Dependencies between players in Boolean games

Elise Bonzon Marie-Christine Lagasquie-Schiex Jérôme Lang

{bonzon,lagasq,lang}@irit.fr

ECSQARU October 31, November 1-2 2007

Dependencies between players in Boolean games

1/27

2 Boolean games

Oppendencies between players

4 Conclusion

- 2 Boolean games
- 3 Dependencies between players
- Conclusion

- 2-players games with p binary decision variables
- Each decision variable is controlled by one player
- Player's utilities specified by a propositional formula
- Zero-sum games
- Static games

- 2-players games with p binary decision variables
- Each decision variable is controlled by one player
- Player's utilities specified by a propositional formula
- Zero-sum games
- Static games

- 2-players games with p binary decision variables
- Each decision variable is controlled by one player
- Player's utilities specified by a propositional formula
- Zero-sum games
- Static games

- 2-players games with p binary decision variables
- Each decision variable is controlled by one player
- Player's utilities specified by a propositional formula
- Zero-sum games
- Static games

- 2-players games with p binary decision variables
- Each decision variable is controlled by one player
- Player's utilities specified by a propositional formula
- Zero-sum games
- Static games

3 Dependencies between players

Conclusion

Dependencies between players in Boolean games

- *n* prisoners (denoted by $1, \ldots, n$).
- The same proposal is made to each of them:

"Either you cover your accomplices (C_i , i = 1, ..., n) or you denounce them ($\neg C_i$, i = 1, ..., n)."

- Denouncing makes you freed while your partners will be sent to prison (except those who denounced you as well; these ones will be freed as well),
- But if none of you chooses to denounce, everyone will be freed.

Boolean *n*-players version of prisoners' dilemma

• Normal form for n = 3:

3 : <i>C</i> ₃			$3:\overline{C}_3$		
2	<i>C</i> ₂	\overline{C}_2	2	<i>C</i> ₂	\overline{C}_2
<i>C</i> ₁	(1, 1, 1)	(0, 1, 0)	C ₁	(0, 0, 1)	(0, 1, 1)
\overline{C}_1	(1, 0, 0)	(1, 1, 0)	\overline{C}_1	(1, 0, 1)	(1, 1, 1)

n prisoners : *n*-dimensional matrix, therefore 2ⁿ n-tuples must be specified.

• Normal form for n = 3:

n prisoners : *n*-dimensional matrix, therefore 2ⁿ *n*-tuples must be specified.

Boolean *n*-players version of prisoners' dilemma

• Normal form for n = 3:

Expressed much more compactly by Boolean game G = (N, V, π, Φ):

•
$$N = \{1, \ldots, n\},$$

- $V = \{C_1, \ldots, C_n\}$ (propositional variables),
- $\forall i \in \{1, \dots, n\}, \pi_i = \{C_i\}$ (control assignment function), and
- $\Phi = \{\phi_1, \dots, \phi_n\}$, with $\forall i, \phi_i = (C_1 \land C_2 \land \dots \land C_n) \lor \neg C_i$ (goals).

• Normal form for n = 3:

3 : <i>C</i> ₃			$3:\overline{C}_3$		
2	C ₂	\overline{C}_2	2	<i>C</i> ₂	\overline{C}_2
<i>C</i> ₁	(1, 1, 1)	(0, 1, 0)	<i>C</i> ₁	(0, 0, 1)	(0, 1, 1)
\overline{C}_1	(1, 0, 0)	(1, 1, 0)	\overline{C}_1	(1, 0, 1)	(1, 1, 1)

- $\forall i, i \text{ has 2 possible strategies: } s_{i_1} = \{C_i\} \text{ and } s_{i_2} = \{\overline{C_i}\}$
- the strategy \overline{C}_i is a winning strategy for *i*.
- S is the set of strategy profile for G; |S| = 8

• Normal form for n = 3:

• s_{-i} denotes the projection of s on $N \setminus \{i\}$

•
$$s = \{C_1 C_2 C_3\}$$
; $s_{-1} = (C_2, C_3)$; $s_{-2} = (C_1, C_3)$; $s_{-3} = (C_1, C_2)$

