On the Relationship of Defeasible Argumentation and Answer Set Programming

Matthias Thimm Gabriele Kern-Isberner

Technische Universität Dortmund

May 29, 2008

Motivation

- 2 Defeasible Logic Programming
- Properties of warrant
- Answer Set Programming
- 5 Converting a de.l.p. into an answer set program

Motivation

- 2 Defeasible Logic Programming
- 3 Properties of warrant
- 4 Answer Set Programming
- 5 Converting a de.l.p. into an answer set program

- Both, Defeasible Logic Programming and Answer Set Programming use logic programming as a representation mechanism
- While logic programming in general is a well understood framework, argumentation frameworks are still under heavy development
- Although the relationship of argumentation and default logic has been investigated using abstract argumentation frameworks, we are trying to investigate a direct link between DeLP and ASP

Our aim is to express the set of warranted literals of a defeasible logic program directly in terms of answer set semantics to get a better understanding of the relationships of their inference mechanisms.

Motivation

- 2 Defeasible Logic Programming
 - 3 Properties of warrant
- 4 Answer Set Programming
- 5 Converting a de.l.p. into an answer set program

A very brief overview

- in DeLP (*Defeasible Logic Programming*) we are dealing with facts, strict rules and defeasible rules.
- A defeasible logic program (*de.l.p.*) *P* is a tuple *P* = (Π, Δ) with a set Π of facts and strict rules and a set Δ of defeasible rules.
- Using defeasible argumentation via a dialectical analysis one can determine warrants and warranted literals.

Definition (Warrant)

A literal *h* is *warranted*, iff there exists an argument $\langle \mathcal{A}, h \rangle$ for *h*, such that the root of the marked dialectical tree $\mathcal{T}^*_{\langle \mathcal{A}, h \rangle}$ is marked "undefeated". Then $\langle \mathcal{A}, h \rangle$ is a *warrant* for *h*.

1 Motivation

- 2 Defeasible Logic Programming
- O Properties of warrant
 - 4 Answer Set Programming
 - 5 Converting a de.l.p. into an answer set program

Warranting arguments

In general, a warrant $\langle \mathcal{A}, h \rangle$ is not unbeatable, i.e. it does not hold: "If an argument $\langle \mathcal{A}, h \rangle$ is undefeated in the dialectical tree $\mathcal{T}_{\langle \mathcal{A}, h \rangle}$, then it is undefeated in every dialectical tree".

Warranting arguments

In general, a warrant $\langle \mathcal{A}, h \rangle$ is not unbeatable, i.e. it does not hold: "If an argument $\langle \mathcal{A}, h \rangle$ is undefeated in the dialectical tree $\mathcal{T}_{\langle \mathcal{A}, h \rangle}$, then it is undefeated in every dialectical tree".

But

Proposition

If an argument $\langle \mathcal{A}, h \rangle$ is undefeated in the dialectical tree $\mathcal{T}_{\langle \mathcal{A}, h \rangle}$, then it is undefeated in every dialectical tree $\mathcal{T}_{\langle \mathcal{A}', h' \rangle}$, where $\langle \mathcal{A}, h \rangle$ is a child of $\langle \mathcal{A}', h' \rangle$.

and therefore

Proposition

If h and h' are warranted literals in a de.l.p. \mathcal{P} , then h and h' cannot disagree.

Thimm, Kern-Isberner (TU Dortmund)

Image: A match a ma

Joint disagreement 1/2

Although two warranted literals are consistent, this is not always the case for sets of more than two warranted literals.

Definition (Joint disagreement)

If $\{h_1, \ldots, h_n\} \cup \prod \vdash \bot$, then h_1, \ldots, h_n are in *joint disagreement*.

Example

Let de.l.p. $\mathcal{P} = (\Pi, \Delta)$ with

$$\Pi = \{a, (h \leftarrow c, d), (\neg h \leftarrow e, f)\}$$
$$\Delta = \{(c \prec a), (d \prec a), (e \prec a), (f \prec a)\}$$

 \Rightarrow c, d, e, f are warranted (assuming a suitable preference relation under arguments) and in joint disagreement.

