
TERMGRAPH 2007

Modeling and Verifying GraphTransformations in Proof AssistantsMartin Stre
ker1IRITUniversit�e Paul Sabatier118 route de NarbonneF-31062 ToulouseAbstra
tThis paper takes �rst steps towards a formalization of graph transformations in a general setting of inter-a
tive theorem provers, whi
h will form the basis for proofs of
orre
tness of graph transformation systems.Whereas graph rewriting is usually performed by mapping a pattern graph into a sour
e graph by means ofa graph morphism and then
arrying out operations on the image node and edge set, this arti
le generalisesthe notion of pattern graph to path expressions, whi
h are formulae in a fragment of �rst-order logi
. Weexamine the
orresponden
e with traditional graph rewriting and show that this interpretation is bene�
ialwhen formally reasoning about model transformations with the aid of proof assistants.Keywords: Graph Transformations, Theorem Proving1 Introdu
tionGraph rewriting examines whi
h stru
tural
hanges are engendered when applyingrewrite rules to a graph. There is no unique approa
h to graph rewriting - one may
ite algebrai
 [Bar03℄ and
ategori
al [CMR+97,EHK+97℄ formalisms.The dis
ipline has a

umulated an impressive amount of results on propertiesof rewrite systems (su
h as
on
uen
e and termination) resulting from spe
i�
 ruleformats [Plu99℄. Re
ently, there is a growing pra
ti
al interest in graph rewritingin the
ontext of model driven engineering, where a software or hardware artifa
t isrepresented graphi
ally and
an be re�ned or refa
tored by the appli
ation of graphrewriting rules. Several graph rewriting tools are available. They emanate fromfoundational work and are usually equipped with some analyses of rule properties[Tae03,KS06,Agr04℄, or take a more pragmati
 view (ATL [BBDV03℄ and Kermeta[MFV+05℄).In spite of a large body of work on graph transformations, the question of veri-�
ation of transformations \in general" is far from settled. The foundational work1 Email: stre
ker�irit.fr This paper is ele
troni
ally published inEle
troni
 Notes in Theoreti
al Computer S
ien
eURL: www.elsevier.nl/lo
ate/ent
s

mailto:strecker@irit.fr

Stre
kerof [Cou90℄ aims at a logi
al
hara
terization of graph transformations, where e�e
-tive veri�
ation of stru
tural properties is not a primary
on
ern. Usually, however,graph transformation systems are per
eived as extensions of term rewriting systems,so mu
h of the e�ort has gone into investigating spe
i�
 properties su
h as
on
u-en
e and termination [Plu99℄, whi
h does not ne
essarily allow to determine whethera graph has a
ertain shape after transformation. These questions may be answeredfor graph repla
ement systems having a restri
ted stru
ture [FM97℄, for proper-ties expressed in spe
ialized logi
s su
h as monadi
 se
ond order logi
 [KS93℄ ortype systems [BCE+05℄. There are automated approa
hes based on model
he
king[Var04℄, whi
h however
an only handle graphs with an a priori bounded number ofelements. [RD06℄ presents te
hniques for dealing with spe
i�
 stru
tural propertiessu
h as multipli
ities.However, in some
ir
umstan
es, it is useful to resort to a more general setting,in order to express stronger properties or to over
ome limitations of a restri
ted ruleformat. This gives us the same kind of advantage a program logi
 may have overa stati
 analysis for determining the
orre
tness of an imperative program { and itsu�ers from the same drawba
ks, notably a sometimes heavy user intervention to
arry out intera
tive proofs.The veri�
ation of stru
tural properties will be the main fo
us of this paper.The work reported here has grown out of an e�ort to formalise model transforma-tions in intera
tive proof assistants. A �rst attempt [SG06℄, aiming at formalisingtraditional graph rewriting as sket
hed above, required
omplex reasoning aboutgraph morphisms. It has turned out that repla
ing the pattern graph by formu-lae over graph stru
ture (whi
h we will
all path formulae in the following) yieldsmu
h more manageable proof obligations. At the same time, path formulae aremore expressive than pattern graphs and have therefore an interest in their own,independently from
on
erns about formal veri�
ation.Path formulae
an be understood as formulae over a fragment of �rst order logi
(possibly in
luding transitive
losure), whi
h are interpreted over graphs. Deter-mining whether a graph satis�es a path formula is de
idable, whi
h is indispensablefor e�e
tively applying a transformation rule to a given graph. On the downside,validity of path formulae may not be de
idable, so that intera
tive proofs be
omene
essary.The paper is stru
tured as follows: In Se
tion 2, we informally introdu
e gen-eralised graph transformations. The formal model is presented in Se
tion 3. InSe
tion 4, we show how we
an re
over the traditional model of graph rewriting.We take a glimpse at how to reason about graph transformations in a proof assistantin Se
tion 5 before
on
luding with an outlook on future work.2 Example TransformationsTo set the stage, we des
ribe two toy transformations: a transformation dupli
atinga graph, and another one implementing a simple garbage
olle
tor.The purpose of the graph dupli
ation transformation is to generate a new graph
onsisting of two exa
t
opies of the original graph. We assume that the originalgraph has nodes of type Node, with edges of type E between them. For the purposes2

Stre
kerof transformation, we need nodes of type Orig, supposed to mark the nodes of theoriginal graph during transformation, and edge types Or (between Orig and Node)and Cp (between a node and its original).Dupli
ation pro
eeds in several steps: First, we mark all nodes of the originalgraph with Orig nodes. We then
reate a dupli
ate node for ea
h original, memoris-ing the relation between the original and the
lone with a Cp edge. We
an similarlyreprodu
e the edges of the original graph in the
opy. All that remains to be donenow is to erase the auxiliary marking.
�!

