability functions (see, e.g.,
[13]). Hence, the constraints are always satisfiable.

Note thatP(E|H), P(E|H¢) often reflects generic knowledge (sometimes inter-
preted causally) expressing the probabilities of observing events of the Aorm
when H occurs or when its contrary occurs, respectively. Then these probabilities
refer to a population of situations where the occurrence of events of theffavas
checked wherH{ was present or absent. This population may be explicitly known
(as in statistics) or not (for instance we know that birds fly but the concerned pop-
ulation of birds is ill-defined). On the contrary, the observattors contingent, it
pertains to the current situation, and nothing is then assumed on the probability of
occurrence of events of the forf in the population. In this case, it is not legiti-
mate to interpret the observatidghas a (new) constrain®(£) = 1, which would
mean that events of the forf are always the case, while we just want to represent
the fact that event’ has been observed now.

Suppose the prior probability?(H) is provided by an agent. Clearly it must be
interpreted in a generic way (in general, events of the féfinave this propensity

to be present); otherwise, #( H) were only the contingent belief of the agent now,
one may not be able to use it on the same grounds as the conditional probabilities
S0 as to uniquely define a probability function7h(since we do not interpret the
contingent but sure observatidhas having probability). As a consequence, when

the prior probabilityP(H) is specified, our generic knowledge also includes the
posterior probabilityP(H|E), which we extract for the reference claBs(as we

1" AssumingP(E) = 1 is often done in probability kinematics [41], where conditioning is
understood as revising a probability function



know the current situation is in the class of situations wtieis true). In a second
(inductive) step, the valu®(H|E) can be used by the agents for measuring their
belief in the hypothesi#l to be present now, given thatis observed.

A common, but fallacious objection to the above remark can be as follows: sup-
pose that the agent interpre® F|H), P(E|H¢) as contingent conditional belief
degrees of observing if H is present or not present in the current situation. In that
case, since these values are interpreted as contingent uncertain beliefs, one may be
tempted to interpret the observation of evidence in a strong way( A3 = 1, es-

pecially in the case where the prior probabilityéfis unknown. Unfortunately, the
equality P(E) = 1 is inconsistent withP(E|H) = a and P(E|H¢) = b since they

imply a« > P(E) > b. So the formal framework cannot support the interpretation

of P(E|H), P(E|H¢) as contingent conditional belief degrees, unless we interpret
conditioning as probability revision [41].

2.2 Requirements for cogent abduction without prior

The following conditions could be considered as minimal prerequisites for an ab-
duction method to qualify as being reasonable:

(1) The formal model should be faithful to the available informatiishould not
select a unique probabilistic model if there is no reason for it. The assignment
of a unique probabilistic prior in the situation of ignorance can be seen as a
useful suggestion to apply Bayes theorem. But it then should be justified in
some reasonable way.

(2) The solution should be non-triviaihe approach should not result in total ig-
norance, wherP(E|H) # P(E|H°), since likelihood functions do express
information. The fundamental Polya abductive pattern in the logical setting,
whereby if H implies £ and E is true thenH becomes plausible should be
retrieved.

(3) The chosen approach should always provide a solutioshould not lead
to a logical contradiction, since likelihood functions are consistent with any
prior probability, and the case where the prior probability is assigned is one of
maximal information.

(4) The method should be principletiere should be a formal framework that can
support the inference results of the abduction process, no ad hoc solution is
searched for.

(5) The solution should be intuitive and plausittiee method should not yield an
unreasonable result that commonsense would obviously dismiss.

In the following we first check if past proposals to the problem satisfy these re-
guirements.



3 Three standard approaches

In the literature, three approaches exist that try to cope with ignorance of the prior
probability. The first approach is based on varying the prior probability on the
expression ofP(H|E) derived from Bayes theorem. Unfortunately the posterior
probability remains totally unknown in this case, even if some zero probabilities
prevent the standard approach from being carried out, as shown in the second ap-
proach, using de Finetti's coherence framework [22]. Another classical approach in
non-Bayesian statistics relies on the relative valueB(df| H) and P(E|H¢) being
interpreted as the likelihood dff and its complement. In this approach, the idea
of computing a posterior probability is given up. The only way of ascertaining a
hypothesis under this approach is by rejecting its complement. It turns out that this
approach is consistent with possibility theory [19].

In the following, we recall these approaches in some detail.
3.1 Imprecise Bayes

The most obvious thing to do in the absence of prior is to perform sensitivity anal-
ysis on Bayes theorem. Lét(H) = p be an unknown parameter. Then

P(E[H) - P(H) _ a-p

PUIE) = P(E)  a-p+b-(1-p)

But the valuep is anywhere betweetand1. Clearly the corresponding range of
P(H|E) is [0, 1]. So this approach brings no information on the plausibility of the
hypothesis, making the observation of evidence and the presence of the generic
knowledge useless, in contradiction with requirements 2 and 5. Indeed, one feels
prone to consider that evidenéeshould confirmH if for instancea is high andb

is low. The above analysis presuppose® + b - (1 — p) # 0.

Two cases resultia-p+b-(1—p) = 0. Firstthe case wheR(E | H°) = b = 0and
P(H) =p=0 (the case whe®?(E | H) = a = 0 impliesb = 0 by construction);
finally the case when = b = 0, whilep > 0.
First consider the case

P(E|H)=a>0, P(E|H®) =0, P(H) =0,
(so thatP(E) = 0); what can be said about(H|FE)? It can be proved that

P(H|E) € [0,1]. We observe thaP(E|H¢) = 0 impliesz = 0; P(H) = 0
impliesz + y = 0. So,t = 1. Since the only constraint acting dA(H | F) is



x = P(H | E)(x + 2), the latter just reduces tbo= P(H | E) - 0, SOP(H | E) is
unconstrained.

Now, what can be said if we assum¢E|H) = P(E|H¢) = 0, so thatP(E) = 0,
without assuming?(H) = 0? It impliesz = z = 0 so thatt + y = 1. Then since
by definitionz = P(H|E)(x + z), it all reduces t®) = P(H|E) - 0 again. So, the
range of P(H |E) still remains|0, 1].

