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Abstract

This paper is a case study in mechanical verification of graph manipu-
lating algorithms: We prove the correctness of a family of algorithms con-
structing Binary Decision Diagrams in a monadic style. It distinguishes
itself from previous verification efforts in two respects: Firstly, building
the BDD structure is guided by a primitive recursive descent which makes
the proof of termination trivial. Secondly, the development is modular:
it is parametrized by primitives manipulating high-level hash tables that
can be realized by several implementations.

1 Introduction

Binary Decision Diagrams (BDDs) [3] are a compact way of representing Boolean
formulas. They are widely used in applications such as model checking and dig-
ital circuit development. The main idea of BDDs is to represent a Boolean
formula as a decision tree, to join common subtrees and eliminate certain re-
dundancies, so as to arrive at a canonical representation of formulas. This
makes it particularly easy to check for validity of a formula or equivalence of
two formulas.

This paper describes, primarily, an extended case study, intended to illus-
trate a particular method of developing and verifying pointer algorithms. There
have been previous efforts of verifying BDD algorithms, see Section 2 for a dis-
cussion. Surprisingly, they all work on a relatively low-level representation that
does not exploit the tree structure inherent in BDDs. This enormously com-
plicates some proofs, such as termination. We remain entirely on the level of
trees, but in order to take sharing of subtrees into account, we adorn the nodes
with references incorporating the “object identity” of the trees. Our main data
structures are described in Section 3. In the course of building up a BDD,
new references have to be generated, and subtrees have to be retrieved from or
stored in a sort of hash table. This management of a program state is carried
out “behind the scenes”, in a monadic framework, which is described further in



Section 4. Nevertheless, most of our function definitions are by structural re-
cursion, which makes the termination argument trivial and furthermore permits
simple proof methods such as structural induction to be applied.

Verified BDD algorithms are of interest in their own right, for example in
the context of verified decision procedures for certain modal [4] or temporal
logics [12, 13]. We do not pretend to present the ultimate implementation of
BDDs in this paper, but we have attempted to keep the development modular,
permitting further optimizations to be integrated with little effort. We thus give
an abstract specification of the functions manipulating hash tables (Section 5)
and provide two distinct implementations (Section 6).

The formalization described in this paper has been carried out in the Isabelle
proof assistant [10]. It uses some specificities of Isabelle, most of which are
not essential (the syntax definition facilities for writing monadic programs in a
readable style) or can be replaced by related concepts available in other proof
assistants (the structuring mechanism of locales). The development is available
on the authors’ home pages [5].

2 Related Work

Most of the formalizations we are aware of follow standard expositions of BDD
algorithms [3, 1] and thus do not differ substantially from an algorithmic view-
point. The most essential differences concern the representation of the state
space.

The present paper owes much to [7], which introduces the approach of verify-
ing imperative programs in a proof assistant by representing them in a monadic
style. The state space of the program is represented as a set of interconnected
nodes that have to satisfy some well-formedness constraints. A major prob-
lem is the termination proof of the function app (see Section 5) that has to be
carried out in parallel with the correctness argument: The function makes two
consecutive recursive calls that, by transforming the global state space, could
possibly invalidate the well-formedness conditions on which termination relies.

The formalization [14], carried out in the Coq proof assistant, is based on
a similar BDD representation, but the algorithm directly accesses the program
state, represented as a (nested) map. There is no attempt to hide manipulation
of the state behind abstract state transformers. The above-cited termination
problem is circumvented by recursing not over the structure of the BDD, but
over a natural number representing an upper bound of the size of the BDD.
Thus, the algorithm employs an artifact whose sole purpose it is to facilitate the
representation in a proof assistant. This formalization is the most comprehensive
one that we are aware of. It contains several essential optimizations (handling
negation; garbage collection) that have not yet been addressed in our work.

A formalization in PVS [15] uses a tricky encoding of hash tables by injective
pairing functions and can thus avoid having to handle a program state altogether
— the BDD construction is entirely functional. It is not clear how this approach
scales to hash tables containing a great number of elements.



The above formalizations adopt a functional representation (possibly hidden
behind a monadic framework) of the BDD algorithms. A radical departure is the
direct coding in an imperative language [11] in the style of C and the verification
by means of a Hoare calculus. The algorithm uses an optimized representation
of hash tables (“level lists”), but the full proof of correctness is complex and
extends over several hundred pages.