Fig. 1. Dupli
ating a graphAn example graph and the result of its transformation, just before deletion ofthe Cp edges and the markers, is shown in Figure 1. This is a s
reen shot of graphsprodu
ed by the AGG tool [Tae03℄, based on a
ategori
al approa
h, whi
h allows to
onveniently model this kind of transformation (a more detailed
omparison followsin Se
tion 4).How do we formalise the marking phase, i.e. the �rst step of our transforma-tion? For the time being, we use a semi-formal notation that should be intuitivelyunderstandable. Pre
ise de�nitions of graphs and path formulae will be presentedin Se
tion 3.1 and Se
tion 3.2, respe
tively.In our setting, a transformation rule is
omposed of two elements: an appli
a-tion
ondition and an a
tion part. The appli
ation
ondition, a path formula Fexpressing if and where a rule
an be applied, says that the rule
an operate on anynode n of type Node whi
h is not already marked by some node m of type Orig:F (n) � Node(n) ^ :9m: (Orig(m) ^m Or�! n)Thus, typing is expressed by unary predi
ates (Node and Orig), and a binaryrelation m Or�! n represents an Or edge between m and n.The a
tion part (not shown here) expresses what we do if F is satis�ed for anode n: We generate a new node, say m0, having type Orig, and we
reate anOr-edge (m0; n). We will
ome ba
k to this example in Se
tion 3.3.Of
ourse, a single transformation step of this kind will not suÆ
e to mark allnodes of a graph. Rather, we have to iterate the rule until no further appli
ation ispossible, i.e. until F is false for all nodes of the graph. We will brie
y look at thisquestion in Se
tion 5.The garbage
olle
tor is an example of a transformation that is not dire
tlyexpressible in traditional graph rewriting approa
hes. We assume to have a numberof Root obje
ts and a number of Node obje
ts. Root obje
ts are linked to Nodesthrough rn edges, Nodes are linked among themselves through nn edges. Any Node3

Stre
kernot a

essible from a Root is
onsidered as garbage.The predi
ate G(n) saying that node n is garbage
an be written as the pathformula G(n) � :9r n0: r rn�! n0 ^ n0 nn�!� nwhere rn�! is an rn edge (and similarly for nn), and the \star" is re
exive transitive
losure.G(n) is the appli
ation
ondition of a rule
olle
t, whose a
tion part just saysthat n should be deleted (in doing so, all adja
ent edges disappear as well).In the
ase ofG(n), we have
hosen not to make the typing information expli
it inthe rule itself. In fa
t, it
an be dedu
ed from general typing predi
ates, expressibleas path formulae, that
ould form the \ba
kground theory" of the appli
ation. Forexample, the typing of the rn edge is stated as8r n: (r rn�! n) �! Root(r) ^Node(n)3 Formal ModelIn this se
tion, we formally present the basi
 notions of our graph rewriting ap-proa
h, notably graphs, graph transformations and morphisms and some well-formedness
onditions we have to impose to ensure
onsisten
y of the model. Sin
eour development has been
arried out in the Isabelle proof assistant [NPW02℄, wewill use Isabelle's syntax, whi
h we will explain wherever needed.3.1 GraphsOur purpose is not to formalize any parti
ular approa
h to graph rewriting, su
h asthe one based on
ategory theory. Our model is set-theoreti
. Roughly, graphs are
omposed of a �nite set of nodes, a �nite set of edges and a typing of the nodes.In order to
reate new nodes during graph rewriting, we have to have an in�nitesupply of fresh nodes. We have therefore
hosen to take the natural numbers asthe base type of our nodes. The edges are sets of pairs of nodes, indexed by anedge type 0et, su
h as Cp and E in the introdu
tory example. This pre
ludes havingmore than one edge of a given edge type between two nodes. However, under thisde�nition, one
an more easily use standard relational operators like
ompositionand transitive
losure, whi
h
omes handy when de�ning the semanti
s of pathexpressions further below. A node typing assigns a node type 0nt (su
h as Root andNode) to ea
h node of the graph. Altogether, this gives the following de�nition ofthe type of graphs:re
ord (0nt; 0et) graph =nodes :: nat setedges :: 0et) (nat � nat) setnodetp :: nat) 0nt option(An option type T option has a distinguished value None, representing unde-�nedness, and de�ned values Some t for t and element of T.)In a minimalisti
 model, node typing is inessential, but it is useful for des
ribingsome stru
tural aspe
ts of graphs. However, we have ex
luded more
omplex nodeattributes that would be required for formalising the semanti
s of an artifa
t. They4