However we cannot fully rely on the above approach in the case when some prob-
abilities are zero. Suppose for instance the assessh{ght| £V H) = 1 were
added to the two current ones. It can be shown that the assesBif¥ént £) =

p, P(H| EV H) = pyis coherent if and only ip; < p,. If there are no zero
probabilities, this is obvious since we know thatH|F) < P(H|E VvV H). The
conclusion) < P(H | E) < 1 is then obvious. But if

1
P(E|H)=a >0, P(E|H") =0, P(H)=0, P(H|EVH) =g

which impliesP(FE) = P(H) = P(EV H) =0, itfollowsz =y = 2 = 0,t = 1;
then the assessments above, &ié/| F) = ~, lead to the constraints

r=a(lzr+y), 2z=00z+1t), z+y=0,

1
rty=-(r+y+z), z=vx+=%2),
+ 2(++) (x + 2)

that is

1
0=a-0,0=0-1,2=y=0,0=_-0,0=7-0.

Hence, there is no way to obtaif(H | £) < i since this system only implies

0 < ~ < 1. Only by using a general methodology, such as the coherence-based
approach of de Finetti, may we be sure of properly handling all (explicit or implicit)
constraints.

3.2 Coherence approach

The coherence setting of de Finetti [22] allows a sound handling of zero prob-
abilities of conditioning events. In fact, zero probabilities on relevant relation-
ships might occur easily in practice. For instance, Bernard [3] referred to a sta-
tistical investigation on the religious behaviour of people, in which no individu-
als were present that pray often, while not going to church regularly nor giving
their children any religious education. Nevertheless, one might be interested in



elaborating relationships between the evBnt pray oftenA —regular.churchA
—religious educatiorand the event/ = Believingin_paradise also studied in that
investigation. If the expert directly evaluates probabilities by observed frequencies,
she obtainsP(EH) = P(EH¢) = 0 and so areP(E|H) and P(E|H¢). Then

the conditional probability?( H|E) is the indeterminate forry; hence a difficulty.

Now suppose that some expert assesses the probab#fities7) and P(E|H¢),

based on some general information. These assessments would not depend on the
fact that in some data collection experiment, the frequencies of relevant events
are zero. In general, not excluding zero probabilities is often needed for hypo-
thetical or counterfactual reasoning. However, the problem of zero probabilities
could arise again, for instance in the (extreme) case in which the expert asserts
P(H) = P(E|H®) = 0. In such cases, direct reasoning as in the previous subsec-
tion in general may fail, as shown above.

So, our abduction problem must be treated in the coherence framework of de Finetti
to make sure results we found in the zero probability cases are correct. Theoretical
details on this approach are given in the Appendix. Two cases must be considered :
P(H)=b=0,andP(H) > 0,a = b = 0. We analyze the first pathological case.
The second pathological case can be analyzed by similar reasoning. So consider
the problem:

P(E|H)=a>0, P(E|[H®) =0, P(H)=0.

It corresponds to the assignment= (a, 0,0, ) to the tuple
F=(E|H, E|H®, H|Q, H|E).

To check coherence @f, as a first step we have to consider the “constituents” (in-
terpretations) generated by and contained in the disjunction of the conditioning
eventsH v H¢V QV E = Q (here, the sure event), which are

Cl :EH, CQ :ECH, 03 :EHC, 04 :ECHC,
(in the case we are examining, the complem@nof the disjunction of the con-

ditioning events is not a constituent, as it coincides with the impossible @yent
Let

Ey|Hy, = E|H, E>|Hy = E|H®, E3|Hy = H|), Ey|Hy = H|E.
To each basic constituent, assign a vecto€), = (qn1, gn2, 93, qna), Where, for

each conditional indexed by= 1,2, 3,4, componenty,; is defined as in equation
(A.3) in the Appendix. Namely

o h=1: Cl =FHC ElHl,E3H37E4H4;



e h=2:Cy=FE°H C E3H;5, H;
o h=3:Cs=FH®C Hf, EsHo;
o h=4:Cy = F°H® C HY, H.

Then, in geometrical terms, we get the points

Ql = (1707 17 1)aQ2 = (Oa 07 17'7)7623 = (aa 1a070)7Q4 = (aaoa 07’7)7

and, denoting by the convex hull of)+, ..., Q4, we check the (necessary) coher-
ence conditiorp € Z, that is the existence of a non-negative ve¢tow, z, t) such
that

P=2Q1 +yQr+2Qs+1tQs, x+y+z+t=1

This comes down to writing exactly the system of equations defining the set of
probabilitiesP in section 2.1. Of course, the consistency of this system is in general
necessary but not sufficient for the coherencp;of becomes sufficient when, like

in the previous subsection, we exclude conditioning events of zero probability. In
our pathological case the system becomes:

r=alz+y), 2=0, x4+y=0, z=y(r+2),
r+y+z+t=1,2>0,y>0,22>0,t>0.

(1)

As p = @y, the conditionp € 7 is satisfied (i.e., the system is solvable), with
xr=y=2z=0, t=1,foreveryy € [0, 1]. Notice that the solution of the above
systemy(z,y, z,t) = (0,0,0,1) is a probability function on the set of constituents
{C4, Cy, C3, Cy }. With this probability function are associated, for the conditioning
eventsH, H¢, (), F, the following probabilities

PH)=x+4y=0, P(H)=z+t=1,
PQ)=x2+---+t=1, P(E)=2+2=0.

Then, we must continue to check coherence on the sub-family of conditional events
whose conditioning events have zero probability; that is, we have to check as a
second step the coherence of the assessmgenrt (a,7) to Fy = (E|H, H|E).
Constituents ind vV F are Cy, = EH ,Cy, = E°H ,C3 = EH®¢, with associated
points:Q; = (1,1),Q2 = (0,7),Q3 = (a,0) (in the case we are examining, the
disjunction of the conditioning eventsisV £, so thatn = 3andCy = (HVE)® =
H°E*). As we can verify, the conditiop, € Z, holds, that is

Po=2Q1 +yQ2+2Q3, v+y+z=1,
z>0,y>0,2>0,



(whose geometrical meaning is thatbelongs to the triangl€; Q2 (Q3). It amounts
to solving the linear system

r=alx+vy), v=7+2),

(2)
r+y+z=12>20,y>0,2z2>0,
solvable with
B ay Y= (1—a)y _a(l—9)
a+vy(1—a)’ a+y(l—a)’ a+y(l—a)’
for everyy € [0, 1].
Notice that the vectofz, y, z,t) = (a s, af;(‘f)_”a), ai(;aj)a), O) is a prob-

ability function on the set of constituen{s’;, Cs, C3, Cy}, whereC, = E°H°.
With this probability function, the following probabilities are associated with the
conditioning eventsd, F:

v

P(H)= B

(H)=z+y a—l—v(l—a)_o’
a

P(E)= = >0.

