Basic influence diagrams and the liberal stable semantics

Paul-Amaury Matt Francesca Toni

Department of Computing Imperial College London

2nd Int. Conference on Computational Models of Argument Toulouse, 28-30 May 2008

Matt, Toni Basic influence diagrams and the liberal stable semantics

Argumentation for decision theory (motivation)

- criticism made to decision theory: requires perfect problem representations (decision tables, probability distributions and utility functions)
- **2** idea: use argumentation to get such representations

We propose

- basic influence diagrams: simple graphical tool for describing DM problems (decisions, uncertainties, beliefs, goals and conflicts)
- direct mapping from basic influence diagrams onto assumption-based argumentation
- liberal stable semantics as a way to generate decision tables
- study relationship with existing semantics (admissible, naive, stable...)

Definition: lines = decisions, columns = scenarios, cells = consequences. Example:

	$s_1 = \{rains\}$	$s_2 = \{sunny\}$		
$d_1 = \{umbrella\}$	{dry, loaded}	{dry, loaded}		
$d_2 = \{\neg umbrella\}$	$\{\neg dry, \neg loaded\}$	$\{dry, \neg loaded\}$		

Figure: Decision table for going out.

References

- S. French. Decision theory: an introduction to the mathematics of rationality. Ellis Horwood, 1987.
- L. Amgoud and H. Prade. Using arguments for making decisions: A possibilistic logic approach. 20th Conference of Uncertainty in AI, 2004.

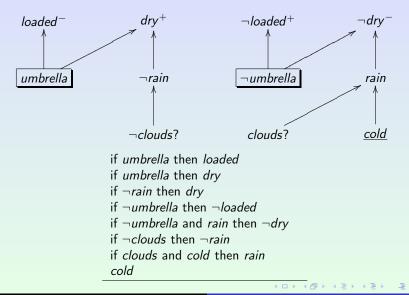
(日) (部) (E) (E) (E)

- represent knowledge basic influence diagrams
- computational model assumption-based argumentation
- resolve liberal stable semantics

References

- R.A. Howard and J.E. Matheson. Influence diagrams. Readings on the Principles and Applications of Decision Analysis, II:721–762, 2006.
- M. Morge and P. Mancarella. The hedgehog and the fox. An argumentation-based decision support system. 4th International Workshop on Argumentation in Multi-Agent Systems, 2007.
- P.M. Dung, R.A. Kowalski and F. Toni. Dialectic Proof Procedures for Assumption-Based, Admissible Argumentation. Artificial Intelligence, 170(2):114–159, 2006.

Basic influence diagrams



Equivalent assumption based argumentation framework

- nodes (decisions, goals and beliefs) are language $\mathcal{L} = \{ umbrella, loaded, \neg clouds, ... \}$
- arcs are inference rules $\mathcal{R} = \{\frac{umbrella}{loaded}, \frac{clouds, cold}{rain}, ...\}$
- leaves (decisions and ?-beliefs) are assumptions $\mathcal{A} = \{ umbrella, \neg umbrella, clouds, \neg clouds \}$
- negations (p vs. $\neg p$) are contrary relation $\mathcal{C} \subseteq 2^{\mathcal{A}} \times \mathcal{L}$

Reference

P.M. Dung, R.A. Kowalski and F. Toni. Dialectic Proof Procedures for Assumption-Based, Admissible Argumentation. Artificial Intelligence, 170(2):114–159, 2006.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Consequences of decisions must be 'rational outcomes' $O \subseteq \mathcal{L}$:

- not the case that $p \in O$ and $\neg p \in O$ (consistency)
- either $p \in O$ or $\neg p \in O$ (decidedness)
- exists assumptions A such that O = O(A) = {p ∈ L, A ⊢ p} (closure under dependency rules)

The set of assumptions A is rational iff O(A) is a rational outcome.

Problem statement: find exactly ALL rational opinions.

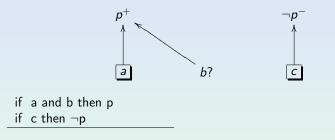
Which semantics to use ?

- A set of assumptions $A \subseteq \mathcal{A}$ is deemed
 - conflict-free iff A does not attack itself
 - naive iff A is maximally conflict-free
 - *admissible* iff A is conflict-free and A attacks every set of assumptions B that attacks A
 - *stable* iff A is conflict-free and attacks every set it does not include
 - semi-stable iff A is complete where {A} ∪ {B|A attacks B} is maximal
 - + preferred, complete and ideal...

References

- P.M. Dung. On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, log programming, and n-person games. Artificial Intelligence, 77(2):321–257, 1995.
- P.M. Dung, R.A. Kowalski and F. Toni. Dialectic Proof Procedures for Assumption-Based, Admissible Argumentation. Artificial Intelligence, 170(2):114–159, 2006.
- M. Caminada. Semi-stable semantics. 1st International Conference on Computational Models of Arguments, 2006.

Consider the following basic influence diagram and influence rules



The rational opinions are $A = \{c\}, \{a, b\}, \{a, c\}$ and $\{b, c\}$.

Surprising solutions !