(日) (同) (三) (三)

Joint disagreement 2/2

Some sets of warranted literals can never be in joint disagreement as the following two propositions show.

Proposition

Let $\langle A, h \rangle$ be an argument such that $\{h, h_1, \dots, h_n\} = \{head(r) \mid r \in A\}$. Then h, h_1, \dots, h_n do not jointly disagree.

It follows

Proposition

Let \mathcal{P} be a de.l.p. If h is a warranted literal in \mathcal{P} and $\langle \mathcal{A}, h \rangle$ is a warrant for h, then h' is warranted in \mathcal{P} for every subargument $\langle \mathcal{B}, h' \rangle$ of $\langle \mathcal{A}, h \rangle$.

1 Motivation

- 2 Defeasible Logic Programming
- 3 Properties of warrant
- Answer Set Programming
 - 5 Converting a de.l.p. into an answer set program

Extended logic programs (Gelfond, Lifschitz) use default negation to handle uncertainty and to realize non-monotonic reasoning.

Definition (Extended logic program)

An extended logic program (program for short) P is a finite set of rules of the form

 $h \leftarrow a_1, \ldots, a_n, \text{not } b_1, \ldots, \text{not } b_m$

Answer sets

Let X be a set of literals.

Definition (Reduct)

The X-reduct of a program $P(P^X)$ is the union of all rules $h \leftarrow a_1, \ldots, a_n$ such that $h \leftarrow a_1, \ldots, a_n$, not b_1, \ldots , not $b_m \in P$ and $X \cap \{b_1, \ldots, b_m\} = \emptyset$.

The reduct is used to characterize a set of literals as an answer set:

Definition (Answer set)

A consistent set of literals S is an *answer set* of a program P, iff S is the minimal model of P^S .

1 Motivation

- 2 Defeasible Logic Programming
- 3 Properties of warrant
- 4 Answer Set Programming
- 5 Converting a de.l.p. into an answer set program

Minimal disagreement, guard rules

To preserve consistency in answer sets, sets of warranted literals that are in joint disagreement have to be handled appropriately.

Definition (Minimal disagreement set)

A minimal disagreement set \mathcal{X} is a set of derivable literals such that $\mathcal{X} \cup \prod \succ \bot$ and there is no proper subset \mathcal{X}' of \mathcal{X} with $\mathcal{X}' \cup \prod \succ \bot$. Let $\mathfrak{X}(\mathcal{P})$ be the set of all minimal disagreement sets of \mathcal{P} .

Definition (Guard literals, guard rules)

The set of guard literals $GuardLit(\mathcal{P})$ for \mathcal{P} is defined as $GuardLit(\mathcal{P}) = \{\alpha_h | h \text{ is a literal in } \mathcal{P}\}$ with new symbols α_h . The set of guard rules $GuardRules(\mathcal{P})$ of \mathcal{P} is defined as $GuardRules = \{\alpha_h \leftarrow h_1, \ldots, h_n | \{h, h_1, \ldots, h_n\} \in \mathfrak{X}(\mathcal{P}) \}.$

イロト イヨト イヨト

Induced answer set programs

Definition (*de.lp*-induced answer set program)

The \mathcal{P} -induced answer set program $ASP(\mathcal{P})$ is defined as the minimal extended logic program satisfying

1 for every
$$a \in \Pi$$
 it is $a \in ASP(\mathcal{P})$,

- ② for every $r : h \leftarrow b_1, \ldots, b_n \in \Pi$ it is $r \in ASP(\mathcal{P})$,
- for every $h \prec b_1, \ldots, b_n \in \Delta$ it is $h \leftarrow b_1, \ldots, b_n$, not $\alpha_h \in ASP(\mathcal{P})$ and

• GuardRules(
$$\mathcal{P}$$
) \subseteq ASP(\mathcal{P}).