(B)=a+e a+7(1—a)

As the set of conditioning events with zero probability is empty or equéFi¢,
the assessmemiy = (a,~) is coherent for every € [0, 1]; therefore, the initial
assessmeny = (a,0,0,v) is coherent for every € [0, 1]. In other words, the
range of P(H|E) remains[0, 1].

We observe that in the above checking of coherence we used the following sequence
of two probability functions:

_ _ ay (1—a)y a(l —7)
P =1(0,0,0.1), P = <a—|—’y(1—a)’ a+~v(1—a) a+vy(1—a) 0>‘

We remark that: (i) at the second step the study is restricted to the sub-family
Fo = {E|H, H|E}; (ii) the probabilities of the constituents not contained in (the
disjunction of conditioning eventsy Vv H are equal to zero; in fact, the variable

t, associated withE' vV H)¢ = E°H¢, is zero. Using the notion of zero-layer (see
[13]), with the above probability functions the following holds»if> 0, H¢ (and

of course?) belongs to the most normal zero-layer with level O, while at the second
zero-layer with level 1 aré’ and H; if v = 0, H¢ (and{2) is in the zero-layer of
level 0, F is at level 1, and the zero-layer éf is at level 2.
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As shown above, differently from what happens in the usual approach to proba-
bilistic reasoning, in the more general setting of coherence (where conditioning
events are allowed to have zero probability) the admissibility of a given probability
assessment on a family of conditional events amounts to the existence of (in gen-
eral infinite) sequences of probability distributions defined on the relevant context
(set of constituents). In fact, the machinery of coherence has the “minimal” aim of
determining the set of all admissible probability assessments, without specifying a
particular status for any of them. The choice of a particular assessment in such set
mainly depends on how the expert weighs his information. In other words, coher-
ence is a syntactic (not semantic) tool and, like with imprecise probabilities, it does
not suggest a particular way of solving the abduction problen®{d? | E).

3.3 Likelihood approach

Non-Bayesian statisticians (e.g. [20], [1]) consid&Z| H ) to be the likelihood of

H, denoted byL.(H). WhenP(E|H) = 1, H is only fully plausible. When it i$)

(the probabilityP (F|H¢) being positive) it rules out hypothesit upon observing

E. But there is no formal justification given to the notion of likelihood, usually, thus
violating requirement 4. We are in a dilemma as the sensitivity approach is prob-
abilistically founded but provides no information while the likelihood approach is
informative but looks ad hoc in a probabilistic setting.

Note that the likelihood approach is also in agreement with a default Bayesian ap-
proach: in the absence of a prior probability, assume it is uniformly distributed.
Then the posterior probability iB(H|E) = _%;, so that it is equivalent to renor-
malize the likelihood functions in the probabilistic style. This fact has been re-
currently used to claim that the likelihood approach is like the Bayesian approach
with a uniform prior. Even if the likelihood approach looks consistent with the uni-
form prior (Bayes) method, the former has no pretence to compute precise posterior
probabilities: results it provides are informative only if oneaddr b is small (and

not the other). Saying that the likelihood approach is a special case of the Bayesian
approach is like saying that an unknown probability distribution and a uniform
probability distribution mean the same thing.

Dubois, Moral, and Prade [18] suggested that/) can be viewed as an upper
probability bound and also a degree of possibility: generally the quaRfity B)

is upper bounded byax,.p P(A|x), and as pointed out by [13], if set-functidn

is assumed to be inclusion-monotonic (as expected if we take it for granted that
means likelihood), the®(A|B) = max,c5 P(A|z) is the only possible choice if
only P(A|x) is known for allzx.

In this sense the likelihood approach, common in non-Bayesian statistics comes
down to interpreting conditional probabilities in terms of possibility theory [19].
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The quantityP(E|H) can be used to eliminate assumptilnif it is small enough
in front of P(E|H¢), but evaluating thaP(E|H) = 1 is not sufficient to ascertain
H.

4 Relying on information principles

One way out of the dilemma of abduction without priors is to introduce additional
information by means of default assumptions that are part of the implicit back-
ground knowledge. The idea is that in the absence of prior probability, one finds
a (default) probability measure i® in some way, relying on principles of in-
formation faithfulness, maximal independence assumptions, or symmetry assump-
tions, respectively [32]. Then the posterior beliefs of agents is dictated by the de-
fault probability thus selected. Unfortunately, as seen below the results obtained by
means of the various principles are not fully consistent with each other.

4.1 The maximum likelihood principle

The maximum likelihood principle says that if an event occurred then this is be-
cause it was at the moment the most likely event. So the best probabilistic model in
a given situation is the one which maximizes the probability of occurrence of the
observed evidence. This principle is often used to pick a probability distribution
in agreement with some data. For instance, assume we obsbérads and — %

tails from tossing a coin times. The probability function underlying the process is
completely determined by the probability of heads, sayo find the best value of

x, one maximizes the likelihoofl(z) = P(E|z) = 2% - (1 — z)" %, whereE = “k
heads ana — £ tails” and we findr = % Interestingly, since completely defines

the probability measur® on {tail, head, P(E|x) = L(P), i.e. the likelihood of
model P.

So, the maximum likelihood approach selects a plausible probabilistic model, with
a view to solve the abduction problem in a second step. In our problem, we in-
terpret P(E) as the likelihood of the probability functioR after £ occurred. In

our caseF occurred, so it is legitimate to establish the agent’s posterior (contin-
gent) belief about/ assumingP(E) is as large as possible under the constraints
P(E|H) =a < landP(E|H®) = b < a. Again, in that case we interpréi(£)

as the likelihood of the probability functioh to be selected among those such that
P(E|H) = a, P(E|H®) = b, while the non-Bayesian statistics approach directly
chooses betweeH and H¢ on the basis of their likelihoods. Here we first try to
select a plausible probabilistic model, and then, solve the abduction problem.

Note thatP(E) = a - p + b - (1 — p) whose maximum isP(E) = a, which

12



unfortunately enforces = 1. It comes down to assuming(H) = 1, so that
P(H|E) = 1, too. This is clearly too strong to be credible, even under a weak
interpretation of the posterior probability/(is present in the situation wheie

was observed). However note that in this approach the consfrainit = « is not
added to mean that the probability Bfis indeed: in the population. It just assumes
that the population of realizations relevant for the current situation is the one where
E is as likely as possible, so that in the current situatiBrgan be restricted to

{P € P, P(E) is maxima}.