• Normal form for n = 3:

• Normal form for n = 3:

• Normal form for n = 3:

• Normal form for n = 3:

• Normal form for n = 3:

- A pure-strategy Nash equilibrium (PNE) is a strategy profile such as each player's strategy is an optimal response to other players' strategies. s = {s₁,...,s_n} is a PNE iff ∀i ∈ {1,...,n}, ∀s'_i ∈ 2^{π_i}, u_i(s) ≥ u_i(s_{-i}, s'_i).
- 2 pure-strategy Nash equilibria: $C_1 C_2 C_3$ and $\overline{C}_1 \overline{C}_2 \overline{C}_3$

Oppendencies between players

- Dependency graph
- Stable set

Relevant player

Relevant variable

The set of **relevant variables** for a player *i*, denoted by RV_i , is the set of $v \in V$ such as *v* is useful to *i* to obtain φ_i .

Relevant player

The set of **relevant players** for a player *i*, denoted by RP_i , is the set of agents $j \in N$ such as *j* controls at least one relevant variable of *i*: $RP_i = \bigcup_{v \in RV_i} \pi^{-1}(v).$

- 3 friends (denoted by (1,2,3)) are invited to a party,
- V = {P₁, P₂, P₃}, where P₁ means "1 goes at the party", and the same for P₂ and P₃,

•
$$\pi_1 = \{P_1\}, \pi_2 = \{P_2\}, \pi_3 = \{P_3\},$$

•
$$\phi_1 = P_1$$
, $\phi_2 = P_1 \leftrightarrow P_2$ and $\phi_3 = \neg P_1 \land P_2 \land P_3$.

- 3 friends (denoted by (1,2,3)) are invited to a party,
- V = {P₁, P₂, P₃}, where P₁ means "1 goes at the party", and the same for P₂ and P₃,

•
$$\pi_1 = \{P_1\}, \pi_2 = \{P_2\}, \pi_3 = \{P_3\},$$

• $\phi_1 = P_1, \phi_2 = P_1 \leftrightarrow P_2 \text{ and } \phi_3 = \neg P_1 \land P_2 \land P_3.$

$$RV_1 = \{P_1\}, RP_1 = \{1\}$$

_ 14 / 27 _

- 3 friends (denoted by (1,2,3)) are invited to a party,
- V = {P₁, P₂, P₃}, where P₁ means "1 goes at the party", and the same for P₂ and P₃,

•
$$\pi_1 = \{P_1\}, \pi_2 = \{P_2\}, \pi_3 = \{P_3\},$$

• $\phi_1 = P_1, \phi_2 = P_1 \leftrightarrow P_2$ and $\phi_3 = \neg P_1 \land P_2 \land P_3$.

$$RV_1 = \{P_1\}, RP_1 = \{1\}$$

 $RV_2 = \{P_1, P_2\}, RP_2 = \{1, 2\}$

Dependencies between players in Boolean games

- 3 friends (denoted by (1,2,3)) are invited to a party,
- V = {P₁, P₂, P₃}, where P₁ means "1 goes at the party", and the same for P₂ and P₃,

•
$$\pi_1 = \{P_1\}, \pi_2 = \{P_2\}, \pi_3 = \{P_3\},$$

• $\varphi_1 = P_1, \varphi_2 = P_1 \leftrightarrow P_2 \text{ and } \varphi_3 = \neg P_1 \land P_2 \land P_3.$

$$\begin{aligned} & RV_1 = \{P_1\}, RP_1 = \{1\} \\ & RV_2 = \{P_1, P_2\}, RP_2 = \{1, 2\} \\ & RV_3 = \{P_1, P_2, P_3\}, RP_3 = \{1, 2, 3\}. \end{aligned}$$

Dependency graph

Dependency graph

The **dependency graph of a Boolean game** *G* is the directed graph $\mathcal{P} = \langle N, R \rangle$ containing

- a vertex for each player, and
- an edge from *i* to *j* if *j* is a relevant player of *i*:

 $\forall i, j \in N, (i, j) \in R \text{ if } j \in RP_i$

Dependencies between players in Boolean games

Example

•
$$N = (1,2,3), V = \{P_1, P_2, P_3\},$$

•
$$\pi_1 = \{P_1\}, \pi_2 = \{P_2\}, \pi_3 = \{P_3\},$$

- $\phi_1 = P_1, \phi_2 = P_1 \leftrightarrow P_2 \text{ and } \phi_3 = \neg P_1 \land P_2 \land P_3,$
- $RP_1 = \{1\}, RP_2 = \{1,2\}, RP_3 = \{1,2,3\}.$

Dependencies between players in Boolean games

Link between dependencies and PNE

Proposition

If *G* is a Boolean game such that the irreflexive part of the dependency graph \mathcal{P} of *G* is acyclic, then, *G* has a pure strategy Nash equilibrum.

Example

•
$$N = (1,2,3), V = \{P_1, P_2, P_3\},$$

•
$$\pi_1 = \{P_1\}, \pi_2 = \{P_2\}, \pi_3 = \{P_3\},$$

•
$$\varphi_1 = P_1, \varphi_2 = P_1 \leftrightarrow P_2 \text{ and } \varphi_3 = \neg P_1 \land P_2 \land P_3,$$

•
$$RP_1 = \{1\}, RP_2 = \{1,2\}, RP_3 = \{1,2,3\}.$$

Dependencies between players in Boolean games

•
$$N = (1,2,3), V = \{P_1, P_2, P_3\},$$

•
$$\pi_1 = \{P_1\}, \pi_2 = \{P_2\}, \pi_3 = \{P_3\},$$

•
$$\varphi_1 = P_1, \varphi_2 = P_1 \leftrightarrow P_2 \text{ and } \varphi_3 = \neg P_1 \land P_2 \land P_3,$$

•
$$RP_1 = \{1\}, RP_2 = \{1,2\}, RP_3 = \{1,2,3\}.$$

•
$$N = (1,2,3), V = \{P_1, P_2, P_3\},$$

• $\pi_1 = \{P_1\}, \pi_2 = \{P_2\}, \pi_3 = \{P_3\},$

•
$$\phi_1 = P_1, \phi_2 = P_1 \leftrightarrow P_2 \text{ and } \phi_3 = \neg P_1 \land P_2 \land P_3,$$

•
$$RP_1 = \{1\}, RP_2 = \{1,2\}, RP_3 = \{1,2,3\}.$$

•
$$N = (1,2,3), V = \{P_1, P_2, P_3\},$$

•
$$\pi_1 = \{P_1\}, \pi_2 = \{P_2\}, \pi_3 = \{P_3\},$$

•
$$\varphi_1 = P_1, \varphi_2 = P_1 \leftrightarrow P_2$$
 and $\varphi_3 = \neg P_1 \land P_2 \land P_3$,

•
$$RP_1 = \{1\}, RP_2 = \{1,2\}, RP_3 = \{1,2,3\}.$$

•
$$N = (1,2,3), V = \{P_1, P_2, P_3\},$$

•
$$\pi_1 = \{P_1\}, \pi_2 = \{P_2\}, \pi_3 = \{P_3\},$$

•
$$\varphi_1 = P_1, \varphi_2 = P_1 \leftrightarrow P_2 \text{ and } \varphi_3 = \neg P_1 \land P_2 \land P_3,$$

•
$$RP_1 = \{1\}, RP_2 = \{1,2\}, RP_3 = \{1,2,3\}.$$

Example

•
$$N = (1,2,3), V = \{P_1, P_2, P_3\},$$

•
$$\pi_1 = \{P_1\}, \pi_2 = \{P_2\}, \pi_3 = \{P_3\},$$

•
$$\varphi_1 = P_1, \varphi_2 = P_1 \leftrightarrow P_2 \text{ and } \varphi_3 = \neg P_1 \land P_2 \land P_3,$$

•
$$RP_1 = \{1\}, RP_2 = \{1,2\}, RP_3 = \{1,2,3\}.$$

G has 2 PNEs: $\{P_1P_2P_3, P_1P_2\overline{P}_3\}$

Stable set

Stable set

$B \subseteq N$ is **stable** for R iff $R(B) \subseteq B$, ie $\forall j \in B$, $\forall i$ such that $i \in R(j)$, then $i \in B$.