Recognizing the huge effort to be spent on verifying imperative programs
manipulating low-level data structures, we aim at providing reasoning support
for an intermediate level that benefits from some performance gains of impera-
tive wrt. functional programming (destructive updates, pointer manipulation)
without abandoning high-level data structures. A companion paper [6] explores
the applicability of our approach to the Schorr-Waite graph marking algorithm.
Clearly, sophisticated optimizations based on bit-level manipulations are not
immediately within the reach of our techniques, but could be achieved by suc-
cessive data structure refinements.

3 Binary Decision Diagrams

BDDs are used to represent and manipulate efficiently Boolean expressions.
We will use them as starting point of our algorithms, by defining a function
constructing BDDs from them. The definition of expressions is standard:

datatype bbinop = OR | AND | IMP | IFF

datatype v expr =
Var 'v
| Const bool
| BExpr bbinop ("v expr) (v expr)

and their interpretation is done by interp-ezpr (where, obviously, interp-bbinop
maps constructors of bbinop to Boolean functions):

primrec interp-ezpr :: ‘v expr = (v = bool) = bool where
interp-expr (Var v) tab = tab v

| interp-expr (Const b) tab = b

| interp-expr (BExpr bop el e2) tab =
(interp-bbinop bop) (interp-expr el tab) (interp-expr e2 tab)

In this function and other functions of interpretation, variable values are
represented by a function from variables indices to Booleans. We now define
BDDs as binary trees in which references are added to nodes and leaves (rtree):

datatype (‘a, 'b) tree =
Leaf 'a
| Node ‘b (('a, 'b) tree) (('a, 'b) tree)

types ('r, ‘a, 'b) rtree = ('a x 'r, 'b x 'r) tree

In this way, as long as subtrees having identic references are the same, we
can represent sharing. To ensure this property giving meaning to references, we



use the predicate ref-unique ts:

definition ref-unique :: ('r, ‘a, "v) rtree set = bool where
ref-unique ts =
V t1t2.t1 € ts — t2 € ts —> ref-equal (1, t2) = struct-equal (t1, t2)

in which ref-equal means that two trees have the same reference attribute,
and struct-equal is structural equivalence neglecting references, thus correspond-
ing to the typical notion of equality of data in functional languages.

While the left-to-right implication of this equivalence is the required prop-
erty (two nodes having the same reference are the same), the other implication
ensures the maximal sharing (same subtrees are shared, i.e. have the same
reference).

Let us illustrate the concept of subtree sharing by an example. A non-shared
BDD (thus, in fact, just a decision tree) representing the formula (z Ay) V z is
given by the following tree (omitting references):

Node x
(Node z (Leaf false) (Leaf true)),
(Node y (Node z (Leaf false) (Leaf true))
(Leaf true))

There is a common subtree (Node z (Leaf false) (Leaf true)) which we
would like to share. We therefore adorn the tree nodes with references, using
the same reference for structurally equal trees, for example:

Node (x, 1)
(Node (z, 3) (Leaf (false, 4)) (Leaf (true, 5))),
(Node (y, 2) (Node (z, 3) (Leaf (false, 4)) (Leaf (true, 5))),
(Leaf (true, 5)))

The process of sharing is illustrated in Figure 1.
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Figure 1: Sharing nodes in a tree

Each node contains a variable index whose type is any type equipped with
a linear order (as indicated by Isabelle’s type class annotation) and each leaf
contains a value of any type instantiated later in the development (for interpre-
tations) to Booleans. To allow writing simple and generic algorithms (i. e. avoid



particular cases), leaves and nodes should be usable in the same way. For ex-
ample, we define a linear order on levels of trees by having level of leaves always
greater than levels of nodes and using variable indices to compare nodes.