In any case, this approach violates requirement 5, as being counterintuitive. A way
out of this difficulty will be proposed later on in this paper, asrlaxed maximum
likelihood approach

4.2 Maximizing entropy

A fairly popular informational principle is the maximization of entropy (e.g. [32]).
Entropy quantifies the indeterminateness inherent to a probability distribbtiyn
H(P) = -, P(w)log P(w). Given asefR = {(B1|A1)[x1],..., (Bn|An)[zn]}

of probabilistic conditionals, thprinciple of maximum entropy

max H(Q) = — Z Q(w) log Q(w),
s.t.Q s a distribution satisfyingR

solves (uniquely) the problem of representiRdy a probability distribution with-

out adding information unnecessarily. The resulting distribution is denoted by
ME(R). The maximum entropy solution is often interpreted as a least commit-
ted probability, i.e. the one involving maximal indeterminateness in a subsequent
decision process. In fact, maximum entropy processes conditional dependencies
especially faithfully, and independence between events is implemented only if no
information to the contrary can be derived. We will recall very briefly some facts on
the principle of maximum entropy that are needed to solve the problem considered
here; for further details, maximum entropy distribution, see e.g. [29].

Using well-known Lagrange techniques, we may repre3éhi(R) in the form

MER)w)=X [[ o™ I a™ 3)

ZUJ':AZBL ’Lw':ALBf

with the a;’s being exponentials of the Lagrange multipliers, one for each condi-
tional in R, and\, simply arises as a normalizing factor.

The maximum entropy solution to our problem can be computed as follows. Let
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P,.. be the maxent distribution i® and we use the notation = 2, [

1—a’

2. Here, the probabilistic information given is represented?oy= {(E|H)|al,

1
(E|H)[b]}, SOPpe = ME(R). Let\} = a7 A\, = a7 N\ =370 )\, =
7% with a normalizing constanty = (a=%(1 — a)~* + 37°(1 — b)~1)~1. Using
equation (3) we get the following probabilities:

w  Ppe(w) w Pe(w)

EH XA E°H Ao
EHC XA | EH® o)

Now, it immediately follows that

alfa B a- alfa(]_ - CL)afl
al=a 4+ B1=b g .g=a(1 — @)= 4 b-b=0(1 — b)b-1’

PL.(H|E) =
and

a1 —a)* !
a=(1 — a)1 + b=b(1 — b)b—1°

Pme(H) = )‘0()‘(—; +)‘;) =

Furthermore, also the maxent probability i6fcan be calculated, and it turns out
that this probability is obtained by ME-fusing the given probabilitiesdb (in the
sense of [30]):

al—a(l _ a)a—l + bl—b<1 _ b)b—l

Pne(B) = 200+ N) = < — e g

(4)

Remark A more elementary approach, only good for the particular problem at
hand, is as follows. Every probability iR has the form

(ka, k(1 —a),(1 — k)b, (1 —k)(1—0))

wherek = P(H), and its entropy amounts to

H = H(k)=—kalogka — k(1 —a)logk(l —a) — (1 — k)blog(1l — k)b
—(1—=k)(1 —b)log(l —k)(1—1b)
=—klogk — (1 —k)log(l — k) — kaloga — k(1 — a) log(1l — a)
—(1—=k)blogh— (1 —k)(1 —b)log(1 —b).

The principle of maximum entropy selects the unique probability distribuign
with maximum entropy irP : so let us compute the value bfvhere the derivative
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dH
T —(log k —log(1 — k) + aloga + (1 —a)log(l — a)
—blogb — (1 —b)log(1l — b))
vanishes. Solvingil = 0 for £ yields

koo 01— )

1—k a*(1—a)-®’
which is equivalent to

L bb(l _ b)l—b B a—a(l _ a)a—l
Tl —a) P10 ae(l—a) b1 —bp L

With thatk, we obtain, as expected,

ka a1 —a)* !

Pyo(H|E) = _ .
el e g o oy e ey e g T

Example 1 We will study the example from the introduction in this framework,
considering a roadwork as a possible explanation for a traffic jam. Heére=
traffic jam H = roadwork and we assumg(FE|H) = 0.9, P(E|H°) = 0.2. Using

the formal machinery from above, the maximum entropy probabflity( H|E)
turns out to be).791. Therefore, roadwork appears to be a suitable explanation for
the traffic jam.

4.3 Shapley value as pignistic probability

The Shapley value was first proposed in cooperative game theory [34], to extract
from a set of weighted coalitions of agents (a non-additive set-function), an assess-
ment of the individual power of each agent (a probability distribution).

The Shapley value is defined as follows. Consider the lower probability function
induced by the seP, i.eVA C Q(={E,E°} x{H, H°}) P,(A) = inf{P(A), P €

P}. For each permutatiom of elements of?, a probability distributiorp, can be
generated fron®,, letting, fori = 2, ... n,

pg(wg(i)) = P*({wg(l), e ,wg(i)}) — P*({wg(l), C. ,wa(i_l)}).

The Shapley value is the average of theséossibly identical) probability distri-
butions, and it can be written, df € 2,

slin —s—1)!

psu(w) = ————— > (P(SU{w}) = P(9)),

|
n: SCQwES
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wheres andn are cardinalities o and(?, respectively.

For convex capacities, it is the center of mass of the”séwhich then coincides
with set of probability function§P > P, }[35]). In the theory of belief functions,
it is known as the “pignistic transformation” [37].

Selecting the Shapley value comes down to assuming that all probabilifieare
equally probable so that by symmetry the center of mass of this polyhedron can
be chosen by default as the best representative probability function in this set. This
is similar as replacing a solid by its center of mass for studying its kinematics. As
shown abovep is a segment on a straight line, bounded by the probabilitiels—

a,0,0) and(0,0,b,1 —b). It can be routinely proved using the above equation, that
the Shapley value is the midpoint of this segment, (i2e15%, 5, 15%). Under this
default probability,

a
a+b

Psi(H|E) =

that is, the Shapley value supplies the same response as the Bayesian approach
where a uniform prior is assumed! This is not too surprising as the Shapley value
can be seen as assuming a uniform metaprobability over the probability set induced
by the constraints, and considering the average probability resulting from this meta-
assessment. The above result suggests that assigning a uniform prior to assumptions
and assuming a uniform metaprobability over the probability polygon come down

to the same result.

Example 2 We consider Example 1 in the Shapley framework. Here, we find easily
Ps,(H|E) = 0.818. The resultis similar to that calculated by the maximum entropy
approach.

