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Preliminaries

Framework for argumentation
(Besnard & Hunter 2001)

I We can formalize argumentation using classical logic and
adapt it in computational context

I We use ∆,Φ, . . . to denote sets of formulae, φ, ψ . . . to
denote formulae and a,b, c . . . to denote the propositional
letters each formula consists of.

I In this framework an argument is a pair 〈Ψ, φ〉 where Ψ is a
set of formulae that minimally and consistently entails a
formula φ. We call Ψ the support of the argument and φ
the claim of the argument
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Preliminaries

Examples

Some arguments are

I 〈{¬a, (d ∨ e) ∧ f},¬a ∧ (d ∨ e)〉
I 〈{(¬a ∨ b) ∧ c,¬b ∧ d},¬a ∧ c〉
I 〈{¬a},¬a〉
I 〈{¬b ∧ d},d〉
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Motivation

Motivation for efficient algorithms

I We want to automate the construction of arguments.
I This process is computationally expensive.
I Given a knowledgebase ∆, we want to find all the

arguments for a formula φ.
I We use an automated theorem prover (ATP) to test for

entailment and consistency
I Ψ ` φ?
I Ψ 6` ⊥?
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Motivation

Motivation for efficient algorithms

I We do not know which subsets of ∆ to investigate. Testing
arbitrary subsets of ∆ can be prohibitely expensive. We
explore an alternative way for locating the arguments for φ

I Our approach is to adapt the idea of connection graphs
(R.Kowalski 1975) to reduce the search space for
argumentation

I We use this in order to isolate a partition of the
knowledgebase that contains the arguments for φ
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Language of clauses

Definitions

We start with a language of disjunctive clauses ( disjunctions of
1 or more literals ) We define the following relations on clauses

I The Disjuncts relation takes a clause and returns the set of
disjuncts in the clause. Disjuncts(β1 ∨ .. ∨ βn) = {β1, .., βn}

I Let φ and ψ be clauses. Then, Preattacks(φ, ψ) is
{β | β ∈ Disjuncts(φ) and ¬β ∈ Disjuncts(ψ)}

I Let φ and ψ be clauses. If Preattacks(φ, ψ) = {β} for some
β, then Attacks(φ, ψ) = β otherwise Attacks(φ, ψ) = null
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Language of clauses

Examples

I Preattacks
I Preattacks(a ∨ ¬b ∨ ¬c ∨ d ,a ∨ b ∨ ¬d ∨ e) = {¬b,d}
I Preattacks(a ∨ b ∨ ¬d ∨ e,a ∨ ¬b ∨ ¬c ∨ d) = {b,¬d}
I Preattacks(a ∨ b ∨ ¬d ,a ∨ b ∨ c) = ∅
I Preattacks(a ∨ b ∨ ¬d ,a ∨ b ∨ d) = {¬d}
I Preattacks(a ∨ b ∨ ¬d ,e ∨ c ∨ d) = {¬d}

I Attacks
I Attacks(a ∨ ¬b ∨ ¬c ∨ d ,a ∨ b ∨ ¬d ∨ e) = null
I Attacks(a ∨ b ∨ ¬d ∨ e,a ∨ ¬b ∨ ¬c ∨ d) = null
I Attacks(a ∨ b ∨ ¬d ,a ∨ b ∨ c) = null
I Attacks(a ∨ b ∨ ¬d ,a ∨ b ∨ d) = ¬d
I Attacks(a ∨ b ∨ ¬d ,e ∨ c ∨ d) = ¬d
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Graphs

Connection graphs

I We use Preattacks and Attacks relations on a set of
clauses ∆ to define different types of graphs

I The nodes of the graphs are elements from ∆

I Arcs exists between nodes which contain contradictory
literals

I The number of contradictory literals between pairs of
nodes allows for different relations to hold between those
nodes, which in turn identify different kinds of graphs
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Graphs

The connection Graph

I The connection graph is the graph whose arcs are
identified by the Preattacks relation

¬b ¬c ∨ ¬g ¬c ¬h ∨ l — ¬l ∨ ¬k n ∨ m ∨ ¬q
| � | | | | | |

a ∨ b — ¬b ∨ d c ∨ g h ∨ ¬l — l ∨ k ¬n ¬m q
| | | | |

¬a ∨ d — ¬d ¬g f ∨ p ¬k m
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Graphs

