Dependencies between players in Boolean games

Elise Bonzon Marie-Christine Lagasquie-Schiex Jérôme Lang
\{bonzon,lagasq,lang\}@irit.fr

ECSQARU

October 31, November 1-2 2007

(9) Introduction

(2) Boolean games
(3) Dependencies between players
(4) Conclusion
(2) Boolean games
3) Dependencies between players

4 Conclusion

Introduction

Boolean games as introduced in Harrenstein, Van der Hoek, Meyer, Witteveen $(2001,2004)$

- 2-players games with p binary decision variables
- Each decision variable is controlled by one player
- Player's utilities specified by a propositional formula
- Zero-sum games
- Static games

Introduction

Boolean games as introduced in Harrenstein, Van der Hoek, Meyer, Witteveen $(2001,2004)$

- 2-players games with p binary decision variables
- Each decision variable is controlled by one player
- Player's utilities specified by a propositional formula
- Zero-sum games
- Static games

Introduction

Boolean games as introduced in Harrenstein, Van der Hoek, Meyer, Witteveen $(2001,2004)$

- 2-players games with p binary decision variables
- Each decision variable is controlled by one player
- Player's utilities specified by a propositional formula
- Zero-sum games
- Static games

Introduction

Boolean games as introduced in Harrenstein, Van der Hoek, Meyer, Witteveen $(2001,2004)$

- 2-players games with p binary decision variables
- Each decision variable is controlled by one player
- Player's utilities specified by a propositional formula
- Zero-sum games
- Static games

Introduction

Boolean games as introduced in Harrenstein, Van der Hoek, Meyer, Witteveen $(2001,2004)$

- 2-players games with p binary decision variables
- Each decision variable is controlled by one player
- Player's utilities specified by a propositional formula
- Zero-sum games
- Static games

(9) Introduction

(3) Dependencies between players
(4) Conclusion

Boolean n-players version of prisoners' dilemma

- n prisoners (denoted by $1, \ldots, n$).
- The same proposal is made to each of them:
"Either you cover your accomplices ($C_{i}, i=1, \ldots, n$) or you denounce them $\left(\neg C_{i}, i=1, \ldots, n\right)$."
- Denouncing makes you freed while your partners will be sent to prison (except those who denounced you as well; these ones will be freed as well),
- But if none of you chooses to denounce, everyone will be freed.

Boolean n-players version of prisoners' dilemma

- Normal form for $n=3$:

$3: C_{3}$		
	2	C_{2}
1	\bar{C}_{2}	
C_{1}	$(1,1,1)$	$(0,1,0)$
\bar{C}_{1}	$(1,0,0)$	$(1,1,0)$

$3: \bar{C}_{3}$			
	2	C_{2}	
C_{1}	$(0,0,1)$	$(0,1,1)$	
\bar{C}_{1}	$(1,0,1)$	$(1,1,1)$	

- n prisoners : n-dimensional matrix, therefore $2^{n} n$-tuples must be

 specified.
Boolean n-players version of prisoners' dilemma

- Normal form for $n=3$:

$3: C_{3}$		
	2	C_{2}
1	\bar{C}_{2}	
C_{1}	$(1,1,1)$	$(0,1,0)$
\bar{C}_{1}	$(1,0,0)$	$(1,1,0)$

$3: \bar{C}_{3}$			
	2	C_{2}	
1	\bar{C}_{2}		
C_{1}	$(0,0,1)$	$(0,1,1)$	
\bar{C}_{1}	$(1,0,1)$	$(1,1,1)$	

- n prisoners : n-dimensional matrix, therefore $2^{n} n$-tuples must be specified.