Stre
ker
ould be easily added by providing a mapping in the spirit of nodetp from the nodeset to an attribute domain.Finiteness of the node set is expressed by a stru
tural well-formedness predi
ate,just as the
ontainment of the endpoints of edges in the node set and well-de�nednessof node typing:stru
t-wf-gr :: (0nt; 0et) graph) boolstru
t-wf-gr gr ==(�nite (nodes gr)) ^(8 et: (Field (edges gr et)) � (nodes gr)) ^dom (nodetp gr) = (nodes gr)Here, dom is the domain of a mapping, Field the union of the domain andrange of a relation. A

ess to a
omponent of a re
ord, su
h as nodes, is written infun
tional notation.3.2 Path expressionsThe appli
ation of graph transformations to a graph is subje
t to an appli
ability
ondition. Traditionally, this appli
ability
ondition is given in the form of a patterngraph whi
h is mapped, via a graph morphism, into a sour
e graph to whi
h thetransformation will be applied.In a �rst attempt [SG06℄, we have faithfully
oded this approa
h, but it hasturned out that the formulae resulting from this graph mapping require
onsiderablemassaging for being usable any further. We try to
ir
umvent this problem byrepla
ing the pattern graph by a predi
ate on (sour
e) graphs, whi
h at the sametime opens up the possibility of expressing more general properties (we
ome ba
kto this in Se
tion 4).However, we have to take
are not to use too
omplex predi
ates: The least we
an expe
t from a graph rewriting engine is to be able to de
ide whether a predi
ateis satis�ed for a parti
ular graph and thus, whether a rule is appli
able to this graph.Di�erently said, the model
he
king problem for the
lass of predi
ates should bede
idable, even though entailment need not be, see Se
tion 5.In the following, we present a logi
 of path formulae, whi
h we have founduseful for expressing interesting properties (see the dis
ussion in Se
tion 4). How-ever, there is no intrinsi
 reason to adopt pre
isely the language
onstru
tors wehave sele
ted, and the de
idability of the logi
, as well as the
omplexity of model
he
king, is greatly in
uen
ed by this
hoi
e. Similar notions
an be found in[YRS+06,KS93,Ren03℄.To have a �ne
ontrol over the logi
 of predi
ates on graphs, we deeply embedit into Isabelle's higher order logi
. We start by de�ning node set expressions(representing sets of nodes) and path expressions (representing endpoints of paths):datatype 0nt nodeset= All-set | set of all nodes of graphj Type-set 0nt | set of all nodes of given typej Singleton-set nat | singleton
ontaining
onstantdatatype (0nt; 0et) path= Empty-pth | empty pathj Edge-pth 0et | edge with given edge typej InvEdge-pth 0et | inverse edgej Seq-pth (0nt; 0et) path (0nt; 0et) path | sequential
ompositionj Alt-pth (0nt; 0et) path (0nt; 0et) path | alternativej Clos-pth (0nt; 0et) path | transitive
losure5

Stre
kerBased on this, we de�ne path formulae, whi
h are
onstru
ted from two base
ases (set and path formulae, for node set and path expressions, respe
tively), andthe usual Boolean
onne
tives and quanti�ers:datatype (0nt; 0et) path-form= S-form 0nt nodeset nat | set formulaj P-form (0nt; 0et) path nat nat | path formulaj Neg-form (0nt; 0et) path-form | negationj Conj-form (0nt; 0et) path-form (0nt; 0et) path-form |
onjun
tionj All-form (0nt; 0et) path-form | universal quanti�
ationWith the above, other
onne
tives and the existential quanti�er Ex-form
an bede�ned as abbreviation. Universal quanti�
ation does not use a named, but rathera positional representation of variables (de Bruijn indi
es, [dB72℄). Thus, variablesare not identi�ers, but just numbers.In our informal notation of Se
tion 2, we have written S-form (Type-set T) nsimply as T (n) and P-form (Edge-pth e) n n 0 as n e�! n0. For instan
e, theappli
ation
ondition :9r n0: r rn�! n0 ^ n0 nn�!� n of the garbage
olle
torexample of Se
tion 2 be
omes:Neg-form (Ex-form (Ex-form(Conj-form(P-form (Edge-pth rn) 1 0)(P-form (Clos-pth (Edge-pth nn)) 0 2))))The semanti
s of expressions respe
tively formulae is de�ned by means of fun
-tions nodeset-interp, path-interp respe
tively path-form-interp that interpret theexpressions respe
tively formulae under a variable interpretation I : nat) nat ina graph gr.
onstsnodeset-interp :: [nat) nat; (0nt; 0et) graph; 0nt nodeset℄) nat setprimre
nodeset-interp I gr All-set = nodes grnodeset-interp I gr (Type-set t) = fn: nodetp gr n = Some tgnodeset-interp I gr (Singleton-set n) = fI ng
onstspath-interp :: [nat) nat; (0nt; 0et) graph; (0nt; 0et) path℄) (nat � nat) setprimre
path-interp I gr Empty-pth = diag UNIVpath-interp I gr (Edge-pth e) = edges gr epath-interp I gr (InvEdge-pth e) = (edges gr e)^�1path-interp I gr (Seq-pth p p 0) = (path-interp I gr p) O (path-interp I gr p 0)path-interp I gr (Alt-pth p p 0) = (path-interp I gr p) [(path-interp I gr p 0)path-interp I gr (Clos-pth p) = (path-interp I gr p)^�
onstspath-form-interp :: [nat) nat; (0nt; 0et) graph; (0nt; 0et) path-form℄) boolprimre
path-form-interp I gr (P-form p n n 0) = ((I n; I n 0) 2 path-interp I gr p)path-form-interp I gr (S-form s n) = (I n 2 nodeset-interp I gr s)path-form-interp I gr (Neg-form pf) = (: (path-form-interp I gr pf))path-form-interp I gr (Conj-form pf pf 0) =((path-form-interp I gr pf) ^ (path-form-interp I gr pf 0))path-form-interp I gr (All-form pf) =(8 x : x 2 nodes gr �!path-form-interp ((I o (� x : x � 1))(0 :=x)) gr pf)In the above, UNIV is the set of all elements (of the given type), diag thediagonal of a set (the relation (e; e)), the
onverse of a relation R is written R^�1,and O is relation
omposition and Æ fun
tion
omposition. The interpretation ofuniversal quanti�
ation is
omparable to the \lift" operation for de Bruijn indi
es:6