4.4 Comparative discussion

Contrary to the simple form, in some sense natural, of the Shapley value, the maxi-
mum entropy solution looks hard to interpret in the problem at hand, at first glance.
But there is a similarity of form between them, except that the maxent solution
distorts the influences of the probabilitiesandb by the function

Jw) = <1 f x)lx

so that the maxent solution fé?( H|E) takes the same form as the Shapley value,

after distortion, namel f(aJ;(f}(b). Alternatively, one may see the maxent solution
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w(a)

w(a)+w(b)

a andb, wherew(x) = 27%(1 — z)*~!, so thatP(H |E) takes the for%.

as defining a default prior, assumiif H) =

depending on coefficients

Note thatlog w(x) is the entropy of the probability distributiqn, 1 — ). Sow(x)

is all the higher as the distance betweeand(.5 is smaller. So the prior prob-
ability selected by the maxent approach basically reflects the relative proximity
from P(E|H) to 0.5, and P(E|H°) to 0.5, regardless of their being greater or less
than 0.5. For instance the cases where= b = 0.9, a = b = 0.1 and where

a = 0.9,b = 0.1 yield the same default prior probabilities. The value of weighting
functionw is not altered by exchangingandl — a, (andb and1 — b); w(z) takes

on values in1, 2] so thatP(H) lies in the intervaly, 2] with P,..(H) = 0.5 if and

only if a = bora = 1 — b. In other words, this weighting function shrinks the
0, 1] range of prior probabilities symmetrically aroufd. This makes maximum
entropy more cautious, i.e. returning in general probabilities which are closer to
0.5, according to the maxent philosophy of not introducing determinateness unnec-
essarily. In the Shapley approadh,,(H) = 0.5 is an invariant, independent af
andb.

As a andb approach the extreme probabilitiesesp.0, the maxent solution ap-
proaches the Shapley value. In fact, we h&g(H|E) = P,..(H|FE) if and only

if a = b, ora =1—b.Inthe first caseHd and F are statistically independent,

in the second case, the influenceffon E is symmetrical — its presence makes

E probable to the same extent as its absence makes it improbable, which can be
understood as a generalization of logical equivalence to the probabilistic case. This
reflects a strong symmetric dependence betwéeand H. What makes Shapley
value bolder in the scope of maxent is that both approaches coincide only when
E and H are either independent, or very strongly related. In fa¢the degree of

the presence off) has a positive effect throughout on the probabify,(H |E)
wheread (the degree of the absence @) has a negative effect. This means that
increasing: or decreasing always results in an increase Bf;, (H|E) which can

be explained, e.g., by assumifgto be an essential cause Bf

As opposed to this, the maximum entropy probability processes information in a
more unbiased way, i.e. without assuming either strong dependence or indepen-
dence in general. But note, that when such a relationship seems plausible (in the
cases: = bora =1 — b), then it coincides with the Shapley value.

A general comparison between the inference process based on center of mass prop-
agation (resulting in the Shapley value) and that by applying the maxent principle
was made in [32]. Paris showed that center of mass inference violates some proper-
ties that reasonable probabilistic inference processes should obey. More precisely,
in general, center of mass inference can not deal appropriately with irrelevant infor-
mation and with (conditional) independencies. For the problem that we focus on in
this paper, however, the Shapley value seems to be as good a candidate for reason-
able inference as the maximum entropy value, regarding invariance with respect to
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irrelevant evidence.

Overall, it seems that the maximum entropy approach is syntactically similar to
both the Shapley approach (since there exists similar implicit default priors in both
approaches) and the maximum likelihood approach (posterior probabilities are pro-
portional to likelihoods or some function thereof) for solving the abduction prob-
lem.

However, the particular form of the maximum entropy solution is hard to interpret
in the problem at hand. So, requirement 5 is met better by the Shapley value than by
the maximum entropy solution. As to the other requirements, these two approaches
are quite similar: Both always provide a solution, rely on formal frameworks and
are non-trivial (requirements 2,3, and 4). Since they pick unique probability dis-
tributions for solving the problem, both methods violate requirement 1 in a strict
sense, although one might argue that they do so for good reasons.

5 Arelaxed maximum likelihood approach

The reason why the maximum likelihood fails is that maximiziA@~) on P en-
forcesP(H) = 1. It may mean that the available knowledge is too rigidly modelled
as precise conditional probability values.

As pointed out in [21], the symbal’|H stands as a three-valued entity, not a
Boolean one as it distinguishes between examplds counterexamplegH and
irrelevant situationg7¢. Authors like [27] and [16] have claimed th&t|H can

be identified with the pai(EH, EH v H¢) of events (an interval in the Boolean
algebra), or with the triplé ¥ H, E°H, H°) that forms a partition of the universal
set. And indeed (provided th&(H) > 0) P(E|H) is a function of P(EH) and
P(EV H°); namely

P(EH)
P(EH)+1—P(EV He)’

P(E|H) =

If P(H) =0,i.e.,P(EH) =0,P(EV H¢) = 1, it can be verified that the assess-
ment(0,1,z) on{EH,E VvV H¢, E|H} is coherent for every € [0, 1]. Moreover,
under minimal positivity conditions [27]P(A|B) < P(C|D), VP if and only if
AB CCDandAvV B¢ C CV D¢ (or, equivalentlyAB C C'D andC°D C A°B).

Now, it is important to realize thakb'|H is a kind of mid-term betwee#wH and

E Vv H¢sinceP(EV H¢) > P(E|H) > P(EH). So it makes sense to interpret
the conditional knowledge aB(E VvV H¢) > a > P(EFH)andP(EV H) > b >
P(EH®), respectively. This is consistent with the original data due to the above
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remarks, which also show that the new formulation is a relaxation of the previous
one.

According to the maximum likelihood principle, the default probability function
should now be chosen such thatE) = = + = is maximal, under constraints:

P(EV H®) >a> P(EH); P(EV H)>b> P(EH°)

and we assume here a positive likelihood functiorr 6 > 0. The problem then
reads:

maximizex + zsuchthatl —y>a>2x; 1>c4+y+2>b0> 2.

Sincea > z,b > z, .+ z < a + b, the maximal value ofP(E) is P*(E) =
min(1, a + b).

Now there may be more than one probability measure maximiziag). In or-
der to compute the posterior probability{ H|E), we are led to the problem of
maximizing and minimizing?(EH) = z subject to

l—y>a>x, 1>2x+y+2>b>2 x+z=min(l,a+b).