Boolean n-players version of prisoners' dilemma

- Normal form for $n=3$:

$3: C_{3}$		
	2	C_{2}
	\bar{C}_{2}	
C_{1}	$(1,1,1)$	$(0,1,0)$
\bar{C}_{1}	$(1,0,0)$	$(1,1,0)$

$3: \bar{C}_{3}$		
	2	C_{2}
	\bar{C}_{2}	
C_{1}	$(0,0,1)$	$(0,1,1)$
\bar{C}_{1}	$(1,0,1)$	$(1,1,1)$

- Expressed much more compactly by Boolean game $G=(N, V, \pi, \Phi)$:
- $N=\{1, \ldots, n\}$,
- $V=\left\{C_{1}, \ldots, C_{n}\right\}$ (propositional variables),
- $\forall i \in\{1, \ldots, n\}, \pi_{i}=\left\{C_{i}\right\}$ (control assignment function), and
- $\Phi=\left\{\varphi_{1}, \ldots, \varphi_{n}\right\}$, with $\forall i, \varphi_{i}=\left(C_{1} \wedge C_{2} \wedge \ldots C_{n}\right) \vee \neg C_{i}$ (goals).

Boolean n-players version of prisoners' dilemma

- Normal form for $n=3$:

$3: C_{3}$		
	2	C_{2}
C_{1}	$(1,1,1)$	$(0,1,0)$
\bar{C}_{1}	$(1,0,0)$	$(1,1,0)$

$3: \bar{C}_{3}$		
	2	C_{2}
C_{1}	$(0,0,1)$	$(0,1,1)$
\bar{C}_{1}	$(1,0,1)$	$(1,1,1)$

- $\forall i, i$ has 2 possible strategies: $s_{i_{1}}=\left\{C_{i}\right\}$ and $s_{i_{2}}=\left\{\overline{C_{i}}\right\}$
- the strategy \bar{C}_{i} is a winning strategy for i.
- S is the set of strategy profile for $G ;|S|=8$

Boolean n-players version of prisoners' dilemma

- Normal form for $n=3$:

$3: C_{3}$		
	2	C_{2}
C_{1}	$(1,1,1)$	$(0,1,0)$
\bar{C}_{1}	$(1,0,0)$	$(1,1,0)$

$3: \bar{C}_{3}$		
	2	C_{2}
C_{1}	$(0,0,1)$	$(0,1,1)$
\bar{C}_{1}	$(1,0,1)$	$(1,1,1)$

- s_{-i} denotes the projection of s on $N \backslash\{i\}$
- $s=\left\{C_{1} C_{2} C_{3}\right\} ; s_{-1}=\left(C_{2}, C_{3}\right) ; s_{-2}=\left(C_{1}, C_{3}\right) ; s_{-3}=\left(C_{1}, C_{2}\right)$

Boolean n-players version of prisoners' dilemma

- Normal form for $n=3$:

$3: C_{3}$		
	2	C_{2}
1	\bar{C}_{2}	
C_{1}	$(1,1,1)$	$(0,1,0)$
\bar{C}_{1}	$(1,0,0)$	$(1,1,0)$

$3: \bar{C}_{3}$		
	2	C_{2}
1	\bar{C}_{2}	
C_{1}	$(0,0,1)$	$(0,1,1)$
\bar{C}_{1}	$(1,0,1)$	$(1,1,1)$

- A pure-strategy Nash equilibrium (PNE) is a strategy profile such as each player's strategy is an optimal response to other players' strategies. $s=\left\{s_{1}, \ldots, s_{n}\right\}$ is a PNE iff $\forall i \in\{1, \ldots, n\}, \forall s_{i}^{\prime} \in 2^{\pi_{i}}, u_{i}(s) \geq u_{i}\left(s_{-i}, s_{i}^{\prime}\right)$.

Boolean n-players version of prisoners' dilemma

- Normal form for $n=3$:

$3: C_{3}$		
	2	C_{2}
1	\bar{C}_{2}	
C_{1}	$(1,1,1)$	$(0,1,0)$
\bar{C}_{1}	$(1,0,0)$	$(1,1,0)$

$3: \bar{C}_{3}$		
	2	C_{2}
1	\bar{C}_{2}	
C_{1}	$(0,0,1)$	$(0,1,1)$
\bar{C}_{1}	$(1,0,1)$	$(1,1,1)$

- A pure-strategy Nash equilibrium (PNE) is a strategy profile such as each player's strategy is an optimal response to other players' strategies. $s=\left\{s_{1}, \ldots, s_{n}\right\}$ is a PNE iff $\forall i \in\{1, \ldots, n\}, \forall s_{i}^{\prime} \in 2^{\pi_{i}}, u_{i}(s) \geq u_{i}\left(s_{-i}, s_{i}^{\prime}\right)$.