Stre
kerThe
urrent variable x is assigned the index 0, the other indi
es are shifted by 1.Model
he
king of node set and path expressions, i.e.
he
king that a graphgr satis�es a node set or path expression, reposes on well-known graph algorithms.Universal quanti�
ation is relativised to the node set of the graph, whi
h is �niteby well-formedness of graphs. Therefore,
he
king a universal formula only has toexamine a �nite number of elements.3.3 Graph TransformationsRoughly speaking, a graph transformation rule should spe
ify under whi
h
onditionthe transformation is appli
able, and what to do when applying the transformationat a position in a sour
e graph to obtain a target graph.The appli
ability
ondition is just given by a path formula, as outlined in theprevious se
tion. Note that this path formula may
ontain free variables, for examplen in G(n) of Se
tion 2, whi
h
an be understood as referen
es to nodes in the sour
egraph. Of
ourse, in its
oding as path formula, the free variables are numbers.It is these numbers that we refer to when spe
ifying the a
tion: we say whi
hnodes are to be deleted respe
tively freshly generated (ndel respe
tively ngen) andwhi
h edges are deleted respe
tively generated (edel respe
tively egen). Further-more, we have to know how to type the newly generated nodes. Altogether, graphtransformations have the form:re
ord (0nt; 0et) graphtrans =| appli
ability
onditionapp
ond :: (0nt; 0et) path-form| mapping of nodesndel :: nat set | deleted nodesngen :: nat set | generated nodes| mapping of edgesedel :: 0et) (nat � nat) set | deleted edges, indexed by typeegen :: 0et) (nat � nat) set | generated edges, indexed by type| typing of generated nodesngentp :: nat) 0nt optionFor example, the marking rule of Se
tion 2
an now be expressed by the trans-formation:mark :: (nodetp; edgetp) graphtransmark ==(j app
ond = mark-F 0 ;ndel = fg;ngen = f1g;edel = � et: fg;egen = (� et: fg)(Or :=f(1 ;0)g);ngentp = [1 7! Orig℄j) Here, mark-F is the
oding of the appli
ation
ondition. The appli
ation positionof the rule is node 0. No nodes and edges are deleted, a node numbered 1 is generatedand an Or edge is added between node 1 and 0. (The syntax for update of fun
tionf at x with value y is f (x :=y).)For graph transformations to make sense, the referen
es to nodes to be deletedhave to be among the referen
es to nodes in the appli
ability
ondition (thus, to thefree variables of the appli
ability
ondition), whereas referen
es to generated nodesshould not o

ur in the appli
ability
ondition. We only generate a �nite numberof nodes in ea
h transformation step, and to all of these nodes we assign a type.Similar
onstraints hold for deleted and generated edges. To summarise, stru
tural7

Stre
kerwell-formedness of a graph transformation is expressed by the following predi
ate:stru
t-wf-gt :: (0nt; 0et) graphtrans) boolstru
t-wf-gt gt ==(ndel gt) � (fv-path-form (app
ond gt)) ^�nite (ngen gt) ^ (fv-path-form (app
ond gt)) \ (ngen gt) = fg ^dom (ngentp gt) = (ngen gt) ^(8 et: Field (edel gt et) � (fv-path-form (app
ond gt))) ^(8 et: Field (egen gt et) � ((fv-path-form (app
ond gt)) � (ndel gt)) [(ngen gt))3.4 Applying Graph TransformationsWe now
ome to the appli
ation of a graph transformation to a sour
e graph at aparti
ular position. In graph rewriting, mat
hing a pattern graph to a sour
e graph(and thus determining the appli
ation position) is traditionally a
hieved with theaid of a graph morphism. We adopt the same terminology and de�netypes graphmorph = (nat) nat option)with the understanding that the node referen
es o

urring in a graph transformationrule are mapped to the nodes in a sour
e graph. For the \garbage
olle
tion"example, su
h a situation is depi
ted in Figure 2.
R