The attack graph

I The attack graph is the graph whose arcs are indentified
by the Attacks relation

¬b ¬c ∨ ¬g ¬c ¬h ∨ l — ¬l ∨ ¬k n ∨ m ∨ ¬q
| | | | |

a ∨ b — ¬b ∨ d c ∨ g h ∨ ¬l — l ∨ k ¬n ¬m q
| | | | |

¬a ∨ d — ¬d ¬g f ∨ p ¬k m
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Graphs

The closed graph

I The closed graph characterizes the attack graph in terms
of connectivity Clauses containing ‘unlinked literals’ are
excluded

¬b ¬c n ∨ m ∨ ¬q
| | | | |

a ∨ b — ¬b ∨ d c ∨ g ¬n ¬m q
| | | |

¬a ∨ d — ¬d ¬g m
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Graphs

The focal graph

I The focal graph is identified by a clause φ from ∆, which
we call the epicentre . The focal graph of φ in ∆ is the
component of the closed graph that contains φ

I The following is the focal graph of ¬b in ∆ and of a ∨ b in ∆
and of ¬b ∨ d in ∆ etc...

¬b
|

a ∨ b — ¬b ∨ d
| |

¬a ∨ d — ¬d
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Algorithms

Algorithm for the focal graph
I Given a clause φ we can find the focal graph of φ in ∆ by

depth-first search of the attack graph for ∆

I The following is the attack graph for a set of clauses ∆. We
want to find the focal graph of ¬c in ∆

¬c — ¬b ∨ c ∨ d — b ∨ ¬p b ∨ ¬c ∨ k — ¬k ∨ e
| � | |

¬d ∨ m ¬d ∨ p ¬e ∨ f ∨ g
| | |

¬m ∨ n ¬f ¬g
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Algorithms

Algorithm for the focal graph
I Initially all the nodes are considered to be allowed

candidates for the focal graph and the unsuitable ones will
be rejected while walking over the graph

I First locate ¬c in the attack graph for ∆

¬c — ¬b ∨ c ∨ d — b ∨ ¬p b ∨ ¬c ∨ k — ¬k ∨ e
| � | |

¬d ∨ m ¬d ∨ p ¬e ∨ f ∨ g
| | |

¬m ∨ n ¬f ¬g
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Algorithms

Algorithm for the focal graph

I follow one of the paths that start from ¬c

¬c — ¬b ∨ c ∨ d — b ∨ ¬p b ∨ ¬c ∨ k — ¬k ∨ e
| � | |

¬d ∨ m ¬d ∨ p ¬e ∨ f ∨ g
| | |

¬m ∨ n ¬f ¬g
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Algorithms

Algorithm for the focal graph

I follow one of the paths that start from ¬c
I test if the current node is connected i.e. if all its disjuncts

correspond to a link in the graph

¬c — ¬b ∨ c ∨ d — b ∨ ¬p b ∨ ¬c ∨ k — ¬k ∨ e
| � | |

¬d ∨ m ¬d ∨ p ¬e ∨ f ∨ g
| | |

¬m ∨ n ¬f ¬g
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Algorithms

Algorithm for the focal graph

I if it is, follow one of the paths that continue from this node

¬c — ¬b ∨ c ∨ d — b ∨ ¬p b ∨ ¬c ∨ k — ¬k ∨ e
| � | |

¬d ∨ m ¬d ∨ p ¬e ∨ f ∨ g
| | |

¬m ∨ n ¬f ¬g
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Algorithms

Algorithm for the focal graph

I if it is, follow one of the paths that continue from this node
I test if the current node is connected

¬c — ¬b ∨ c ∨ d — b ∨ ¬p b ∨ ¬c ∨ k — ¬k ∨ e
| � | |

¬d ∨ m ¬d ∨ p ¬e ∨ f ∨ g
| | |

¬m ∨ n ¬f ¬g
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Algorithms

Algorithm for the focal graph

I if it is, follow one of the paths that continue from this node
I continue in the same way for every newly created node

