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Abstract

Improving trust in decisions made by classification
models is becoming crucial for the acceptance of
automated systems, and an important way of doing
that is by providing explanations for the behaviour
of the models. Different explainers have been pro-
posed in the recent literature for that purpose, how-
ever their formal properties are under-studied.
This paper investigates theoretically explainers that
provide reasons behind decisions independently of
instances. Its contributions are fourfold. The
first is to lay the foundations of such explainers
by proposing key axioms, i.e., desirable properties
they would satisfy. Two axioms are incompatible
leading to two subsets. The second contribution
consists of demonstrating that the first subset of ax-
ioms characterizes a family of explainers that return
sufficient reasons while the second characterizes a
family that provides necessary reasons. This sheds
light on the axioms which distinguish the two types
of reasons. As a third contribution, the paper intro-
duces various explainers of both families, and fully
characterizes some of them. Those explainers make
use of the whole feature space. The fourth contri-
bution is a family of explainers that generate expla-
nations from finite datasets (subsets of the feature
space). This family, seen as an abstraction of An-
chors and LIME, violates some axioms including
one which prevents incorrect explanations.

1 Introduction
Recent progress in data-driven AI has been largely due to ma-
chine learning and in particular deep learning models. How-
ever, the predictions of these models resist analysis due to
their inherent non-linear behaviour and their vast amount of
interacting parameters. This opacity impedes the relevance
of those models from a theoretical point of view, since their
properties are difficult to investigate, and from a practical
point of view, as many applications, such as healthcare or em-
bedded systems need guarantees to be deployed, and others,
e.g in the legal, or financial domain require transparency to be
accepted. Explanations help human users understand why a

decision was reached. Explaining the functionality of classifi-
cation systems and their rationale thus becomes a vital need.
This has generated a lot of effort, see [Cyras et al., 2021;
Guidotti et al., 2019; Miller, 2019; Biran and Cotton, 2017]
for surveys on explainers of machine learning models. Exist-
ing explainers can be classified in two different ways. The
first way distinguishes explainers that provide local expla-
nations for individual instances (eg. [Ribeiro et al., 2016;
Ribeiro et al., 2018; Dhurandhar et al., 2018; Ignatiev et al.,
2019; Darwiche and Hirth, 2020]) and explainers that provide
global explanations for classes independently of instances
(eg. [Ignatiev et al., 2019; Amgoud, 2021a]). The second
way for classifying exiting explainers is based on the infor-
mation used for generating explanations. Explainers, like An-
chors and LIME [Ribeiro et al., 2016; Ribeiro et al., 2018;
Amgoud, 2021b] use datasets while others, like those studied
in [Ignatiev et al., 2019; Ignatiev et al., 2020; Darwiche and
Hirth, 2020], use the whole set of instances.

Despite the popularity of existing explainers, their formal
properties are under-studied. This makes their comparison
difficult. Some explainers have been analysed against a set of
metrics and have been shown to be efficient. However, some
counter-intuitive results have been detected in [Narodytska et
al., 2019] for Anchors and LIME. This shows that the exist-
ing metrics are not sufficient for analysing the quality of an
explainer and guiding the definition of novel ones. They are
also not sufficient for an accurate comparison of explainers.

The present paper bridges this gap by investigating the the-
oretical foundations of explainers that provide global expla-
nations (i.e. reasons behind assigning classes independently
of instances). Foundations are important not only for a bet-
ter understanding of the explanation process in general, but
also for clarifying the basic assumptions underlying every ex-
plainer, and for comparing different (families of) explainers.

The paper contains four contributions. The first is to lay the
foundations of explainers by proposing key axioms, i.e., de-
sirable properties, they would satisfy. Two axioms are shown
to be incompatible, leading to two subsets. The second con-
tribution consists of demonstrating that the first subset of ax-
ioms characterizes the family of explainers that are based
on abductive reasoning, hence producing sufficient reasons,
and the second subset of axioms characterizes the family of
explainers that are based on counterfactual reasoning, i.e.,
returning necessary reasons. These characterisations shed



light on the properties that distinguish the two types of rea-
sons. As a third contribution, the paper introduces various
explainers of both families, each of them generating expla-
nations under complete information, i.e., using the whole
feature space. It fully characterizes some of them includ-
ing the one which retunrs the so-called Prime Implicants and
studied in [Ignatiev et al., 2019; Darwiche and Hirth, 2020;
Audemard et al., 2020]. The fourth contribution is a family
of explainers that generate reasons from finite datasets (sub-
sets of the feature space). This family, seen as an abstraction
of Anchors [Ribeiro et al., 2018] and LIME [Ribeiro et al.,
2016], violates some axioms including one which prevents
incorrect explanations.

2 Classification
We start by introducing the initial material needed to classify,
i.e., classes as well as attributes and their domains.
Definition 1 (Theory). A classification theory is a triple T =
〈A, d, C〉 such that the following holds:

• A is a non-empty finite set of attributes (or features);
• d is a function on A such that, for every a ∈ A, d(a) is

countable (discrete domains) with |d(a)| > 1;
• C is a finite set of classes such that |C| > 1.
Next, we need to define the notion of literal, i.e., an assign-

ment of a value to an attribute:
Definition 2 (Literal). Let T = 〈A, d, C〉 be a classification
theory. A literal on T is a couple 〈a, v〉 such that a ∈ A and
v ∈ d(a). We denote by LitT the set of all literals on T.
A subset L of LitT is consistent iff, for any two elements
l = 〈a, v〉 and l′ = 〈a′, v′〉 of L, if a = a′, then v = v′.