BDDs can be interpreted by giving values to variables which is what the
interp function does:

fun interp = ('r, ‘a, 'v) rtree = ('v = bool) = 'a where
interp (Leaf (b,r)) - =10
| interp (Node (v,r) L h) tab = (if tab v then interp h tab else interp I tab)

With this definition, and without any other property, BDDs would be rather
hard to manipulate. On the one hand, same variable indices could appear several
times on paths from root to leaves. On the other hand, variables would not
be in the same order, making comparison of BDDs harder. Moreover, a lot of
space would be wasted. To circumvent this problem, one often imposes a strict
order on variables, the resulting BDDs being called ordered (OBDDs):

fun tree-vars :: (‘a, 'v x 'r) tree = 'v set where
tree-vars (Node (v,r) | h) = insert v (tree-vars I U tree-vars h)
| tree-vars (Leaf b) = {}

fun ordered where
ordered (Leaf b) = True
| ordered (Node (i, r) L h) =
((V j € (tree-vars | U tree-vars h). i < j) A ordered I N\ ordered h)

An additional important property is to avoid redundant tests, which occurs
when the two children of a node have the same interpretation. All the nodes
satisfying this property can be removed. In this case, the OBDD is said to be
reduced (ROBDD).

fun reduced :: ('r, 'a, 'v) rtree = bool where
reduced (Node vr I h) = ((interp l # interp h) A reduced | N reduced h)
| reduced (Leaf -) = True

This property uses a high-level definition (interp), but it can be deduced
(c. f. lemma non-redundant-imp-reduced below) from the three low-level prop-
erties ref-unique, ordered (already seen) and non-redundant:

fun non-redundant :: ('r, ‘a, 'v) rtree = bool where
non-redundant (Node vr [ h) =
(= ref-equal(l, h) A non-redundant I A non-redundant h)
| non-redundant (Leaf -) = True

We then merge these properties in two definitions robdd (high-level) and
robdd-refs (low-level):

definition robdd t = (ordered t A reduced t)
definition robdd-refs t = (ordered t A non-redundant t N ref-unique (treeset t))

And we can then show that ROBDDs are a canonical representation of
Boolean expressions, i. e. that two equivalent ROBDDs are structurally equal.



lemma canonic-robdd:

fixes t1 :: (-, -:linorder x -) tree

shows [robdd t1; robdd t2; interp t1 = interp t2] = struct-equal (t1, t2)
lemma non-redundant-imp-reduced:

fixes t :: (-, -::linorder x -) tree

shows [ordered t; ref-unique (treeset t); non-redundant t] = reduced ¢
lemma canonic-robdd-refs:

fixes t1 :: (-, -:linorder x -) tree

shows [robdd-refs t1; robdd-refs t2; interp t1 = interp t2] = struct-equal (t1, t2)
lemma non-redundant-reduced:

fixes t :: (-, -::linorder x -) tree

shows [ref-unique (treeset t); ordered t] = non-redundant t = reduced t
lemma robdd-refs-robdd:

fixes t :: (-, -::linorder X -) tree

shows ref-unique (treeset t) = robdd-refs t = robdd t

4 Imperative Programs : Monads

This section presents a way to manipulate low-level programs. We use a heap-
transformer monad providing means to reason about monadic/imperative code
along with a nice syntax, and that should allow to generate similar executable
code.

We first define the state-reader and state-transformer monads and a syntax
seamlessly mixing them. We encapsulate them in the SR — respectively ST —
datatypes, as functions from a state to a return value — respectively a pair of
return value and state.

We can escape from these datatypes with the runSR — respectively runST
and evalST — functions which are intended to be used only in logical parts
(theorems and proofs) and that should not be extractible.

datatype (‘a, 's) SR = SR 's = 'a
datatype (‘a, 's) ST = ST 's = 'a x 's

consts
runSR :: (‘a, 's) SR = 's = 'a
runST 2 (‘a, 's) ST = 's = 'a x 's

primrec runSR (SR m)
primrec runST (ST m)

m
m

abbreviation evalST :: (‘a, 's) ST = 's = 'a
where evalST fm s = fst (runST fm s)

abbreviation stateST :: (‘a, 's) ST = 's = s
where stateST fm s = snd (runST fm s)

The return (also called wunit) and bind functions for manipulating the mon-
ads are then defined classicaly with the infix notations >gg and > g for binds.