- $\{\}$ is conflict-free but not rational
- $\{c\}$ is not naive but is rational
- $\{\}$ is admissible but not rational
- $\{c\}$ is not stable but is rational
- $\{c\}$ is not semi-stable but is rational
- $\{c\}$ is not preferred but is rational
- $\{c\}$ is not complete but is rational
- $\{a, c\}$ is not grounded but is rational
- {} is ideal but not rational

New semantics ?

Definition:

- Abstract argumentation: S ⊆ Arg is liberal stable iff S is conflict-free and attacks a maximal set of arguments.
- Assumption-based argumentation: $A \subseteq A$ is conflict-free and attacks a maximal set of sets of assumptions.

Properties (in symmetric assumption-based frameworks):

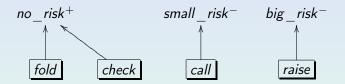
- Every stable set is liberal stable and every liberal stable set is conflict-free and admissible.
- Under extensible frameworks: every naive, stable or preferred set is liberal stable and every liberal stable set is conflict-free and admissible.

In the previous example, works perfectly. More generally...

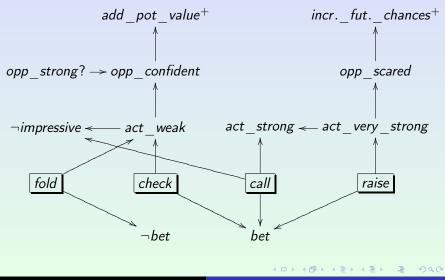
- Theorem 1: All rational solutions are liberal stable.
- **Theorem 2**: If every naive opinion is decided, then every liberal stable solution is rational.

Decidedness of naive opinion is a very natural requirement.

Application to Poker: risk / movement 🐥

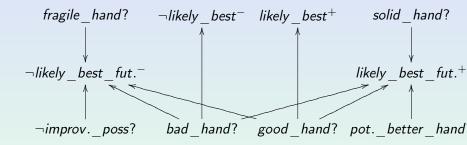


Application to Poker: psychological effects 🔶



Matt, Toni Basic influence diagrams and the liberal stable semantics

Application to Poker: hand strength dynamics \diamondsuit



• □ ▶ • • □ ▶ • • □ ▶

Result obtained \heartsuit

	<i>s</i> ₁ ∨ <i>s</i> ₇		50	V <i>s</i> 8		<i>s</i> ₃ ∨ <i>s</i> ₉	
<u> </u>	51 * 57				53 🖓 59		
d1	NR^+, APV^+, UB^-, U	PV^+, UB^-, UBF^-		$, UB^-, UBF^-$	NR^+, APV^+, LB^+, LBF^+		
d2	NR^+, APV^+, UB^-, UA^+	V^+, UB^-, UBF^-		, UB ⁻ , UBF ⁻	NR^+, APV^+, LB^+, LBF^+		
d ₃	SR^-, APV^+, UB^-, U	SR^-, APV^+, UB^-, UBF^-		SR^-, UB^-, UBF^-		SR^-, APV^+, LB^+, LBF^+	
d4	BR^-, APV^+, IFC^+, UB^-	$BR^-, IFC^+, UB^-, UBF^ BR^-, AI$		BR ⁻ , APV	V^+, IFC^+, LB^+, LBF^+		
	<i>s</i> ₄ ∨ <i>s</i> ₁₀		<i>s</i> ₅ ∨ <i>s</i> ₁₃		<i>s</i> 6 ∨	s ₁₄	
d1	NR^+, APV^+, LB^+, LBF^+	NR	R^+, APV^+, UB	-, LBF+	$NR^+, APV^+,$	UB^-, LBF^+	
d2	NR^+, APV^+, LB^+, LBF^+	⁺ , LB ⁺ , LBF ⁺ NR		R^+, APV^+, UB^-, LBF^+		NR^+, APV^+, UB^-, LBF^+	
d ₃	SR ⁻ , LB ⁺ , LBF ⁺ SR		R^-, APV^+, UB^-, LBF^+		SR^-, UB^-, LBF^+		
d4	BR^-, IFC^+, LB^+, LBF^+	$, IFC^+, LB^+, LBF^+ = BR^-, AP$			UB^-, LBF^+ $BR^-, IFC^+,$		
		1	<i>s</i> ₁₂ ∨ <i>s</i> ₁₆]		
	d_1 NR ⁺ , A	+, UBF -	NR^+, APV^+, LB^+, UBF^-]		
	d ₂ NR ⁺ , A	+,UBF-	NR^+, APV^+, LB^+, UBF^-				
	d ₃ SR ⁻ , A	+, UBF ⁻	SR^-, LB^+, UBF^-		1		
	d ₄ BR ⁻ , APV	LB^+, UBF^-	$BR^-, IFC^+,$	LB^+, UBF^-]		

Figure: Compact decision table for playing a hand.

 $\begin{array}{l} s_1 = \{bad_hand, solid_hand, no_improvement_possible, opponent_strong\} \\ s_7 = \{bad_hand, fragile_hand, no_improvement_possible, opponent_strong\} \end{array}$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

-

- introduced basic influence diagrams for knowledge representation in decision making
- use simple mapping onto assumption-based argumentation
- rationality obtained via new semantics of liberal stability
- liberal stable solutions provide qualitative decision tables