Dependencies between players in Boolean games

_ 19/27 _

20 / 27

Stable set

Projection

If $B \subseteq N$ is a stable set for *R*, the **projection** of *G* on *B* is defined by $G_B = (B, V_B, \pi_B, \Phi_B)$, where

- $V_B = \bigcup_{i \in B} \pi_i$,
- $\pi_B : B \to V_B$ such that $\pi_B(i) = \{v | v \in \pi_i\}$, and
- $\Phi_B = {\phi_i | i \in B}.$

Stable set

Projection

If $B \subseteq N$ is a stable set for *R*, the **projection** of *G* on *B* is defined by $G_B = (B, V_B, \pi_B, \Phi_B)$, where

- $V_B = \bigcup_{i \in B} \pi_i$,
- $\pi_B : B \to V_B$ such that $\pi_B(i) = \{v | v \in \pi_i\}$, and
- $\Phi_B = {\phi_i | i \in B}.$

Proposition

If *B* is a stable set, $G_B = (B, V_B, \pi_B, \Phi_B)$ is a Boolean game.

Dependencies between players in Boolean games

20 / 27

Example

•
$$RP_1 = \{1,2\}, RP_2 = \{1,2\}, RP_3 = \{3\}.$$

Dependencies between players in Boolean games

Example

2

•
$$N = (1,2,3), V = \{a,b,c\},$$

• $\pi_1 = \{a\}, \pi_2 = \{b\}, \pi_3 = \{c\},$
• $\phi_1 = a \leftrightarrow b, \phi_2 = a \leftrightarrow \neg b \text{ and } \phi_3 = \neg c,$
• $RP_1 = \{1,2\}, RP_2 = \{1,2\}, RP_3 = \{3\}.$

Example

$$G_A = (A, V_A, \pi_A, \Phi_A), \text{ with } A = \{1, 2\}, V_A = \{a, b\}, \\ \pi_1 = a, \pi_2 = b, \varphi_1 = a \leftrightarrow b, \varphi_2 = a \leftrightarrow \neg b.$$

____21/27 ___

Example

_ 21 / 27 _

Proposition

If B is a stable set and s a PNE for G, then s_B is a PNE for G_B .

Dependencies between players in Boolean games

_ 22 / 27 _

Example

•
$$N = (1,2,3,4), V = \{a,b,c,d\},\$$

•
$$\pi_1 = \{a\}, \pi_2 = \{b\}, \pi_3 = \{c\}, \pi_4 = \{d\},$$

• $\phi_1 = a \leftrightarrow b, \phi_2 = b \leftrightarrow c, \phi_3 = \neg d$, and $\phi_4 = d \leftrightarrow (b \wedge c)$.

G has 2 PNEs : $\{abcd, \overline{a}\overline{b}\overline{c}\overline{d}\}$.

Dependencies between players in Boolean games

Example

•
$$N = (1,2,3,4), V = \{a,b,c,d\},$$

• $\pi_1 = \{a\}, \pi_2 = \{b\}, \pi_3 = \{c\}, \pi_4 = \{d\},$
• $\phi_1 = a \leftrightarrow b, \phi_2 = b \leftrightarrow c, \phi_3 = \neg d, \text{ and } \phi_4 = d \leftrightarrow (b \land c).$

G has 2 PNEs : $\{abcd, \overline{a}\overline{b}\overline{c}\overline{d}\}$.

$$\begin{split} B &= \{2,3,4\} \text{ is a stable set. } G_B \text{ is a Boolean game,} \\ \text{with } V_B &= \{b,c,d\}, \ \pi_2 = b, \ \pi_3 = c, \ \pi_4 = d, \ \phi_2 = b \leftrightarrow c, \ \phi_3 = \neg d, \text{ and } \phi_4 = d \leftrightarrow (b \wedge c). \end{split}$$

Dependencies between players in Boolean games

23/27

Example

G has 2 PNEs : $\{ abcd, \overline{abcd} \}$.