Boolean n-players version of prisoners' dilemma

- Normal form for $n=3$:

$3: C_{3}$		
	2	C_{2}
1	\bar{C}_{2}	
C_{1}	$(1,1,1)$	$(0,1,0)$
\bar{C}_{1}	$(1,0,0)$	$(1,1,0)$

$3: \bar{C}_{3}$		
	2	C_{2}
1	\bar{C}_{2}	
C_{1}	$(0,0,1)$	$(0,1,1)$
\bar{C}_{1}	$(1,0,1)$	$(1,1,1)$

- A pure-strategy Nash equilibrium (PNE) is a strategy profile such as each player's strategy is an optimal response to other players' strategies. $s=\left\{s_{1}, \ldots, s_{n}\right\}$ is a PNE iff $\forall i \in\{1, \ldots, n\}, \forall s_{i}^{\prime} \in 2^{\pi_{i}}, u_{i}(s) \geq u_{i}\left(s_{-i}, s_{i}^{\prime}\right)$.

Boolean n-players version of prisoners' dilemma

- Normal form for $n=3$:

$3: C_{3}$		
	2	C_{2}
1	\bar{C}_{2}	
C_{1}	$(1,1,1)$	$(0,1,0)$
\bar{C}_{1}	$(1,0,0)$	$(1,1,0)$

$3: \bar{C}_{3}$		
	2	C_{2}
1	\bar{C}_{2}	
C_{1}	$(0,0,1)$	$(0,1,1)$
\bar{C}_{1}	$(1,0,1)$	$(1,1,1)$

- A pure-strategy Nash equilibrium (PNE) is a strategy profile such as each player's strategy is an optimal response to other players' strategies. $s=\left\{s_{1}, \ldots, s_{n}\right\}$ is a PNE iff $\forall i \in\{1, \ldots, n\}, \forall s_{i}^{\prime} \in 2^{\pi_{i}}, u_{i}(s) \geq u_{i}\left(s_{-i}, s_{i}^{\prime}\right)$.

Boolean n-players version of prisoners' dilemma

- Normal form for $n=3$:

$3: C_{3}$		
	2	C_{2}
	\bar{C}_{2}	
C_{1}	$(1,1,1)$	$(0,1,0)$
\bar{C}_{1}	$(1,0,0)$	$(1,1,0)$

$3: \bar{C}_{3}$		
	2	C_{2}
1	\bar{C}_{2}	
C_{1}	$(0,0,1)$	$(0,1,1)$
\bar{C}_{1}	$(1,0,1)$	$(1,1,1)$

- A pure-strategy Nash equilibrium (PNE) is a strategy profile such as each player's strategy is an optimal response to other players' strategies. $s=\left\{s_{1}, \ldots, s_{n}\right\}$ is a PNE iff $\forall i \in\{1, \ldots, n\}, \forall s_{i}^{\prime} \in 2^{\pi_{i}}, u_{i}(s) \geq u_{i}\left(s_{-i}, s_{i}^{\prime}\right)$.
- 2 pure-strategy Nash equilibria: $C_{1} C_{2} C_{3}$ and $\bar{C}_{1} \bar{C}_{2} \bar{C}_{3}$

(1) Introduction

(2) Boolean games
(3) Dependencies between players

- Dependency graph
- Stable set

4. Conclusion

Relevant player

Relevant variable

The set of relevant variables for a player i, denoted by $R V_{i}$, is the set of $v \in V$ such as v is useful to i to obtain φ_{i}.

Relevant player

The set of relevant players for a player i, denoted by $R P_{i}$, is the set of agents $j \in N$ such as j controls at least one relevant variable of i :
$R P_{i}=\bigcup_{v \in R V_{i}} \pi^{-1}(v)$.