We add also the function SRtoST translating state-reader monads to state-
transformer monads and the function thenST (with infix notation >g7 ) abbre-
viating binding without value transfer.

consts
returnSR :: 'a = (‘a, 's) SR
returnST :: 'a = (‘a, 's) ST
bindSR  :: (‘a, 's) SR = (a = (b, 's) SR) = (b, 's) SR (infixr >gR)
bindST :: (‘a, 's) ST = (‘a = ('b, 's) ST) = ('b, 's) ST (infixr >g7)
SRtoST :: ('a,’s) SR = (‘a, 's) ST

defs
returnSR a = SR (X s. a)
returnST a = ST (X s. (a, s))
bindSR m f = SR (A s. (\ =. runSR (f z) s) (runSR m s))
bindST m f = ST (A s. (A (z, s'). runST (fz) ') (runST m s))
SRtoST sr = ST (X s. (runSR sr s, s))

abbreviation
thenST :: (‘a, 's) ST = (b, 's) ST = (b, 's) ST (infixr >g1 55)
where a bgp b = a gy (A - b)

We can then verify the monad laws:

lemma monadSRlaws :
V v f. (returnSR v) gp f = fv
YV a. a >gp returnSR = a
V (z:('s, 'a) SR) fg. (x 2gp f) Bsr 9 =7 255 (A v. ((fv) B5R 9))
by (simp-all add: expand-SR-eq SR-run0 )

lemma monadSTlaws :
YV v f. (returnST v) Bgp f = fo
YV a. a >gr returnST = a
V (z:('a, 's) ST) fg. (z Bsr f) B 9 =2 Bgr (A v. ((fv) =57 9))
by (simp-all add: expand-ST-eq ST-run0 split:prod.splits)

We define also syntax translations to use the Haskell-like do-notation.

The principal difference between the Haskell do-notation and this one is the
use of state-readers for which order does not matter. With some syntax trans-
formations, we can simply compose several state readers into one as well as
give them as arguments to state writers, almost as it is done in imperative lan-
guages (for which state is the heap). In an adapted context — i. e. in doSR{. ..}
or doST{...} — we can so use state readers in place of expressions by simply
putting them in (...), the current state being automatically provided to them,
only thanks to the syntax transformation which propagates the same state to
all (...).

For example with f/“ = ('b, ’s) ST g('a)s) SR g(0: ') ST and B’ = "4 all
these expressions are equivalent:



doST { =z «+ f {a); g; returnST (h z)}

doST { va < SRtoST a; z «+ fuva; g; returnST (h z)}
o doST { z < ST (As. runST (f (runSR a s)) s); g; returnST (h z)}
o ST (As. runST (f (runSR a s)) s) > (Az. g > returnST (h z))

The notions introduced so far are appropriate for manipulating an existing
set of references. We now define a type class allowing infinite generation of
values, which will be useful for allocating new references:
class genr = eq +

fixes gen:: ‘a list = ‘a
assumes gen-def [rule-format, simp]:

V wvs. (gen vs) ¢ set vs

We then define the heap we will use as the state in the state-reader /transformer
monads. We represent references with a very simple datatype, only used as a
tag:
datatype 'n ref = Ref 'n

We represent the heap by an extensible record containing a field val being an
association list of references and objects in the heap. This choice allows to have

a heap of finite size, making allocation to always be possible without restricting
the state.

record ('n, 'v) heap =
val :: ("'n ref x 'v) list
We then also define some abbreviations for simplifying access to the heap:

abbreviation
refs s = map fst (val s)

abbreviation
heap h n = (case map-of (val h) n of Some v = v)

and we define primitives to read and write the heap:
consts
read :: 'n ref = ('v, ('n, 'v, 'a) heap-scheme) SR
write :: ['n ref, 'v] = (unit, ('n, v, 'a) heap-scheme) ST (infix .= 15)
alloc = ('n ref = "v) = ('n ref, ('n::genr, v, ‘a) heap-scheme) ST
new v = ('nref, ('nigenr, v, 'a) heap-scheme) ST

5 Constructing BDDs

5.1 Main steps of the construction

Our BDD construction algorithm is inspired by the presentation in [1]. In the
following, we give a high-level summary of the main construction steps, before
discussing the functions in detail further below:



1. We recall that the purpose of BDD construction is to convert an expression
(of type expr) to a ROBDD, which is a canonical representation of this
expression. This is accomplished by function build which traverses the ex-
pression, recursively builds up BDDs of the subexpressions and, depending
on the Boolean function represented by the outermost constructor, com-
bines these with the aid of a function app.