¬c — ¬b ∨ c ∨ d — b ∨ ¬p b ∨ ¬c ∨ k — ¬k ∨ e
| � | |

¬d ∨ m ¬d ∨ p ¬e ∨ f ∨ g
| | |

¬m ∨ n ¬f ¬g
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Algorithms

Algorithm for the focal graph

I if a node which is not connected is found then mark it as
rejected and backtrack

¬c — ¬b ∨ c ∨ d — b ∨ ¬p b ∨ ¬c ∨ k — ¬k ∨ e
| � | |

¬d ∨ m ¬d ∨ p ¬e ∨ f ∨ g
| | |

¬m ∨ n ¬f ¬g
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Algorithms

Algorithm for the focal graph

I if a node which is not connected is found then mark it as
rejected and backtrack

¬c — ¬b ∨ c ∨ d — b ∨ ¬p b ∨ ¬c ∨ k — ¬k ∨ e
| � | |

¬d ∨ m ¬d ∨ p ¬e ∨ f ∨ g
| | |

¬m ∨ n ¬f ¬g
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Algorithms

Algorithm for the focal graph

I test if the nodes adjacent to the node rejected last remain
connected

¬c — ¬b ∨ c ∨ d — b ∨ ¬p b ∨ ¬c ∨ k — ¬k ∨ e
| � | |

¬d ∨ m ¬d ∨ p ¬e ∨ f ∨ g
| | |

¬m ∨ n ¬f ¬g
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Algorithms

Algorithm for the focal graph
I test if the nodes adjacent to the node rejected last remain

connected
I if they do not, mark them as rejected and continue

backtracking

¬c — ¬b ∨ c ∨ d — b ∨ ¬p b ∨ ¬c ∨ k — ¬k ∨ e
| � | |

¬d ∨ m ¬d ∨ p ¬e ∨ f ∨ g
| | |

¬m ∨ n ¬f ¬g
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Algorithms

Algorithm for the focal graph

I test if the nodes adjacent to the node rejected last remain
connected
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Algorithms

Algorithm for the focal graph
I test if the nodes adjacent to the node rejected last remain

connected
I if they do, continue from that point, by following one of the

the paths to the nodes that have not been visited yet

¬c — ¬b ∨ c ∨ d — b ∨ ¬p b ∨ ¬c ∨ k — ¬k ∨ e
| � | |

¬d ∨ m ¬d ∨ p ¬e ∨ f ∨ g
| | |

¬m ∨ n ¬f ¬g
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Algorithms

Algorithm for the focal graph
I and continue in the same way. Only the component of the

graph that is linked to ¬c is being searched
I The visited non-rejected nodes of the graph correspond to

the focal graph of ¬c in ∆

¬c — ¬b ∨ c ∨ d — b ∨ ¬p b ∨ ¬c ∨ k — ¬k ∨ e
| � | |

¬d ∨ m ¬d ∨ p ¬e ∨ f ∨ g
| | |

¬m ∨ n ¬f ¬g
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Theoretical results

Why is the focal graph useful?

I The focal graph can be used to reduce the search space
for argumentation for knowledgebases and queries in CNF

I Let Conjuncts(φ) be the set of a clauses a formula φ in
CNF consists of

I Let SetConjuncts(Ψ) be the set of clauses all the formulae
from Ψ consist of

Vasiliki Efstathiou and Anthony Hunter UCL
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Theoretical results

Why is the focal graph useful?

I Let φ be claim for which want to find arguments from Ψ,
where Ψ be a set of formulae in CNF

I Let φ = φ1 ∧ . . . ∧ φn be the CNF of the negation of claim φ

I The focal graphs of each φi in SetConjuncts(Ψ ∪ {φ})
indicate the part of Ψ which contains the arguments for φ
and hence help excluding some other which is not relevant

I We call the graph consisisting of these focal graphs the
query graph of φ in Ψ

Vasiliki Efstathiou and Anthony Hunter UCL
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Theoretical results