Example

- 3 friends (denoted by $(1,2,3)$) are invited to a party,
- $V=\left\{P_{1}, P_{2}, P_{3}\right\}$, where P_{1} means " 1 goes at the party", and the same for P_{2} and P_{3},
- $\pi_{1}=\left\{P_{1}\right\}, \pi_{2}=\left\{P_{2}\right\}, \pi_{3}=\left\{P_{3}\right\}$,
- $\varphi_{1}=P_{1}, \varphi_{2}=P_{1} \leftrightarrow P_{2}$ and $\varphi_{3}=\neg P_{1} \wedge P_{2} \wedge P_{3}$.

Example

- 3 friends (denoted by $(1,2,3)$) are invited to a party,
- $V=\left\{P_{1}, P_{2}, P_{3}\right\}$, where P_{1} means " 1 goes at the party", and the same for P_{2} and P_{3},
- $\pi_{1}=\left\{P_{1}\right\}, \pi_{2}=\left\{P_{2}\right\}, \pi_{3}=\left\{P_{3}\right\}$,
- $\varphi_{1}=P_{1}, \varphi_{2}=P_{1} \leftrightarrow P_{2}$ and $\varphi_{3}=\neg P_{1} \wedge P_{2} \wedge P_{3}$.

$$
R V_{1}=\left\{P_{1}\right\}, R P_{1}=\{1\}
$$

Example

- 3 friends (denoted by $(1,2,3)$) are invited to a party,
- $V=\left\{P_{1}, P_{2}, P_{3}\right\}$, where P_{1} means " 1 goes at the party", and the same for P_{2} and P_{3},
- $\pi_{1}=\left\{P_{1}\right\}, \pi_{2}=\left\{P_{2}\right\}, \pi_{3}=\left\{P_{3}\right\}$,
- $\varphi_{1}=P_{1}, \varphi_{2}=P_{1} \leftrightarrow P_{2}$ and $\varphi_{3}=\neg P_{1} \wedge P_{2} \wedge P_{3}$.

$$
\begin{gathered}
R V_{1}=\left\{P_{1}\right\}, R P_{1}=\{1\} \\
R V_{2}=\left\{P_{1}, P_{2}\right\}, R P_{2}=\{1,2\}
\end{gathered}
$$

Example

- 3 friends (denoted by $(1,2,3)$) are invited to a party,
- $V=\left\{P_{1}, P_{2}, P_{3}\right\}$, where P_{1} means "1 goes at the party", and the same for P_{2} and P_{3},
- $\pi_{1}=\left\{P_{1}\right\}, \pi_{2}=\left\{P_{2}\right\}, \pi_{3}=\left\{P_{3}\right\}$,
- $\varphi_{1}=P_{1}, \varphi_{2}=P_{1} \leftrightarrow P_{2}$ and $\varphi_{3}=\neg P_{1} \wedge P_{2} \wedge P_{3}$.

$$
\begin{gathered}
R V_{1}=\left\{P_{1}\right\}, R P_{1}=\{1\} \\
R V_{2}=\left\{P_{1}, P_{2}\right\}, R P_{2}=\{1,2\} \\
R V_{3}=\left\{P_{1}, P_{2}, P_{3}\right\}, R P_{3}=\{1,2,3\} .
\end{gathered}
$$

Dependency graph

Dependency graph

The dependency graph of a Boolean game G is the directed graph $\mathcal{P}=\langle N, R\rangle$ containing

- a vertex for each player, and
- an edge from i to j if j is a relevant player of i :

$$
\forall i, j \in N,(i, j) \in R \text { if } j \in R P_{i}
$$

Example

- $N=(1,2,3), V=\left\{P_{1}, P_{2}, P_{3}\right\}$,
- $\pi_{1}=\left\{P_{1}\right\}, \pi_{2}=\left\{P_{2}\right\}, \pi_{3}=\left\{P_{3}\right\}$,
- $\varphi_{1}=P_{1}, \varphi_{2}=P_{1} \leftrightarrow P_{2}$ and $\varphi_{3}=\neg P_{1} \wedge P_{2} \wedge P_{3}$,
- $R P_{1}=\{1\}, R P_{2}=\{1,2\}, R P_{3}=\{1,2,3\}$.