Proposition 1 Under the conditional event approach, assuming a positive likeli-
hood functionP(E|H¢) = b < a = P(E|H), for the maximum likelihood poste-
rior probability, P(H|FE), we have

(1) ifa+b>1thenP(H|E) € [1 —b,a].
(2) P(H|E) = %, otherwise.
Proof. Whena+b > 1thenz+z = 1, theny = 0 is enforced. Hence the constraints
of the problem reduce to:
a>x, b>1—nzx.
Thenz = P(EH) = P(H | E) € [1 — b, d].
If a4+ 0 < 1,thenP(E) =z + z = a+ b. From this andi > x,b > z, it follows

directly, thatr = a, z = b must hold, which yield$*(H |E) = . = 4. 0

Example 3 Studying our running example 1 in this framework is easily done. For
the hypothesis roadwork, we hawet+ b > 1, so it is straightforward to see that
here, P(roadworKtraffic jam) € [0.8,0.9].

Framing the problem within the setting of the de Finetti coherence approach encom-
passes the case of zero probabilities. Given two quantiteesdb in the interval

0, 1], we assign the unspecified quantities= (z, z, a, 3, 7, p) to the vector of
conditional event$£EH, EH®, EV H¢, EV H, E, H|E),whereEH = EH|Q,

and so o n. We want to obtain all the coherent valuep ohder the constraints
P(EVv H®)>a>P(EH), P(EVH)>b>P(FEH° and the condition that
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~ is maximum. Then, we obtain the following proposition, that takes into account
all cases.

Proposition 2 In the framework of coherence, the maximum likelihood posterior
probability, P(H|E), is only known to lie in the interva}p’, p”| such that :

Q) ifa=b=0,thenp’ =0,p" =1;

(2) ifa >0, b=0,theny = p" = 1;
Nifa>00>0,a+b>1,theny =1—-5b,p" =a;
(3) : : p D

(4) a>0,b>0,a+0b<1,theny =p" = 4.

Proof. To check the coherence pfwe use again the constituerdts = FH , C; =
E°H, Cy=FH®, Cy, = E°H¢, and the associatéddimensional pointg), . . .,

Q4. For example@; = (1,0,1,1,1,1), and so on. Then, at the first step we check
the conditionp € Z, which amounts to the solvability of the following system (in
the unknowns:, y, z, t, with non negative parametetsj3, v, p)

a=zx+z+t,f=x+y+z, y=x+z,x=plr+2),
r+y+z+t=1, x>0,y>0,2>0,t>0,

subject to maximizéx + z) whenz < a <z +z+t, z<b<z+y-+z.Now,
let us consider the different cases:
Case 1. = b = 0;inthis caser = z = max(x+2) = 0; then, the system becomes

O[:t, ﬁ:y7 ’7:07 O:poa
y+t=1, z=0,y>0,2=0,t>0,

and, of course, is solvable for evepy € [0, 1]; hence the range aP(H|E) is
[plup”] = [07 1]'

Case 2:.a > 0, b = 0; in this casez = 0, max(z + z) = max z = a and the
system can be written as

a=a+t, f=a+y, y=a, a=p-a,
r+y+t=1, r=a,y>0,2=0,t>0.

Of course, the system is solvable if and only = 1, SOP(H|E) =p' =p" = 1.

Case 3a > 0,b>0,a+b>1;inthis casenax(x + z) = 1, y = t = 0 and the
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system becomes

a=1, =1, v=1, z=p,
r+z=1, 0<2<a,y=0,0<z=1—2<0D,t=0.

Then, the system is solvable for every- b < p = = < a, so that the range of
P<H|E) is [p,7p”] = []‘ - bv a]'

Casedia >0,b>0,a+b < 1;inthiscasenax(z +z2) =a+b, z=a,z=10
and the system becomes

a=a+b+t, f=a+b+y,
vy=a+b, a=pla+b),
a+b+y+t=1, v=a,y>0,2=0b,t>0.

Then, the system is solvable if and onlyit= _%7, so thatP(H |E) = p’ = p" =

a+b’

While confirming the results of the previous proposition, the coherence approach
solves three additional cases with zero probabilities. When 0 andb # 0 or
whena # 0 andb = 0, one of the assumption§ or its contrary are eliminated.
Whena = b, we get eithelP(H|E) = P(H°|E) = 3 if a € (0, 3); equal upper
probabilitiesa on H and its contrary it > 1/2; we also get the same result (upper
probabilitiesl, that is, total ignorance) for both= b = 0 and fora = b = 1.

These results are not so surprising, even if new to our knowledge. This approach,
in opposition to the ones in the previous section does not necessarily enforce a de-
fault prior. WhenP(E|H) and P(E|H¢) are large, we only find upper probabilities
P*(H|E) = aandP*(H|E) = b (since the lower probability’,(H|E) = 1 — b),

which is in agreement with the interpretation of the likelihodd$/) = P(E|H)

and L(H¢) = P(E|H*) as degrees of possibility (or upper probabilities). The
larger they are the less information is available on the problem. In particular when
a = b =1, the likelihood function is a uniform possibility distribution ¢/, H¢}

that provides no information (inde€®( £|H) = P(E|H°) = 1 means that botl#/

and H¢ are possible). It is natural that the observatiorshould not inform at all
aboutH in this case, that is, it is intuitively satisfying th&( H|F) € [0, 1] (total
ignorance) even assumig(£) = 1. If a = b both increase fron.5 to 1, our
knowledge on the posterior evolves from equal probabilities on the hypothesis and
its contrary to higher order uncertainty about them, ending up with total ignorance.

On the contrary, whe®(E|H) and P(E|H¢) are small, the maximum likelihood
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solution in this case is a unique probabilif(H|E) = _%;. This is the result
obtained by the Bayesian approach under uniform priors and by the Shapley value
of the probability sets induced by the likelihood functions. In this case the available
knowledge, under maximum likelihood assumption, is rich enough to provide much
information upon observing evidence, under the maximum likelihood principle.

WhenP(E|H¢) is much smaller tha®(E|H ), the maximum likelihood principle
enables hypothesig* to be eliminated. It supplies a unique probability measure
proportional to(a, b) if both values are small enough.