N

N R

N

N

N
N

G(n)

N
nn

nn

nn

rn

rn

rn

nn
rnFig. 2. Appli
ation of a graph morphism in a graphWe now have to spell out in detail how the target graph is
omposed, providedwe apply a graph transformation gt to a graph gr using a morphism gm. Quitesimply, the nodes to be deleted are just the ones in the image of the morphismunder the ndel-set.It is more diÆ
ult to express whi
h nodes are generated. The
hoi
e
ould be,non-deterministi
ally, any node set having the same
ardinality as the ngen-set andhaving no nodes in
ommon with the nodes of the sour
e graph. We have adopteda deterministi
 solution: The nodes freshly allo
ated are numbered m+ 1 throughm+k, where m is the maximal number present in the node set of graph gr and k isthe
ardinality of the ngen-set. All this is hidden in the de�nition of gt-gen-nodes.However, we only exploit the property that the fresh nodes do not o

ur in theoriginal graph, and that there is a bije
tion b between the ngen-nodes and the freshnodes.The latter property is needed for determining the type of the generated nodes.How do we
ompute it, for a fresh node n? We map n ba
k into the graph transfor-mation gt, where we
an look up its type. Thus, roughly, the type of n is (ngentpgt)(b�1(n)).The morphism on nodes indu
es a morphism on edges. From the edel- and egen-sets, we
an thus determine the edges in the sour
e graph whi
h are
andidates for8

Stre
kerdeletion and for insertion. We want to avoid dangling edges that result when nodesare requested to be deleted, but not their adja
ent edges. Therefore, the edges thatsurvive are those whose nodes are among the nodes of the target graph. A similarrestri
tion applies to the typing of the target nodes.With these explanations, the exa
t de�nition should be understandable:apply-graphtrans ::[(0nt; 0et) graphtrans; graphmorph; (0nt; 0et) graph℄) (0nt; 0et) graphapply-graphtrans gt gm gr ==let del-nodes = ran (gm j` (ndel gt)) inlet gen-nodes = gt-gen-nodes gr gt inlet morph-gen = separ-map (ngen gt) (nodes gr) inlet morph-
 = gm ++ morph-gen inlet nds = ((nodes gr) � del-nodes) [gen-nodes inlet del-edges = (� et: (indu
ed-emorph gm) ` (edel gt et)) inlet gen-edges = (� et: (indu
ed-emorph morph-
) ` (egen gt et)) inlet tp-ngen = ((ngentp gt) Æm (inv-m morph-gen)) in(j nodes = nds;edges = � et: (restri
t-rel ((edges gr et � del-edges et) [gen-edges et) nds);nodetp = (restri
t-map ((nodetp gr) ++ tp-ngen) nds)j)In the above, f ` S is the image of set S under fun
tion f, and m j` S restri
tsmap m to S. In m1 ++ m2, map m2 overrides m1, and Æm is the
omposition ofmaps.3.5 Appli
ability of Graph TransformationsWhat we have
alled \graph morphisms" in Se
tion 3.4 is essential for determiningwhether a transformation is appli
able, and if yes, where to apply it. It shouldbe emphasised again that \graph morphism" is a slight misnomer, be
ause we donot map graphs into graphs, as in traditional graph rewriting. Rather, we want toverify that the appli
ability
ondition of a transformation rule is true.The following predi
ate states that a graph morphism gm satis�es a path formulapfs in a graph grt :appli
able-gm :: [graphmorph; (0nt; 0et) path-form; (0nt; 0et) graph℄) boolappli
able-gm gm pfs grt ==(dom gm = fv-path-form pfs) ^ (ran gm � nodes grt) ^path-form-interp (the o gm) grt pfsThe domain of the graph morphism has to be the set of free variables of thepath formula, and its range has to be a subset of the nodes of the graph. Mostimportantly, the path formula has to be satis�ed in the graph when interpreting itsfree variables by the graph morphism in the given graph. (the is the left inverse ofSome, thus the (Some x) = x).In most of our reasoning, we want to abstra
t away from parti
ular graph mor-phisms and just say that a transformation is appli
able in a graph:appli
able-transfo :: [(0nt; 0et) graphtrans; (0nt; 0et) graph℄) boolappli
able-transfo gt gr == 9 gm: appli
able-gm gm (app
ond gt) grNow, applying a graph transformation to a graph amounts to sele
ting an arbi-trary graph morphism and applying it to the graph:apply-transfo :: [(0nt; 0et) graphtrans; (0nt; 0et) graph℄) (0nt; 0et) graphapply-transfo gt gr ==apply-graphtrans gt (SOME gm: (appli
able-gm gm (app
ond gt) gr)) grHere, SOME is Hilbert's
hoi
e operator whi
h
ould be repla
ed by a
onstru
-tive
hoi
e based, for example, on a node ordering.9