 $B = \{2,3,4\} \text{ is a stable set. } G_B \text{ is a Boolean game,}$ with $V_B = \{b, c, d\}$, $\pi_2 = b$, $\pi_3 = c$, $\pi_4 = d$, $\phi_2 = b \leftrightarrow c$, $\phi_3 = \neg d$, and $\phi_4 = d \leftrightarrow (b \land c)$. $\{bcd, \overline{bcd}\}$ are 2 PNEs of G_B .

23 / 27

24/27

Stable set

Proposition

Let *A* and *B* be two stable sets of players. If s_A is a PNE for G_A and s_B is a PNE for G_B such that $\forall i \in A \cap B$, $s_{A,i} = s_{B,i}$, then, $s_{A \cup B}$ is a PNE for $G_{A \cup B}$.

Stable set

Proposition

Let *A* and *B* be two stable sets of players. If s_A is a PNE for G_A and s_B is a PNE for G_B such that $\forall i \in A \cap B$, $s_{A,i} = s_{B,i}$, then, $s_{A \cup B}$ is a PNE for $G_{A \cup B}$.

This proposition can be easily generalized with *p* stable sets covering the set of players.

Example

•
$$N = (1,2,3), V = \{a,b,c\},$$

•
$$\pi_1 = \{a\}, \pi_2 = \{b\}, \pi_3 = \{c\},$$

•
$$\phi_1 = a \leftrightarrow c, \phi_2 = b \leftrightarrow \neg c, \text{ and } \phi_3 = c.$$

Dependencies between players in Boolean games

•
$$G_A = (A, V_A, \pi_A, \Phi_A)$$
, with $A = \{1,3\}$, $V_A = \{a, c\}$,
 $\pi_1 = a, \pi_3 = c, \phi_1 = a \leftrightarrow c$ and $\phi_3 = c. G_A$ has one
PNE : $\{ac\}$ (denoted by $s_A = (s_{A,1}, s_{A,3})$).

Example

•
$$G_A = (A, V_A, \pi_A, \Phi_A)$$
, with $A = \{1,3\}$, $V_A = \{a, c\}$,
 $\pi_1 = a, \pi_3 = c, \phi_1 = a \leftrightarrow c$ and $\phi_3 = c. G_A$ has one
PNE : $\{ac\}$ (denoted by $s_A = (s_{A,1}, s_{A,3})$).

•
$$G_B = (B, V_B, \pi_B, \Phi_B)$$
, with $B = \{2,3\}$, $V_B = \{b, c\}$,
 $\pi_2 = b, \pi_3 = c, \phi_2 = b \leftrightarrow \neg c, \phi_3 = c.$ G_B has one
PNE : $\{\overline{b}c\}$ (denoted by $s_B = (s_{B,2}, s_{B,3})$).

_ 25 / 27 _

Example

PNE :
$$\{\overline{b}c\}$$
 (denoted by $s_B = (s_{B,2}, s_{B,3})$).

 $A \cap B = \{3\}$ and we have $s_{A,3} = s_{B,3} = c \Rightarrow G_{A \cup B}$ has one PNE: $\{a\overline{b}c\}$.

_ 25 / 27 _

- 2 Boolean games
- 3 Dependencies between players

Other issues

- ECAl'06: simple characterizations of Nash equilibria and dominated strategies for Boolean games, and investigate the computational complexity of the related problems;
- PRICAI'06: extended Boolean games with ordinal preferences represented by prioritized goals and CP-nets with binary variables;
- Almost all properties presented here hold also for Boolean games with non dichotomous preferences;
- Use of the dependency graph for computing efficient coalitions
- Further issues:
 - Defining and studying dynamic Boolean games
 - Defining and studying Boolean games with incomplete information