Link between dependencies and PNE

Proposition

If G is a Boolean game such that the irreflexive part of the dependency graph \mathcal{P} of G is acyclic, then, G has a pure strategy Nash equilibrum.

Example

- $N=(1,2,3), V=\left\{P_{1}, P_{2}, P_{3}\right\}$,
- $\pi_{1}=\left\{P_{1}\right\}, \pi_{2}=\left\{P_{2}\right\}, \pi_{3}=\left\{P_{3}\right\}$,
- $\varphi_{1}=P_{1}, \varphi_{2}=P_{1} \leftrightarrow P_{2}$ and $\varphi_{3}=\neg P_{1} \wedge P_{2} \wedge P_{3}$,
- $R P_{1}=\{1\}, R P_{2}=\{1,2\}, R P_{3}=\{1,2,3\}$.

Example

- $N=(1,2,3), V=\left\{P_{1}, P_{2}, P_{3}\right\}$,
- $\pi_{1}=\left\{P_{1}\right\}, \pi_{2}=\left\{P_{2}\right\}, \pi_{3}=\left\{P_{3}\right\}$,
- $\varphi_{1}=P_{1}, \varphi_{2}=P_{1} \leftrightarrow P_{2}$ and $\varphi_{3}=\neg P_{1} \wedge P_{2} \wedge P_{3}$,
- $R P_{1}=\{1\}, R P_{2}=\{1,2\}, R P_{3}=\{1,2,3\}$.

Example

- $N=(1,2,3), V=\left\{P_{1}, P_{2}, P_{3}\right\}$,
- $\pi_{1}=\left\{P_{1}\right\}, \pi_{2}=\left\{P_{2}\right\}, \pi_{3}=\left\{P_{3}\right\}$,
- $\varphi_{1}=P_{1}, \varphi_{2}=P_{1} \leftrightarrow P_{2}$ and $\varphi_{3}=\neg P_{1} \wedge P_{2} \wedge P_{3}$,
- $R P_{1}=\{1\}, R P_{2}=\{1,2\}, R P_{3}=\{1,2,3\}$.

Example

- $N=(1,2,3), V=\left\{P_{1}, P_{2}, P_{3}\right\}$,
- $\pi_{1}=\left\{P_{1}\right\}, \pi_{2}=\left\{P_{2}\right\}, \pi_{3}=\left\{P_{3}\right\}$,
- $\varphi_{1}=P_{1}, \varphi_{2}=P_{1} \leftrightarrow P_{2}$ and $\varphi_{3}=\neg P_{1} \wedge P_{2} \wedge P_{3}$,
- $R P_{1}=\{1\}, R P_{2}=\{1,2\}, R P_{3}=\{1,2,3\}$.

Example

- $N=(1,2,3), V=\left\{P_{1}, P_{2}, P_{3}\right\}$,
- $\pi_{1}=\left\{P_{1}\right\}, \pi_{2}=\left\{P_{2}\right\}, \pi_{3}=\left\{P_{3}\right\}$,
- $\varphi_{1}=P_{1}, \varphi_{2}=P_{1} \leftrightarrow P_{2}$ and $\varphi_{3}=\neg P_{1} \wedge P_{2} \wedge P_{3}$,
- $R P_{1}=\{1\}, R P_{2}=\{1,2\}, R P_{3}=\{1,2,3\}$.

$$
s_{3}=P_{3} \text { or } s_{3}=\bar{P}_{3}
$$

Example

- $N=(1,2,3), V=\left\{P_{1}, P_{2}, P_{3}\right\}$,
- $\pi_{1}=\left\{P_{1}\right\}, \pi_{2}=\left\{P_{2}\right\}, \pi_{3}=\left\{P_{3}\right\}$,
- $\varphi_{1}=P_{1}, \varphi_{2}=P_{1} \leftrightarrow P_{2}$ and $\varphi_{3}=\neg P_{1} \wedge P_{2} \wedge P_{3}$,
- $R P_{1}=\{1\}, R P_{2}=\{1,2\}, R P_{3}=\{1,2,3\}$.

$$
s_{3}=P_{3} \text { or } s_{3}=\bar{P}_{3}
$$

G has 2 PNEs: $\left\{P_{1} P_{2} P_{3}, P_{1} P_{2} \bar{P}_{3}\right\}$

Stable set

Stable set

$B \subseteq N$ is stable for R iff $R(B) \subseteq B$, ie $\forall j \in B$, $\forall i$ such that $i \in R(j)$, then $i \in B$.