2. app takes a Boolean function and two BDDs and traverses them in paral-
lel until reaching the leaf positions, where the Boolean function is applied
to the leaf values. During recursive descent, two BDDs [ and h are con-
structed, one for the “low” and one for the “high” branch, and are then
combined (function mk) to form the root of the new BDD. Using mem-
oization techniques, it is in some cases possible to avoid a descent down
to the leaves. This has not been implemented here, but would not be a
major difficulty.

3. mk takes a variable index i (determined according to a previously fixed
variable order) and two BDDs [ and h. If a BDD with root ¢ and sub-
BDDs [ and h already exists, mk returns it, otherwise it constructs a new
BDD.

It is at this point that we need to access a hash table associating triples
(i,1,h) to BDDs, and of course, this table is modified by our functions and
therefore has to be passed on to subsequent operations. This motivates the
monadic style of our functions, whose definitions are presented in Section 5.3.

5.2 Abstracting from hash tables

The precise structure of the hash table is immaterial for the BDD algorithm
itself, as long as we know how to interact with it. We will now give a specification
based on Isabelle’s locale mechanism [2], and provide two implementations in
Section 6 further below. A similar structuring principle is employed in the
Isabelle Collection Framework [8].

In Section 4, we have described the monadic background theory that intro-
duces the notion of heap and provides support for handling references. We now
extend the state space with components trees (the set of trees stored in the hash
table) and constTrue and constFalse, representing the pre-allocated leaf nodes
for true and false;

record (‘a, 'r, "v) bdd-state = ('r, unit) heap +
trees :: (‘a * 'r ref, 'v x 'r ref) tree set
constTrue :: ('a * 'r ref, v x 'r ref) tree
constFalse :: ('a x 'r ref, 'v x 'r ref) tree

The locale defines the functions

e add i I h for allocating a new BDD node with variable index ¢ and sub-
BDDs [ and h.



e [ookup i I h that returns Some n, if n is a node stored in the table having
variable ¢ and sub-BDDs [ and h. If no such node exists, the function
returns None.

e constLeaf b returns the constTrue resp. constFalse leaf.

Additionally, the locale definition contains a morphism to_bdd_state mapping the
representation ’s to its abstraction (’a, 'r, 'v) bdd_state, and a representation
invariant invar whose purpose will become clear once we describe implementa-
tions in Section 6. The axiomatisation of these functions is given in the assumes
section, of which we only show selected clauses, referring the reader to [5] for
the full definition.

locale tables =

fixes to-bdd-state :: ‘s = (bool, 'r::genr, "v::linorder) bdd-state

and invar :: 's = bool

and add :: 'v = ('r ref, bool, 'v) rtree = ('r ref, bool, "v) riree
= (('r ref, bool, "v) rtree, 's) ST

and lookup :: 'v = ('r ref, bool, "v) rtree = ('r ref, bool, 'v) rtree
= (('r ref, bool, 'v) rtree option, 's) SR

and constLeaf :: bool = (('r ref, bool, 'v) rtree, 's) SR

assumes member-run: invar ts = (runSR (lookup v I h) ts = None)
= (V r. (Node (v, r) L h) ¢ (trees (to-bdd-state ts)))
and lookup-def: invar ts => runSR (lookup v I h) ts = Some t
= 3 r. runSR (lookup v I h) ts = Some (Node (v, ) L h)
A Node (v, r) I h € (trees (to-bdd-state ts))
and invar-add:invar ts => runSR (lookup v | h) ts = None
= invar (stateST (add v 1 h) ts)
and constLeaf-run:invar ts = runSR (constLeaf b) ts
= (if b then constTrue (to-bdd-state ts) else constFalse (to-bdd-state ts))

Thus, there are two clauses defining the behavior of lookup: In case it yields
None, the tree identified by the triple (v, [, h) is not contained in the (abstraction
of the) BDD state. In the case lookup finds a tree ¢, it is a tree with the required
attributes (v, [, h) having an undetermined reference (existentially quantified r).