This new approach to handling abduction without priors has some advantages. It
reconciliates the maximum likelihood principle (that failed due to an overcon-
strained problem) and the ad hoc likelihood-based inference of non-Bayesian statis-
tics. But it also recovers the Shapley value and the Bayesian approach with a uni-
form prior in some situations. It confirms the possibilistic behavior of likelihood
functions, being all the more uninformative as the likelihood of the hypothesis and
of its complement are both close to When they are both low but positive, the
Bayesian approach with a uniform prior is recovered. When ormeaoidb is zero,

then the hypothesis with zero likelihood is unsurprisingly disqualified by observ-
ing E. However, in the case when both likelihoods are zero or one, it results in
total ignorance about the posterior probability of the hypothesis. So even if it is
in partial agreement with some of the other techniques, this new approach is, in
its spirit, also at odds with the maximum entropy method, with Shapley value and
the uniform Bayes approach as well, all of which treat the casesh < 0.5 and

a =b> 0.5 likewise.

The relaxed maximum likelihood approach is similarly well-behaved as Shapley
value and maximum entropy, but it avoids sticking to the idea of selecting a unique
probabilistic model. So, it satisfies all of our requirements, though it is not axiom-
atized, as Shapley value or the maximum entropy solution are. But it follows the
maximum likelihood principle, as opposed to the simple ad hoc use of likelihood
functions.

6 Conclusion

One of the traditional disputes in probability theory opposes the Bayesian approach
whereby any state of knowledge can be characterized by a single probability func-
tion on the suitable space, and classical statistics where likelihood functions are
often empirically estimated but subjective prior probabilities are not considered to
be relevant information. The Bayesian approach has the merit of offering a com-
plete and harmonious solution, but the price paid is, as already stressed in the past,
that either a full data collection is needed or a debatable representation of ignorance
in the form of prior probabilities must be adopted. The classical statistics approach
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Method Faithful | Non-trivial | Principled | Plausible
Uniform Bayes NO YES YES YES
Imprecise Bayes YES NO YES NO
Likelihood Reasoning YES YES usually NO| YES
Maximum Likelihood NO NO YES NO
Maximum Entropy NO YES YES Debatable
Laplace-Shapley NO YES YES YES
Relaxed Maximum Likelihood YES YES YES YES

Fig. 1. Comparison of different approaches

may look as lacking formal foundations despite the existing rationales for this prag-
matic approach. This paper has tried to put together many tools proposed in additive
and non-additive probability theories so as to sort out the issue of unknown priors.

Several approaches to the problem of probabilistic abduction have been reviewed,
and some novel solutions have been proposed, based on maximum entropy, Shap-
ley value and maximum likelihood reasoning. This study suggests that the key issue
is a suitable representation of the available probabilistic knowledge, and a suitable
choice of a reasoning principle. Table 1 summarizes the performance of the consid-
ered approaches with respect to the criteria 1, 2, 4, 5 laid bare in the methodology
section. As a result of this paper, some light is shed on the classical statistics ap-
proach and the maximum likelihood principle, by casting them in the framework of
possibility and imprecise probability theories. The paper also shows the noticeable
agreement between the use of Shapley value and the classical Bayesian assumption
of uniform priors under ignorance. The maximum entropy approach is shown to sig-
nificantly differ from the Bayesian tradition of uniform priors and the non-Bayesian
approach based on likelihoods. Indeed, the selebigd) depends on the relative
distance between the likelihoods Bfand ¢ and0.5. The fartherP(E|H) to 0.5
compared taP(E|H¢) the more informatived turns out to be. Only the maximum
likelihood bluntly applied when likelihoods are known leads to a contradiction (cri-
terion 3). Our new maximum likelihood approach under a relaxed interpretation of
the causal knowledge provides an original solution to the probabilistic abduction
problem that bridges the gap between the straightforward use of likelihood func-
tions and the assumption of a uniform prior, being more informative than the pure
sensitivity analysis approach but less precise than the Bayesian, Shapley and max-
ent solutions when the likelihoods are too high to enable any hypothesis rejection.

It could be interesting to develop the work made in this paper by applying the re-

laxed maximum likelihood approach to more general knowledge bases, and also
for notions of coherence other than coherent inference. In particular, the case of
multiple-valued universes for hypotheses and pieces of evidence is worth investi-
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gating.

More work is also needed to fully interpret the obtained results. In particular, a
systematic comparative study of first principles underlying the Shapley value and
the maximum entropy approach is certainly in order. We should also compare our
results with what the imprecise probability school [39] and the Transferable Belief
Model [36] have to say about this problem in a more careful way. The problem
discussed in this paper is indeed closely connected with the issue of statistical in-
ference with binomial data, when little knowledge about prior uncertainty is avail-
able. In the standard statistical literature, the so-called 'objective Bayesian aproach’
(starting with works by Jeffreys) is devoted to the search of alleged uninformative
priors. More recently, the imprecise Dirichlet model of Walley (see a survey paper
by Bernard [2] and Utkin and Augustin [38]) deals with how to infer information
about the parameterruling a binomial experiment, given some observations (mod-
elled by likelihood functiond.(x) as in section 4.1) and prior information given
under the form of a set of priors each having the form of a beta distribution. It is
clearly related with our concerns here, since it includes the case when all possible
beta priors are allowed. Here we do not assume any prior at all. Moreover Bernard'’s
paper also recalls a set of principles that statistical inference without prior informa-
tion should obey (symmetry, representation invariance, dependence on likelihood
function, and coherence in the sense of Walley), that complement and refine the
more general criteria discussed here.

Moreover, another point to study is the influence of irrelevant information on the re-

sults of the various approaches. Finally, in order to evaluate the cognitive plausibil-
ity (see Requirement 5) of the different approaches more thoroughly, psychological
testing could be carried out with experts.
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A Appendix: Coherent conditional probability assessments

We recall basic results on the handling of linear equations in checking coherence of
conditional probability assessments stemming from conditional probability assess-
ments, as pioneered by de Finetti (see, e.g., [5], [10], [11-13], [22], [25,26], [40]).
Given an arbitrary family of conditional eventsand a real functio®® : £ — R,

let us consider a sub-familfF = {E\|Hy,...,E,|H,} € K, and the vector

p = (p1,-..,pn), Wherep, = P(E;|H;), i =1,...,n. We denote byH, the
disjunctionH; v --- Vv H,. Notice that, asv; H; V EfH,V Hf =Q, i=1,...,n,

by expanding the expressioN',(E;H; vV ESH; Vv Hf), we can represerf as

the disjunction of3” logical conjunctions, some of which may be impossible. The
remaining ones are the constituents generated by the familWe denote by
Ci,...,C,, the constituents contained i, and (if H,, # ) by C, the further
constituent¢ = Hy---H, sothatH,, = C,V---VC,, Q=H.VH,=
CO\/Cl\/"'\/Cm, m+1§3”