Stable set

Projection

If $B \subseteq N$ is a stable set for R, the projection of G on B is defined by $G_{B}=\left(B, V_{B}, \pi_{B}, \Phi_{B}\right)$, where

- $V_{B}=\cup_{i \in B} \pi_{i}$,
- $\pi_{B}: B \rightarrow V_{B}$ such that $\pi_{B}(i)=\left\{v \mid v \in \pi_{i}\right\}$, and
- $\Phi_{B}=\left\{\varphi_{i} \mid i \in B\right\}$.

Stable set

Projection

If $B \subseteq N$ is a stable set for R, the projection of G on B is defined by $G_{B}=\left(B, V_{B}, \pi_{B}, \Phi_{B}\right)$, where

- $V_{B}=\cup_{i \in B} \pi_{i}$,
- $\pi_{B}: B \rightarrow V_{B}$ such that $\pi_{B}(i)=\left\{v \mid v \in \pi_{i}\right\}$, and
- $\Phi_{B}=\left\{\varphi_{i} \mid i \in B\right\}$.

Proposition

If B is a stable set, $G_{B}=\left(B, V_{B}, \pi_{B}, \Phi_{B}\right)$ is a Boolean game.

Example

- $N=(1,2,3), V=\{a, b, c\}$,
- $\pi_{1}=\{a\}, \pi_{2}=\{b\}, \pi_{3}=\{c\}$,
- $\varphi_{1}=a \leftrightarrow b, \varphi_{2}=a \leftrightarrow \neg b$ and $\varphi_{3}=\neg c$,
- $R P_{1}=\{1,2\}, R P_{2}=\{1,2\}, R P_{3}=\{3\}$.

(3)

Example

- $N=(1,2,3), V=\{a, b, c\}$,
- $\pi_{1}=\{a\}, \pi_{2}=\{b\}, \pi_{3}=\{c\}$,
- $\varphi_{1}=a \leftrightarrow b, \varphi_{2}=a \leftrightarrow \neg b$ and $\varphi_{3}=\neg c$,
- $R P_{1}=\{1,2\}, R P_{2}=\{1,2\}, R P_{3}=\{3\}$.

(3)

Example

- $N=(1,2,3), V=\{a, b, c\}$,
- $\pi_{1}=\{a\}, \pi_{2}=\{b\}, \pi_{3}=\{c\}$,
- $\varphi_{1}=a \leftrightarrow b, \varphi_{2}=a \leftrightarrow \neg b$ and $\varphi_{3}=\neg c$,
- $R P_{1}=\{1,2\}, R P_{2}=\{1,2\}, R P_{3}=\{3\}$.

- $G_{A}=\left(A, V_{A}, \pi_{A}, \Phi_{A}\right)$, with $A=\{1,2\}, V_{A}=\{a, b\}$, $\pi_{1}=a, \pi_{2}=b, \varphi_{1}=a \leftrightarrow b, \varphi_{2}=a \leftrightarrow \neg b$.
(3)

Example

- $N=(1,2,3), V=\{a, b, c\}$,
- $\pi_{1}=\{a\}, \pi_{2}=\{b\}, \pi_{3}=\{c\}$,
- $\varphi_{1}=a \leftrightarrow b, \varphi_{2}=a \leftrightarrow \neg b$ and $\varphi_{3}=\neg c$,
- $R P_{1}=\{1,2\}, R P_{2}=\{1,2\}, R P_{3}=\{3\}$.