5.3 Implementation of BDD operations

Based on the functions declared in the locale, we can now implement the func-
tions sketched in Section 5.1.

mk tests whether its two argument trees are the same and, if this is the case,
performs a simplification corresponding to the rewrite if i then [ else | — 1.
Otherwise, it looks up the tree parameters in the table and constructs a new
node in case of failure.

fun mk :: ‘v = (‘r::genr ref, bool, "v) rtree = ('r ref, bool, 'v) rtree
= (('r ref, bool, 'v) rtree, 's) ST where
mkilh =
(if (ref-equal (1, h))

10



then returnST |
else (doST {
(case (lookup i 1 h) of
None = add il h
| Some t = returnST t) }))

We have factored subtree selection out into a separate function:

fun select :: (('a, viiorder * 'r) tree = ('a, "v:iiorder x 'r) tree)
= ('a, "vizorder * 'r) tree x ('a, 'v x 'r) tree
= (‘a, 'v x 'r) tree * (‘a, 'v * 'r) tree where
select f (t1, t2) =
(if (levelOf t1 = levelOf t2) then (f t1, ft2)
else (if levelOf t1 < levelOf t2 then (f t1, t2)
else (t1, f12)))

This keeps the monadically defined app compact:

function app :: (bool = bool = bool)
= ((("'r ref, bool, "v) rtree) = (('r ref, bool, 'v) rtree))
= (('r ref, bool, "v::linorder) rtree, 's) ST where
app bop (n1, n2) =
(if tpair-is-leaf (n1, n2)
then SRtoST (constLeaf (bop (leaf-contents nl1) (leaf-contents n2)))
else (doST {
I < app bop (select low (n1, n2));
h < app bop (select high (nl1, n2));
(mk (varOfLev (min-level (nl, n2))) L h) }))

This is the only function whose termination proof is not automatic, but still
very simple: it suffices to show that select decreases the size of a pair of trees
(defined as the sum of the sizes of the trees).

Finally, build is a simple recursive traversal:

primrec build :: 'v expr = (('r ref, bool, 'v) rtree, 's) ST
where
build (Var i) = (doST{ mk i (constLeaf False) {constLeaf True)})
| build (Const b) = SRtoST (constLeaf b)
| build (BEzpr bop el e2) = (doST{
nl < build el;
n2 < build e2;
app (interp-bbinop bop) (n1, n2) })

5.4 Correctness

We prove two kinds of properties, semantic and structural. They rely on a well-
formedness invariant wf bdd_state which expresses, among others, that the trees
stored in the hash table have unique references (phrased in an object-oriented
terminology: structurally equal trees are the same object), and that the hash
table is closed by subtrees (if a tree is in the table, so are its subtrees).

Given this definition, we can state the semantic correctness criterion: The
BDD constructed by build has the same interpretation as the expression it

11



represents:

lemma interp-evalST-build:
wf-tables ts = interp (evalST (build e) ts) = interp-expr e
Furthermore, we can show that build establishes the structural properties
required of a ROBDD: variable order and non-redundancy. For orderedness, the
lemma expresses that when running build starting with a well-formed, ordered
table, then the resulting tree is ordered (and so are the trees eventually added
to the table).

lemma build-ordered:
[runST (build €) ts = (t', ts’); wf-tables ts; trees-prop ordered (to-bdd-state ts)]
= trees-prop ordered (to-bdd-state ts’) A ordered t'

We can now combine this result with the canonicity of ROBDDs (lemma
canonic-robdd in Section 3) to show that two expressions having the same in-
terpretation give rise to two structurally equal BDDs:

lemma canonic-build:[interp-expr el = interp-expr e2;
wf-tables ts1; trees-prop robdd-refs (to-bdd-state ts1);
wf-tables ts2; trees-prop robdd-refs (to-bdd-state ts2);
runST (build el) ts1 = (t1, ts1');
runST (build e2) ts2 = (t2, ts2")] = struct-equal (t1, t2)

This result is instrumental in decision procedures for propositional formulas:
The BDD constructed for a valid formula is necessarily the leaf node “true”.

6 Implementation

It is now time to implement the state space along with the abstracted functions
add, lookup and constLeaf.