Stre
ker3.6 Properties of Graph TransformationsWe
an now state a major result: appli
ation of well-formed graph transformationsto well-formed graphs yields again well-formed graphs:stru
t-wf-gr gr ^ stru
t-wf-gt gt �! stru
t-wf-gr (apply-graphtrans gt gm gr)This
an be
onstrued as a generi
 invariant of graph transformations that neednot be reproved for ea
h transformation rule when reasoning about graph transfor-mation programs (see Se
tion 5). Note that the stru
tural well-formedness of theresulting graph depends on the well-formedness of the graph transformation gt, butis valid for arbitrary graph morphisms gm.In [SG06℄, we have shown that for traditional graph rewriting, we
an similarlyensure preservation of well-typing. In our
urrent setting, we
an express moregeneral typing properties than those examined in [SG06℄, for example
ardinal-ity
onstraints, so that \typing" in full generality be
omes unde
idable. We are
urrently exploring fragments of our path logi
 that permit suÆ
iently interestingtyping properties to be expressed and preservation of typing to be proved.4 Corresponden
e with Graph RewritingIn the following, we will argue that transformations expressible in traditional graphrewriting approa
hes
an be
oded in our system. It is therefore possible to \
om-pile" traditional graph rewriting rules to expressions involving our path formulae.It is then possible to use the te
hniques des
ribed in Se
tion 5 as a veri�
ationba
kend.In the rules of the AGG system [Tae03℄, for example, there are positive andnegative appli
ability
onditions, and ea
h su
h
ondition is a graph that has too

ur, respe
tively must not o

ur, in the graph where the rule is applied. As seenin Se
tion 2, we
an
ode positively o

urring graphs by a
onjun
tion of node setand path
onstraints, more pre
isely� a node set
onstraint T (n) for every node n of type T in the graph� a path
onstraint n e�! n0 for ea
h edge e in the graph.As mentioned before, we do not allow multiple edges of the same edge type betweena pair of nodes. We do not see that as a major drawba
k { if ne
essary, edges
anbe \rei�ed" by introdu
ing a node representing the edge.For negative appli
ability
onditions, we pro
eed in an analogous manner, withthe di�eren
e that the nodes of the graph are asserted not to exist. Thus, foran edge e o

urring in a negative appli
ability graph, we have a path formula:9n n0:n e�! n0.TheGReAT language [AKK+05℄ in
ludes, among others,
ardinality
onstraints.It is thus possible to spe
ify that a node n must (or must not) have k outgoinge-edges. Cardinality
onstraints are not present as primitive
onstru
ts in our lan-guage, but they
an be
oded by a s
hema likeCk(n) � 9x1 : : : xk: n e�! x1 ^ : : : n e�! xk ^ distin
t(x1; : : : xk)where distin
t(x1; : : : xk) is the
onjun
tion :(xi = xj), for i; j 2 f1; : : : ; kg; i 6= j.10

Stre
kerThe fa
t that the graph morphisms between a pattern and a sour
e graph isinje
tive is usually an external notion in traditional graph rewriting. In a similarspirit as the above formula, we
an internalise this notion and express that thenodes a rule is applied to are distin
t.5 Reasoning about Graph TransformationsAs mentioned in Se
tion 2, it is not suÆ
ient to apply a transformation rule on
e.Rather, one has to apply a rule repeatedly, or several rules have to be appliedin a spe
i�
 order. Most graph rewriting tools permit to iterate rule appli
ation,often by dividing the tool set into \layers". The need for exerting �ner
ontrol ongraph transformations has been re
ognised, among others, by the developers of theGReAT language, who develop a graphi
al language in
luding
onditional and loop
onstru
ts [AKK+05℄.We are
urrently developing a simple language for writing graph transformationprograms and reasoning about them. The language is not suÆ
iently polishedto present details, so we just give a sket
h and des
ribe how we might treat the\marking" example of Se
tion 2.The language is
omposed of statements stmt, among whi
h we only mentionDo and Loop. An operational semanti
s des
ribes how a state is modi�ed by these
onstru
ts. We distinguish between su

ess and failure states. In our
ase, a \state"is just a graph with a \su

ess" or \failure" tag. The meaning of the mentioned
onstru
ts is then:� Do b f
he
ks whether
ondition b is satis�ed in the
urrent state s. If this isthe
ase, fun
tion f is applied to s to produ
e a su

ess state s0. Otherwise, s isreturned as a failure state.� Loop
 applies statement
 inde�nitely often, until winding up in a failure state,whi
h is the result of the loop.Let us introdu
e the following abbreviation:App :: (0nt; 0et) graphtrans) (0nt; 0et) graph stmtApp gt == Do (� s: appli
able-transfo gt (out
ome-val s))(� s: apply-transfo gt (out
ome-val s))Here, out
ome-val dis
ards the su

ess / failure tag of a state. Consequently,App applies a graph transformation, if possible, and returns the
urrent state asfailure state otherwise.The marking phase of the introdu
tory example
an now be written as theprogram Loop (App mark), where we use the de�nition mark of Se
tion 3.3. Theentire graph dupli
ation transformation
onsists of a sequen
e of su
h loops, ea
hwith a di�erent rule.The language
omes equipped with a Hoare-style program logi
. We write W `fPg
 fQg to express that statement
 establishes the post
ondition Q providedthe pre
ondition P and some invariant well-formedness
onditions W hold. Wis typi
ally the predi
ate stru
t-wf-gr that we have shown to be invariant underappli
ation of graph transformations in Se
tion 3.6. Furthermore, the statement
usually
ontains annotations
orresponding to loop invariants.11