Coherence with betting schemldsing the same symbols for the events and their
indicators, with the paifF, p) we associate the random gain

n

G = ZSiHi(Ei - i),

=1

where sy, ..., s, aren arbitrary real numbers. Lej, be the value ofG when
(', is true. Of coursgy, = 0 (notice thatg, will play no role in the definition
of coherence). We denote lgy{H,, the restriction ofG to H,; henceG|H, €

{91,---,9gm}, min G|H,, =min{gy,...,gn}, max G|H, = max{g,...,gm}-
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Then, the functionP defined onk is saidcoherenif and only if, for every integer
n, for every finite sub-familyF C K and for everys, ..., s,, one has

min G|H, <0 <max G|H,, (A.1)

or equivalently

max G|H, >0 (min G|H, <0). (A.2)

Coherence with penalty criteriomte Finetti [22] has proposed another operational
definition of probabilities, which can be extended to conditional events [25]. With
the pair(F, p) we associate the loss = 3" | H;(E; — p;)* ; we denote byL,,

the value ofL if C}, is true. If You specify the assessmgnbn F as representing
your belief’s degrees, You are required to pay a penajtyvhenC, is true. Then,

the functionP is saidcoherentf and only if do not exist an integet, a finite sub-
family 7 C K, and an assessmept = (pj,...,p}) on F such that, for the loss

L =Y, Hy(E; —p?)? , associated witiF, p* ), it resultsC* < £ andL* # L;
thatisL; < L,, h=1,...,m,with L; < L, in at least one case.

Notice that the betting scheme and the penalty criterion are equivalent [25]; this
means that a probability assessmpn$ coherent under the betting scheme if and
only if it is coherent under the penalty criterion.

If Pis coherent, then itis calledanditional probabilityon IC. Notice that, ifP is
coherent, ther® satisfies all the well known properties of conditional probabilities
(while the converse is not true; see [26], Example 8; or [13], Example 13).

We can develop a geometrical approach to coherence by associating, with each
constituent}, contained irH,,, a pointQy, = (qu1, - - -, qun) , Where

1, if C, C EH,
gny =1 0, if Cy C ESH,, (A.3)
Dj, if Ch - H]c

Denoting byZ the convex hull of the point§)4, ..., Q,,, based on the penalty
criterion, the following result can be proved ([25])

Theorem 1 The functionP is coherent if and only if, for every finite sub-family
F CK,one hap € 7.
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Notice that, ifF = {F | H},p = (P(£ | H)) = (p), we have

p=0, EH=1{,
peEl < {(p=1, FEH=H,
pel0,1,0 c FH C H.

Then, by Theorem 1, it immediately follows

Corollary 3 A probability assignmenP(E | H) = p is coherent iff it holds that

0, EH=1,
1, EH=H,

Y

kBT
I

€10,1,) c EH C H.

The betting scheme and the penalty criterion egaivalent due to the following
results:

() the conditionp € Z amounts to solvability of the following syste(®) in the
unknownshy, ..., A\,

Z;Ln:lCIhj)\h:pj, j=1...,n;
ZZLZIAI%:]-) )\hzo,hzl,,m

(i) let x = (z1,...,2m), Yy = (y1,...,ys)" @nd A = (a;;) be, respectively, a
row m—vector, a columm-—vector and an x n—matrix. The vectorx is said
semipositivef z; > 0, Vi, and z; + --- + z,, > 0. Then, we have (cf. [23],
Theorem 2.9)

Theorem 2 Exactly one of the following alternatives holds.
() the equatiorx A = 0 has asemipositivesolution;
(ii) the inequalityAy > 0 has a solution.

We observe that, choosing;, = ¢;; — p;, V1, j, the solvability ofxA = 0 means
thatp € Z, while the solvability ofAy > 0 means that, choosing = v;, V1,
one hasnin G|H, > 0 (and hence would be incoherent). Therefore, applying
Theorem 2 withA = (¢;; — p;), we obtainmax G|H,, > 0iff (S) is solvable, that
is,max G|H,, > 0iff p e Z.

Checking coherencdt could seem that, in order to verify coherence, we should
check the conditiop € 7 for everyF C K (which tends to become intractable).
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We show that this is not the case, by restricting the attention to the checking of co-
herence of the assessmenbn F. Let S be the set of solutiond = (A, ..., \,)

of the system(S). Then, defined;(A) = ®(A,..., \n) = Zrccu, Ar . J =
L,...,n; M; =max ®;(A), j=1,....n; Iy={jeJ : M;=0}.Notice

that I, is a strict subset of1,...,n}. We denote by Fy, py) the pair associated
Given the pair 7, p) and a subsef C {1,...,n}, we defineH; = V;-; H;.

Moreover, we denote byF;, ps) the pair associated with and by(S;) the corre-
sponding system.

We observe thatS,) is solvable if and only ifp; € Z,, whereZ, is the convex

hull associated with the paftF;, p;). Then, it can be proved:

Theorem 3 Given the assessmepton F, assume thaiS) is solvable, i.ep € Z,
and letJ be a subset of1,...,n}. If there exists a solutioQ\y, ..., \,,) of (S)
suchthat”,.c 5, A\r > 0, then(S;) is solvable, i.ep; € Z;.

Theorem 4 Given the assessmepton F, assume thaiS) is solvable, i.ep € 7.
Then, for every/ C {1,...,n} suchthat/ \ I, # (), one hap; € Z;.

By the previous results, we obtain:

peEL;
p coherent<—-
if 1o # 0, thenp, is coherent

Then, we can check coherence by the following procedure:
Algorithm 1 Let the pair(F, p ) be given.

(1) Construct the systend and check its solvability;

(2) If the system &) is not solvable themp is not coherent and the procedure
stops, otherwise compute the ggt

(3) If I, = () thenp is coherent and the procedure stops; otherwiséEep) =
(Fo, po) and repeat steps 1-3.

Notice that similar results and methods can be used for checking generalized coher-
ence and for propagation of imprecise conditional probability assessments ([26]).
The coherence-based approach to probabilistic reasoning with imprecise proba-
bilities has been studied in many papers ([4,5], [13], [39], [40]). In particular,
modelling uncertainty by conditional probability bounds, the relationship between
coherence-based probabilistic reasoning and model-theoretic probabilistic reason-
ing has been examined in [6]. In [7], among other things, a complete study of the
complexity of coherence-based probabilistic reasoning has been made.
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