An example

Example

Let $\mathcal{P} = (\Pi, \Delta)$ with

$$\begin{aligned} \Pi &= \{a, b, (h \leftarrow c, d), (\neg h \leftarrow e)\} \\ \Delta &= \{(p \prec a), (\neg p \prec b), (c \prec b), (d \prec b), (e \prec a)\} \end{aligned}$$

Here we have $\{(\alpha_h \leftarrow \neg h), (\alpha_{\neg h} \leftarrow c, d), (\alpha_c \leftarrow d, \neg h), (\alpha_c \leftarrow d, e), (\alpha_d \leftarrow c, e)\} \subseteq GuardRules(\mathcal{P}).$

(日) (周) (三) (三)

An example

Example

Let $\mathcal{P} = (\Pi, \Delta)$ with

$$\begin{aligned} \Pi &= \{a, b, (h \leftarrow c, d), (\neg h \leftarrow e)\} \\ \Delta &= \{(p \prec a), (\neg p \prec b), (c \prec b), (d \prec b), (e \prec a)\} \end{aligned}$$

Here we have $\{(\alpha_h \leftarrow \neg h), (\alpha_{\neg h} \leftarrow c, d), (\alpha_c \leftarrow d, \neg h), (\alpha_c \leftarrow d, e), (\alpha_d \leftarrow c, e)\} \subseteq GuardRules(\mathcal{P}).$

The \mathcal{P} -induced answer set program $ASP(\mathcal{P})$ arises as

$$ASP(\mathcal{P}) = \{a, b, (h \leftarrow c, d), (\neg h \leftarrow e), (p \leftarrow a, \text{not } \alpha_p), \\ (\neg p \leftarrow b, \text{not } \alpha_{\neg p}), (c \leftarrow b, \text{not } \alpha_c), \\ (d \leftarrow b, \text{not } \alpha_d), (e \leftarrow a, \text{not } \alpha_e)\} \cup GuardRules(\mathcal{P}) \}$$

イロト イヨト イヨト

Results

It can be shown that sets of warranted literals and answer sets are related:

Theorem

Let $\mathcal{P} = (\Pi, \Delta)$ be a de.l.p. and $ASP(\mathcal{P})$ the \mathcal{P} -induced answer set program. If h is warranted in \mathcal{P} then there exists at least one answer set M of $ASP(\mathcal{P})$ with $h \in M$.

Results

It can be shown that sets of warranted literals and answer sets are related:

Theorem

Let $\mathcal{P} = (\Pi, \Delta)$ be a de.l.p. and $ASP(\mathcal{P})$ the \mathcal{P} -induced answer set program. If h is warranted in \mathcal{P} then there exists at least one answer set M of $ASP(\mathcal{P})$ with $h \in M$.

For a special case it follows

Corollary

Let $\mathcal{P} = (\Pi, \Delta)$ be a de.l.p. and $ASP(\mathcal{P})$ the \mathcal{P} -induced answer set program. If Π does not contain any strict rule and M is the set of all warranted literals of \mathcal{P} then there exists an answer set M' of $ASP(\mathcal{P})$ with $M \subseteq M'$.

Induced^{*} answer set programs 1/3

Definition (*de.l.p**-induced answer set program)

The \mathcal{P}^* -induced answer set program $ASP^*(\mathcal{P})$ is defined as the minimal extended logic program satisfying

- for every $a \in \Pi$ it is $a \in \mathrm{ASP}^*(\mathcal{P})$ and
- ② for every (strict or defeasible) rule $h \leftarrow -b_1, \ldots, b_n \in \Pi \cup \Delta$ it is $h \leftarrow b_1, \ldots, b_n$, not b'_1, \ldots , not $b'_m \in ASP^*(\mathcal{P})$ where $\{b'_1, \ldots, b'_m\} = \{b|b \text{ and } h \text{ disagree}\}.$

Theorem

Let $\mathcal{P} = (\Pi, \Delta)$ be a de.l.p.. Let furthermore $ASP^*(\mathcal{P})$ be the \mathcal{P}^* -induced answer set program. If M is the set of all warranted literals of \mathcal{P} , then there exists an answer set M' of $ASP^*(\mathcal{P})$ with $M \subseteq M'$.