Stre
kerSuppose we want to show, for our example program, that all nodes of type Nodeare
orre
tly marked, i.e. have exa
tly one in
oming Or edge, provided that in theoutset, these nodes had zero or one in
oming Or edges. Let us �rst de�ne nset asthe set of nodes in a graph having a given node type:nset :: [(0nt; 0et) graph; 0nt℄) nat setnset gr nt == fn 2 nodes gr : (nodetp gr n) = Some ntgWe
an now state the pre
ondition:8 x2nset gr Node:
ard ((edges gr Or)�1 `` fxg) � 1(here, R `` S is the image of a set S under a relation R, and
ard the
ardinalityof a set). The post
ondition is similar, with the inequality repla
ed by an equality.The veri�
ation
ondition generator leaves us essentially with two goals: showingthat the loop invariant is preserved if the rule mark is appli
able, and showing thatthe post
ondition is satis�ed if the rule is not appli
able. We just look at the latter
ase.So assume that : appli
able-transfo mark gr. A

ording to the de�nition ofappli
able-transfo, this is equivalent to 8 gm: : appli
able-gm gm (app
ond mark)gr, whi
h
ontains an annoying se
ond-order quanti�er over a graph morphism gm.However, when looking at the de�nition of appli
able-gm, we realise that thedomain of gm is �nite. We
an therefore eliminate gm and instead introdu
e a�rst-order quanti�er b, so that we are eventually left with the hypothesis8n: n 2 nodes gr �! nodetp gr n = Some Node�! (9 x : nodetp gr x = Some Orig ^ (x ; n) 2 edges gr Or)whi
h naturally des
ribes the non-appli
ability of the rule and permits to provethe required
ardinality property.
6 Con
lusionsIn this paper, we have presented �rst steps towards the veri�
ation, in an intera
tiveproof assistant, of stru
tural properties established by graph rewriting systems. Atthe same time, the path formulae we have introdu
ed give an alternative view onappli
ability
onditions for graph rewriting rules, that may pro�tably be used ingraph rewriting systems.Our path formulae are very expressive, whi
h has the downside of leading, ingeneral, to unde
idable veri�
ation problems. As we want to redu
e the amount ofhuman proof e�ort as mu
h as possible, we intend to address this topi
 in futurework, by developing spe
ialized analyses for fragments of our logi
. In fa
t, our pathformulae resemble path expressions used in shape analysis for pointer programs[YRS+06,KS93℄, other subsets have been identi�ed in the
ontext of des
riptionlogi
s [GM05℄. A detailed
omparison of these approa
hes still has to be done.As noted before, our
urrent formalization only deals with stru
tural properties.Adding node attributes to the framework presented here is possible, but
umber-some. We are
urrently working on translating graph transformations to veri�
ationenvironments for pointer programs [S
h05,Fil03℄12

Stre
kerA
knowledgementThis work has been strongly in
uen
ed by suggestions from Jean-Paul Bodeveixand Mamoun Filali and dis
ussions with Louis F�eraud, Ralph Matthes, Mar
 Pan-tel, Maxime Rebout and Sergei Soloviev. Mathieu Giorgino has elaborated severalexample transformations.Referen
es[Agr04℄ Aditya Agrawal. A Formal Graph-Transformation Based Language for Model-to-ModelTransformations. PhD thesis, Vanderbilt University, August 2004.[AKK+05℄ A. Agrawal, G. Karsai, Z. Kalmar, S. Neema, F. Shi, and A. Vizhanyo. The design of a languagefor model transformations. Journal of Software and System Modeling, 2005.[Bar03℄ Erik Barendsen. Term Rewriting Systems,
hapter Term Graph Rewriting. CambridgeUniversity Press, 2003.[BBDV03℄ Jean B�ezivin, Erwan Breton, Gr�egoire Dup�e, and Patri
k Valduriez. The ATL Transformation-based Model Management Framwork. Te
hni
al report, IRIN, September 2003.[BCE+05℄ Paolo Baldan, Andrea Corradini, Javier Esparza, Tobias Heindel, Barbara K�onig, and VitaliKozioura. Verifying red-bla
k trees. In Pro
. of COSMICAH '05, 2005. Pro
eedings availableas report RR-05-04 (Queen Mary, University of London).[CMR+97℄ Andrea Corradini, Ugo Montanari, Fran
es
a Rossi, Hartmut Ehrig, Reiko He
kel, and Mi
haelL�owe. Algebrai
 approa
hes to graph transformation - part I: Basi