We represent the state space as a couple composed of the heap containing
BDDs and a hash table mapping triples (4,1, h) to BDDs:

record ('r, 'v) tables-impl =
('r, ('r ref, bool, 'v) rtree) heap +
h-table::('r ref ,bool,"v) rtree x v x ('r ref,bool,’v) rtree — (v ref,bool,’v) rtree
constTrue :: ('r ref, bool, 'v) rtree
constFalse :: ('r ref, bool, 'v) rtree

To access the global variables h_table, constTrue and constFalse, we define
monadic functions accessing the state:

definition H-lookup where
H-lookup x = SR (As. (h-table s x))

definition H-update where
H-update .y = ST (As. ((), s(h-table := (h-table s)(z — y)|))

definition gconstTrue = SR (As. constTrue s)

12



definition gconstFalse = SR (\s. constFalse s)
and then we define the functions:

consts

add-impl :: "'v = ('rigenr ref, bool, 'v) rtree = ('r::genr ref, bool, 'v) rtree
= (('r ref, bool, "v) rtree, ('r, 'v) tables-impl) ST

member-impl :: 'v = (bool, 'v X 'ri:genr ref) tree = ('r ref, bool, 'v) rtree
= (bool, ('r, 'v) tables-impl) SR

lookup-impl :: v = ('r::genr ref, bool, 'v) rtree = ('r ref, bool, "v) rtree
= (('r ref, bool, "v) rtree option, ('r, 'v) tables-impl) SR

constLeaf-impl :: bool = (('r ref, bool, "v) rtree, ('r, 'v) tables-impl) SR

defs
add-impl vl h = doST{
r < alloc (A\r. Node (v, r) L h);
H-update (1, v, h) (read r);
returnST (read r) }
lookup-impl v | h = H-lookup (I, v, h)
constLeaf-impl b = if b then gconstTrue else gconstFalse

It is at this point that we use the invariant component (invar) of the table
locale for the first time: it must ensure that the heap is the inverse of the hash
table and that references of nodes are their references in the heap:

definition invar-impl::('c, 'b) tables-impl = bool
where invar-impl s =
(V vlrh. (h-table s (l,v,h) = Some (Node (v, ) L h))
+— ((r, Node (v, r) L h) € set (val s)))
A (Vv lht. h-table s (I, v, h) = Some t — (3r. t = Node (v, r) L h))
ANNrt (r,t) € set (val s) — reft = 1)
A distinct (refs s)

And with these definitions, we can interpret the locale i. e. proving the hy-
pothesis for our implementation, and then instantiate all the functions and
properties parametrized by the locale.

Our formalization [5] contains another implementation of tables, as simple
lists with sequential traversal for lookup.

7 Conclusions

In this paper, we have presented first steps of a formalization and verification
of a BDD package. The emphasis of this paper is more on the development
method than on a high-performance algorithm. Several optimizations can be
integrated without a major effort, such as memoization in function app and an
improved representation of hash tables. We expect a garbage collector reducing
the size of the hash table to provide major speed-ups. Possibly, we can adapt
our verified Schorr-Waite algorithm [6] for this purpose.
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We have used Isabelle’s code extraction facility to produce an executable
version of our algorithm in Caml and tested it on a few representative formu-
las, such as the valid formulas U,, defined by z1 < (22 & ...(z, & (21 &
...(zp—1 © x,)))). The execution times are horrid: 2 seconds for n = 10,
almost 180 seconds for n = 15. Apart from the lack of optimizations, one of the
sources of inefficiency is that the Caml version explicitly manipulates the state
space.

In order to definitely use pointer equality (and not just to simulate it), we
have manually translated our implementation to the Scala [9] programming
language (the code is available at [5]), converting monadic constructs to their
imperative counterparts, erasing our reference type, replacing tests of reference
equality by tests of object equality and leaving it to the Scala / Java runtime
system to manage the memory. As compared to the above figures, the savings
are considerable: for Uys, the execution time is 0.5 seconds (which, of course,
is still not competitive). In the future, we hope to be able to automate this
translation from Isabelle to Scala.

We also plan to make a more systematic comparison with the Isabelle Collec-
tions Framework [8], in an attempt to find commonalities between its “stateless”
and our “stateful” specifications. Locales offer a good support for structuring
a formal development and providing different implementations for one inter-
face. However, in our present development, there is an unsound mixture of
the specification of a theory itself (the signatures, such as add and lookup, and
their properties) and elements that pertain to theory morphisms (to_tables, in-
var) that clutter up the proofs and should appear only during refinements or
instantiations. We are interested in exploring alternative means of expressing
interfaces and their implementations that can eventually be mapped to locales.
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