イロト イポト イヨト イヨト 二日

1 Motivation

- 2 Defeasible Logic Programming
- 3 Properties of warrant
- 4 Answer Set Programming
- 5 Converting a de.l.p. into an answer set program

- we studied transformations of defeasible logic programs into answer set programs in order to make relationships between their inference mechanisms explicit
- we proved that for our conversion, warrant implies credulous inference
- for the second type of conversion, all warranted literals are in one answer set

Conclusion

- we studied transformations of defeasible logic programs into answer set programs in order to make relationships between their inference mechanisms explicit
- we proved that for our conversion, warrant implies credulous inference
- for the second type of conversion, all warranted literals are in one answer set

Thank you for your attention

Appendix I: Comparing arguments

Arguments can be compared, e.g. using Generalized Specificity.

Example

• Let a, b be facts. Then

$$\begin{array}{ll} \langle \{ (c \prec a, b) \}, c \rangle & \succ_{spec} & \langle \{ (\neg c \prec a) \}, \neg c \rangle \\ \langle \{ (d \prec a) \}, d \rangle & \succ_{spec} & \langle \{ (c \prec a), (\neg d \prec c) \}, \neg d \rangle \end{array}$$

- \rightarrow proper attacks
- Arguments might be incomparable

$$\begin{array}{ll} \langle \{(c \prec a)\}, c \rangle & \not\succ_{spec} & \langle \{(\neg c \prec b)\}, \neg c \rangle \\ \langle \{(c \prec a)\}, c \rangle & \not\prec_{spec} & \langle \{(\neg c \prec b)\}, \neg c \rangle \end{array}$$

 \rightarrow blocking attacks

-

Image: A match a ma

Appendix II: Induced* answer set programs

Example

Let
$$\mathcal{P} = (\Pi, \Delta)$$
 with

$$\Pi = \{a, b, (h \leftarrow c, d), (\neg h \leftarrow e)\}$$

$$\Delta = \{(p \prec a), (\neg p \prec b), (c \prec b), (d \prec b), (e \prec a)\}$$

$$\rightarrow \{a, b, c, d\} \text{ are warranted (using Generalized Specificity)}$$
The \mathcal{P}^* -induced answer set program $ASP^*(\mathcal{P})$ arises as
 $ASP^*(\mathcal{P}) = \{a, b, (h \leftarrow c, d, \text{not } \neg h, \text{not } e), (\neg h \leftarrow e, \text{not } h, \gamma), (p \prec a, \text{not } \neg p), (\neg p \prec b, \text{not } p), (c \prec b), (d \prec b), (e \prec a, \text{not } h)\}$

 $\rightarrow \text{ The answer sets of ASP}^*(\mathcal{P}) \text{ are } \{a, b, c, d, e, \neg h, p\}, \\ \{a, b, c, d, e, \neg h, \neg p\}, \{a, b, c, d, h, p\}, \{a, b, c, d, h, \neg p\}$

Appendix III: Proofs 1/7

Proposition

If an argument $\langle \mathcal{A}, h \rangle$ is undefeated in the dialectical tree $\mathcal{T}_{\langle \mathcal{A}, h \rangle}$, then it is undefeated in every dialectical tree $\mathcal{T}_{\langle \mathcal{A}', h' \rangle}$, where $\langle \mathcal{A}, h \rangle$ is a child of $\langle \mathcal{A}', h' \rangle$.

Proof.

- the subtree rooted at $\langle \mathcal{A}, h \rangle$ after $\langle \mathcal{A}', h' \rangle$ is a subtree of $\mathcal{T}_{\langle \mathcal{A}, h \rangle}$
- every "needed" supporting argument of $\langle A, h \rangle$ in $\mathcal{T}_{\langle A, h \rangle}$ is in $\mathcal{T}_{\langle A', h' \rangle}$
- $\langle \mathcal{A}, h
 angle$ is undefeated in $\mathcal{T}_{\langle \mathcal{A}', h'
 angle}$

Appendix III: Proofs 2/7

Proposition

If h and h' are warranted literals in a de.l.p. \mathcal{P} , then h and h' cannot disagree.

Proof.

- suppose *h*, *h*' disagree
- let $\langle \mathcal{A}, h \rangle$, $\langle \mathcal{A}', h' \rangle$ be warrants
- wlog $\langle \mathcal{A}, h \rangle$ attacks $\langle \mathcal{A}', h' \rangle$
- due to last proposition, $\langle \mathcal{A}, h \rangle$ is undefeated in dial. tree of $\langle \mathcal{A}', h' \rangle$
- $\langle \mathcal{A}', h' \rangle$ is defeated, hence no warrant.