on
epts and double pushoutapproa
h. In Grzegorz Rozenberg, editor, Handbook of Graph Grammars, pages 163{246. WorldS
ienti�
, 1997.[Cou90℄ Bruno Cour
elle. Graph rewriting: An algebrai
 and logi
 approa
h. In Handbook of Theoreti
alComputer S
ien
e, Volume B: Formal Models and Semati
s (B), pages 193{242. Elsevier, 1990.[dB72℄ N. G. de Bruijn. Lambda
al
ulus notation with nameless dummies, a tool for automati
 formulamanipulation. Indag. Math., 34:381{392, 1972.[EHK+97℄ Hartmut Ehrig, Reiko He
kel, Martin Kor�, Mi
hael L�owe, Leila Ribeiro, Annika Wagner, andAndrea Corradini. Algebrai
 approa
hes to graph transformation - part II: Single pushoutapproa
h and
omparison with double pushout approa
h. In Grzegorz Rozenberg, editor,Handbook of Graph Grammars, pages 247{312. World S
ienti�
, 1997.[Fil03℄ J.-C. Filliâtre. Why: a multi-language multi-prover veri�
ation tool. Resear
h Report 1366,LRI, Universit�e Paris Sud, Mar
h 2003.[FM97℄ P. Fradet and D. Le M�etayer. Shape types. In Pro
. of Prin
iples of Programming Languages,Paris, Fran
e, Jan. 1997. ACM Press.[GM05℄ Lilia Georgieva and Patri
k Maier. Des
ription logi
s for shape analysis. In Bernhard K.Ai
hernig and Bernhard Be
kert, editors, SEFM 2005, pages 321{330, Koblenz, Germany,September 2005. IEEE Computer So
iety, IEEE.[KS93℄ Nils Klarlund and Mi
hael I. S
hwartzba
h. Graph types. In POPL, pages 196{205, 1993.[KS06℄ A. K�onigs and A. S
h�urr. Tool Integration with Triple Graph Grammars - A Survey. InR. He
kel, editor, Pro
eedings of the SegraVis S
hool on Foundations of Visual ModellingTe
hniques, volume 148 of Ele
troni
 Notes in Theoreti
al Computer S
ien
e, pages 113{150,Amsterdam, 2006. Elsevier S
ien
e Publ.[MFV+05℄ Pierre-Alain Muller, Fran
k Fleurey, Didier Vojtisek, Zo�e Drey, Damien Pollet, Fr�ed�eri
Fondement, Philippe Studer, and Jean-Mar
 J�ez�equel. On exe
utable meta-languages appliedto model transformations. In Pro
. Model Transformations In Pra
ti
e Workshop, 2005.[NPW02℄ Tobias Nipkow, Lawren
e Paulson, and Markus Wenzel. Isabelle/HOL. A Proof Assistant forHigher-Order Logi
. LNCS 2283. Springer Verlag, 2002.[Plu99℄ Detlef Plump. Handbook of Graph Grammars and Computing by Graph Transformation, volume2: Appli
ations, Languages and Tools,
hapter Term Graph Rewriting. World S
ienti�
, 1999.[RD06℄ Arend Rensink and Dino Distefano. Abstra
t graph transformation. Ele
tr. Notes Theor.Comput. S
i, 157(1):39{59, 2006.[Ren03℄ Arend Rensink. Towards model
he
king graph grammars. In Pro
. Workshop on AutomatedVeri�
ation of Criti
al Systems (AVoCS), 2003.13

Stre
ker[S
h05℄ Norbert S
hirmer. A veri�
ation environment for sequential imperative programs inIsabelle/HOL. In F. Baader and A. Voronkov, editors, LPAR 2005, volume 3452 of Le
tureNotes in Arti�
ial Intelligen
e, pages 398{414. Springer Verlag, 2005.[SG06℄ Martin Stre
ker and Mathieu Giorgino. Towards a formalisation of graph transformations inproof assistants. In Pro
. AVOCS'06, September 2006.[Tae03℄ Gabriele Taentzer. AGG: A graph transformation environment for system modeling andvalidation. In Pro
. Tool Exihibition at Formal Methods 2003, September 2003.[Var04℄ D�aniel Varr�o. Automated formal veri�
ation of visual modeling languages by model
he
king.Software and System Modeling, 3(2):85{113, 2004.[YRS+06℄ Greta Yorsh, Alexander Moshe Rabinovi
h, Mooly Sagiv, Antoine Meyer, and Ahmed Bouajjani.A logi
 of rea
hable patterns in linked data-stru
tures. In Lu
a A
eto and Anna Ing�olfsd�ottir,editors, FoSSaCS, volume 3921 of Le
ture Notes in Computer S
ien
e, pages 94{110. Springer,2006.

14

	Introduction
	Example Transformations
	Formal Model
	Graphs
	Path expressions
	Graph Transformations
	Applying Graph Transformations
	Applicability of Graph Transformations
	Properties of Graph Transformations

	Correspondence with Graph Rewriting
	Reasoning about Graph Transformations
	Conclusions
	Acknowledgement
	References