The query graph

I Let Ψ be set of formulae in CNF

Ψ = {(¬a ∨ d) ∧ (¬c ∨ ¬g),¬d ,¬d ∧ (¬h ∨ l),q ∧ (¬h ∨ l),
c ∨ g,¬g,¬b,¬b ∨ d , l ∨ k ,m ∧ (¬l ∨ ¬k),
¬k ∧ (n ∨ m ∨ ¬q), (h ∨ ¬l),¬m ∧ ¬n,m ∧ q}

I Let φ be a claim for an argument with φ = (a ∨ b) ∧ (f ∨ p) ∧ ¬c

Vasiliki Efstathiou and Anthony Hunter UCL
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Theoretical results

The query graph

I Then, SetConjuncts(Ψ ∪ {φ}) is ∆ from the first example
with the following attack graph where the conjuncts of
φ = (a ∨ b) ∧ (f ∨ p) ∧ ¬c are marked

¬b ¬c ∨ ¬g ¬c ¬h ∨ l — ¬l ∨ ¬k n ∨ m ∨ ¬q
| | | | |

a ∨ b — ¬b ∨ d c ∨ g h ∨ ¬l — l ∨ k ¬n ¬m q
| | | | |

¬a ∨ d — ¬d ¬g f ∨ p ¬k m
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Theoretical results

The query graph

I and so the following is the query graph of φ in Ψ

I We want to find arguments for φ from Ψ and not from
SetConjuncts(Ψ ∪ {ψ})

¬b ¬c
| |

a ∨ b — ¬b ∨ d c ∨ g
| | |

¬a ∨ d — ¬d ¬g
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Theoretical results

The query graph
I The query graph indicates which subsets of Ψ are useful -

find which formula from Ψ each node relates to
Ψ = {(¬a ∨ d) ∧ (¬c ∨ ¬g),¬d ,¬d ∧ (¬h ∨ l),q ∧ (¬h ∨ l),

c ∨ g,¬g,¬b,¬b ∨ d , l ∨ k ,m ∧ (¬l ∨ ¬k),
¬k ∧ (n ∨ m ∨ ¬q), (h ∨ ¬l),¬m ∧ ¬n,m ∧ q}

¬b ¬c
| |

a ∨ b — ¬b ∨ d c ∨ g
| | |

¬a ∨ d — ¬d ¬g
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Theoretical results

Supportbase

I Use this part of the knowledgebase to look for arguments
instead of searching the initial knowledgebase

Ψ′ = {(¬a ∨ d) ∧ (¬c ∨ ¬g),¬d ,¬d ∧ (¬h ∨ l),
c ∨ g,¬g,¬b,¬b ∨ d}

I We call Ψ′ the Supportbase for Ψ and φ. If 〈Γ, φ〉 is an
argument then Γ is a subset of the Supportbase

I Supportbase(Ψ, φ) ⊆ Ψ
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Experimental results

Experiment

I We tested the focal graph algorithm for sets of randomly
generated clauses

I These sets were of fixed cardinality (600 clauses) and they
contained 3-place clauses (rules ) and 1-place clauses
literals (facts )

I The evaluation was based on the size of the focal graph of
an epicentre φ in a set of clauses ∆
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Experimental results

Experiment

I 2 dimensions were considered:
I clauses-to-variables ratio
I facts-to-rules ratio

I e.g.knowledgebase with 600 elements:
I 150 facts + 450 rules, facts-to-rules=1/3
I constructed with 100 propositional letters:

clauses-to-variables ratio = 6 = 600/100

I 1000 repetitions of the algorithm for each fixed
clauses-to-variables and facts-to-rules ratio

I Highest average focal graph size of an epicentre φ in a set
of clauses ∆ with 600 distinct elements is ∼ 344
(57 % of the initial knowledgebase)
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Experimental results

Experimental data

clauses-to-variables ratio
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Figure: Focal graph size variation with the clauses-to-variables ratio
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Conclusions

I In this talk we presented the theoretical background of
algorithms that can make argumentation more effective in
terms of computational cost by reducing the search space
for arguments

I We presented some empirical results on how this proposal
works with random data

I Further work in this framework involves
I Algorithms for finding arguments with literals for claims and

sets of clauses for supports (FOIKS ’08)
I Generalization to subsets of first order logic
I Experimenatation with knowledgebases of real data
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