(3)
- $G_{A}=\left(A, V_{A}, \pi_{A}, \Phi_{A}\right)$, with $A=\{1,2\}, V_{A}=\{a, b\}$, $\pi_{1}=a, \pi_{2}=b, \varphi_{1}=a \leftrightarrow b, \varphi_{2}=a \leftrightarrow \neg b$.
- $G_{B}=\left(B, V_{B}, \pi_{B}, \Phi_{B}\right)$, with $B=\{3\}, V_{B}=\{c\}, \pi_{3}=c$, $\varphi_{3}=\neg C$.

Stable set

Proposition

If B is a stable set and s a PNE for G, then s_{B} is a PNE for G_{B}.

Example

- $N=(1,2,3,4), V=\{a, b, c, d\}$,
- $\pi_{1}=\{a\}, \pi_{2}=\{b\}, \pi_{3}=\{c\}, \pi_{4}=\{d\}$,
- $\varphi_{1}=a \leftrightarrow b, \varphi_{2}=b \leftrightarrow c, \varphi_{3}=\neg d$, and $\varphi_{4}=d \leftrightarrow(b \wedge c)$.
G has 2 PNEs : $\{a b c d, \bar{a} \bar{b} \bar{c} \bar{d}\}$.

Example

- $N=(1,2,3,4), V=\{a, b, c, d\}$,
- $\pi_{1}=\{a\}, \pi_{2}=\{b\}, \pi_{3}=\{c\}, \pi_{4}=\{d\}$,
- $\varphi_{1}=a \leftrightarrow b, \varphi_{2}=b \leftrightarrow c, \varphi_{3}=\neg d$, and $\varphi_{4}=d \leftrightarrow(b \wedge c)$.
G has 2 PREs : $\{a b c d, \bar{a} \bar{b} \bar{c} \bar{d}\}$.

$B=\{2,3,4\}$ is a stable set. G_{B} is a Boolean game, with $V_{B}=\{b, c, d\}, \pi_{2}=b, \pi_{3}=c, \pi_{4}=d, \varphi_{2}=$ $b \leftrightarrow c, \varphi_{3}=\neg d$, and $\varphi_{4}=d \leftrightarrow(b \wedge c)$.

Example

- $N=(1,2,3,4), V=\{a, b, c, d\}$,
- $\pi_{1}=\{a\}, \pi_{2}=\{b\}, \pi_{3}=\{c\}, \pi_{4}=\{d\}$,
- $\varphi_{1}=a \leftrightarrow b, \varphi_{2}=b \leftrightarrow c, \varphi_{3}=\neg d$, and $\varphi_{4}=d \leftrightarrow(b \wedge c)$.
G has 2 PNEs: $\{a b c d, \bar{a} \bar{b} \bar{c} \bar{d}\}$.

$B=\{2,3,4\}$ is a stable set. G_{B} is a Boolean game, with $V_{B}=\{b, c, d\}, \pi_{2}=b, \pi_{3}=c, \pi_{4}=d, \varphi_{2}=$ $b \leftrightarrow c, \varphi_{3}=\neg d$, and $\varphi_{4}=d \leftrightarrow(b \wedge c)$. $\{b c d, \bar{b} \bar{c} \bar{d}\}$ are 2 PNEs of G_{B}.

Stable set

Proposition

Let A and B be two stable sets of players.
If s_{A} is a PNE for G_{A} and s_{B} is a PNE for G_{B} such that $\forall i \in A \cap B$, $s_{A, i}=s_{B, i}$, then, $s_{A \cup B}$ is a PNE for $G_{A \cup B}$.

Stable set

Proposition

Let A and B be two stable sets of players.
If s_{A} is a PNE for G_{A} and s_{B} is a PNE for G_{B} such that $\forall i \in A \cap B$, $s_{A, i}=s_{B, i}$, then, $s_{A \cup B}$ is a PNE for $G_{A \cup B}$.

This proposition can be easily generalized with p stable sets covering the set of players.

Example

- $N=(1,2,3), V=\{a, b, c\}$,
- $\pi_{1}=\{a\}, \pi_{2}=\{b\}, \pi_{3}=\{c\}$,
- $\varphi_{1}=a \leftrightarrow c, \varphi_{2}=b \leftrightarrow \neg c$, and $\varphi_{3}=c$.