Appendix III: Proofs 3/7

Proposition

Let $\langle A, h \rangle$ be an argument such that $\{h, h_1, \dots, h_n\} = \{head(r) \mid r \in A\}$. Then h, h_1, \dots, h_n do not jointly disagree.

Proof.

As $\langle \mathcal{A}, h \rangle$ is an argument, $\Pi \cup \mathcal{A}$ is non-contradictory and thus does not cause the derivation of complementary literals. As $\Pi \cup \mathcal{A} \sim h, h_1, \dots, h_n$ the literals h, h_1, \dots, h_n do not jointly disagree.

Appendix III: Proofs 4/7

Proposition

Let \mathcal{P} be a de.l.p. If h is a warranted literal in \mathcal{P} and $\langle \mathcal{A}, h \rangle$ is a warrant for h, then h' is warranted in \mathcal{P} for every subargument $\langle \mathcal{B}, h' \rangle$ of $\langle \mathcal{A}, h \rangle$.

Show the contraposition:

Proposition

Let \mathcal{P} be a de.l.p. and $\langle \mathcal{B}, h' \rangle$ an argument. If $\langle \mathcal{B}, h' \rangle$ is defeated in a dialectial process, every argument $\langle \mathcal{A}, h \rangle$, such that $\langle \mathcal{B}, h' \rangle$ is a subargument of $\langle \mathcal{A}, h \rangle$, is also defeated in a dialectical process.

Appendix III: Proofs 5/7

Proof.

- $\bullet~$ let $\langle {\cal B}, h' \rangle$ be defeated in its dialectical tree and $\langle {\cal C}, h'' \rangle$ a defeater
- $\langle \mathcal{C}, h'' \rangle$ is also an attack on $\langle \mathcal{A}, h \rangle$
- the tree rooted at $\langle \mathcal{C}, h'' \rangle$ under $\langle \mathcal{A}, h \rangle$ is a subtree of the tree rooted at $\langle \mathcal{C}, h'' \rangle$ under $\langle \mathcal{B}, h' \rangle$
- there is no $\langle \mathcal{D}, g \rangle$ in the tree rooted at $\langle \mathcal{C}, h'' \rangle$ and interfering with $\langle \mathcal{B}, h' \rangle$ in the dial. tree of $\langle \mathcal{B}, h' \rangle$ that is not in the dial. tree of $\langle \mathcal{A}, h \rangle$, provided its parentnode exists in the dial. tree of $\langle \mathcal{A}, h \rangle$
- hence the subtree rooted at $\langle {\cal C},h''\rangle$ under $\langle {\cal A},h\rangle$ "loses" no needed interfering arguments
- hence $\langle \mathcal{C}, h'' \rangle$ defeats $\langle \mathcal{A}, h \rangle$

Appendix III: Proofs 6/7

Theorem

Let $\mathcal{P} = (\Pi, \Delta)$ be a de.l.p. and $ASP(\mathcal{P})$ the \mathcal{P} -induced answer set program. If h is warranted in \mathcal{P} then there exists at least one answer set M of $ASP(\mathcal{P})$ with $h \in M$.

Proof.

- the set S of literals appearing in a warrant $\langle \mathcal{A}, h \rangle$ do not jointly disagree
- hence S can be extended to a consistent set M, such that M is an answer set of ASP(P)

Appendix III: Proofs 7/7

Corollary

Let $\mathcal{P} = (\Pi, \Delta)$ be a de.l.p. and $ASP(\mathcal{P})$ the \mathcal{P} -induced answer set program. If Π does not contain any strict rule and M is the set of all warranted literals of \mathcal{P} then there exists an answer set M' of $ASP(\mathcal{P})$ with $M \subseteq M'$.

Proof.

- ${ullet}$ there can be no disagreement sets with cardinality >2
- no two warranted literals can disagree
- hence M is consistent and can consistently be extended to an answer set M'