Example

- $N=(1,2,3), V=\{a, b, c\}$,
- $\pi_{1}=\{a\}, \pi_{2}=\{b\}, \pi_{3}=\{c\}$,
- $\varphi_{1}=a \leftrightarrow c, \varphi_{2}=b \leftrightarrow \neg c$, and $\varphi_{3}=c$.

- $G_{A}=\left(A, V_{A}, \pi_{A}, \Phi_{A}\right)$, with $A=\{1,3\}, V_{A}=\{a, c\}$, $\pi_{1}=a, \pi_{3}=c, \varphi_{1}=a \leftrightarrow c$ and $\varphi_{3}=c . G_{A}$ has one PNE : $\{\mathrm{ac}\}$ (denoted by $s_{A}=\left(s_{A, 1}, s_{A, 3}\right)$).

Example

- $N=(1,2,3), V=\{a, b, c\}$,
- $\pi_{1}=\{a\}, \pi_{2}=\{b\}, \pi_{3}=\{c\}$,
- $\varphi_{1}=a \leftrightarrow c, \varphi_{2}=b \leftrightarrow \neg c$, and $\varphi_{3}=c$.
- $G_{A}=\left(A, V_{A}, \pi_{A}, \Phi_{A}\right)$, with $A=\{1,3\}, V_{A}=\{a, c\}$, $\pi_{1}=a, \pi_{3}=c, \varphi_{1}=a \leftrightarrow c$ and $\varphi_{3}=c . G_{A}$ has one PNE : $\{\mathrm{ac}\}$ (denoted by $s_{A}=\left(s_{A, 1}, s_{A, 3}\right)$).
- $G_{B}=\left(B, V_{B}, \pi_{B}, \Phi_{B}\right)$, with $B=\{2,3\}, V_{B}=\{b, c\}$, $\pi_{2}=b, \pi_{3}=c, \varphi_{2}=b \leftrightarrow \neg c, \varphi_{3}=c . G_{B}$ has one PNE : $\{\bar{b} c\}$ (denoted by $s_{B}=\left(s_{B, 2}, s_{B, 3}\right)$).

Example

- $N=(1,2,3), V=\{a, b, c\}$,
- $\pi_{1}=\{a\}, \pi_{2}=\{b\}, \pi_{3}=\{c\}$,
- $\varphi_{1}=a \leftrightarrow c, \varphi_{2}=b \leftrightarrow \neg c$, and $\varphi_{3}=c$.
- $G_{A}=\left(A, V_{A}, \pi_{A}, \Phi_{A}\right)$, with $A=\{1,3\}, V_{A}=\{a, c\}$, $\pi_{1}=a, \pi_{3}=c, \varphi_{1}=a \leftrightarrow c$ and $\varphi_{3}=c . G_{A}$ has one PNE : $\{a c\}$ (denoted by $s_{A}=\left(s_{A, 1}, s_{A, 3}\right)$).
- $G_{B}=\left(B, V_{B}, \pi_{B}, \Phi_{B}\right)$, with $B=\{2,3\}, V_{B}=\{b, c\}$, $\pi_{2}=b, \pi_{3}=c, \varphi_{2}=b \leftrightarrow \neg c, \varphi_{3}=c . G_{B}$ has one PNE : $\{\bar{b} c\}$ (denoted by $s_{B}=\left(s_{B, 2}, s_{B, 3}\right)$).
$A \cap B=\{3\}$ and we have $s_{A, 3}=s_{B, 3}=c \Rightarrow G_{A \cup B}$ has one PNE: $\{a \bar{b} c\}$.
(2) Boolean games
(3) Dependencies between players
(4) Conclusion

Other issues

- ECAl'06: simple characterizations of Nash equilibria and dominated strategies for Boolean games, and investigate the computational complexity of the related problems;
- PRICAI'06: extended Boolean games with ordinal preferences represented by prioritized goals and CP-nets with binary variables;
- Almost all properties presented here hold also for Boolean games with non dichotomous preferences;
- Use of the dependency graph for computing efficient coalitions
- Further issues:
- Defining and studying dynamic Boolean games
- Defining and studying Boolean games with incomplete information