We turn to the notion of instance, i.e., an assignment of
values to all attributes:
Definition 3 (Instance). Let T = 〈A, d, C〉 be a classification
theory. An instance on T is a subset I of LitT such that
every attribute a ∈ A appears exactly once in I . We denote
by InstT the set of all instances on T.

Notice that every instance is consistent, and every proper
subset of an instance is also consistent.
Property 1. Let T = 〈A, d, C〉 be a classification theory and
I ∈ InstT. I is consistent; for any I ′ ⊂ I , I ′ is consistent.

We are ready to define the notion of classifier. It is a func-
tion which assigns a single class to every instance. Further-
more, every class is assigned to at least one instance.
Definition 4 (Classifier). Let T = 〈A, d, C〉 be a classifica-
tion theory. A classifier on T is a surjective function R from
InstT to C.
Notation (InstTR(.)): We denote by InstTR(x) the set of
all instances of a class x in T and R, i.e., InstTR(x) = {I ∈
InstT : R(I) = x}.

We show that every class is assigned to at least one instance
and not assigned to at least one other instance.
Property 2. Let T = 〈A, d, C〉 be a classification theory and
R a classifier on T. For any x ∈ C, the following holds:
InstTR(x) 6= ∅ and InstTR(x) 6= InstT.

Let us now analyse the relation of a literal with a class.
It may be irrelevant to the class, i.e., it has no impact on the
class, or relevant to the class and thus its absence may prevent
the class from being assigned to an instance, or core to the
class, i.e. its absence automatically discards the class.
Notation (DifT(.)): Let T = 〈A, d, C〉 be a classification
theory, I ∈ InstT, and a ∈ A. We denote by DifT(I, a)
the set of all instances on T that differs from I with regard to
a, i.e., DifT(I, a) is the set of every J ∈ InstT \ {I} such
that, ∀ b ∈ A \ {a}, ∀ v ∈ d(b), if 〈b, v〉 ∈ I , then 〈b, v〉 ∈ J .

A literal 〈a, v〉 is relevant to a class x under a theory T =
〈A, d, C〉 and a classifier R iff there exists another value v′ ∈
d(a) which leads to another class than x. It is core to the class
if the class is not proposed by R when the literal is absent.

Definition 5 (Relevance/Coreness). Let T = 〈A, d, C〉 be a
classification theory, R a classifier on T, x ∈ C, and l =
〈a, v〉 ∈ LitT. We say that l is relevant to x in T and R iff
∃ I ∈ InstTR(x) such that the following holds:

• l ∈ I;

• ∃ I ′ ∈ DifT(I, a), I ′ 6∈ InstTR(x).

l is core to x in T and R iff ∀ I ∈ InstTR(x), l ∈ I .

Note that relevant literals exist since InstT contains all
the possible instances that can be built from a theory, i.e., all
instances are assumed to be reasonable cases.

Let us illustrate the above notions with a classical example
borrowed from [Darwiche and Hirth, 2020].

Example 1. Consider the task of college admission. There
are four binary attributes: Entrance exam (E), First time en-
trance (F), Work experience (W) and GPA. The decision is
binary: a candidate is either admitted or denied. Consider a
binary classifier, represented by the following rules:

• If E = 1 and F = 0, then Admit

• If E = 1, F = 1, W = 1, then Admit

• If E = 1, F = 1 and W = 0 and GPA = 1, then Admit

• If E = 1, F = 1 and W = 0 and GPA = 0, then Deny

• If E = 0, then Deny

Note that 〈E, 1〉 is core to the class Admit while 〈GPA, 1〉 is
only relevant to Admit. However, there is no core literal to
the class Deny.

Obviously, if a literal is core to a class, then it is also rele-
vant to that class. The converse does not hold.

Proposition 1. Let T = 〈A, d, C〉 be a classification theory
and R a classifier on T. For any x ∈ C, for any l ∈ LitT, if
l is core to x, then l is relevant to x.

3 Explanation Functions and Axioms
Explaining a classifier amounts either to describing its global
behaviour, namely how it affects classes independently of in-
stances, or to locally justifying its prediction for an instance.
However, the latter is generally based on the former. Indeed,
an explanation of an instance describes why the classifier as-
signed the class of the instance. Hence, in this paper we focus
on explaining classes. An explanation answers the question:



why a class x is assigned by R? There are different cate-
gories of explanations as reviewed in [Schneider and Handali,
2019]. However, in this paper we focus exclusively on ex-
planations that are literals since they are easy to interpret by
humans. Indeed, research in cognitive science revealed that
in practice, humans expect an explanation for the key factors
that caused the given output. Furthermore, most of existing
explanation functions (rule-based explanations, prime impli-
cants, examples) are based on literals. Other categories (eg.
conversation-based) are beyond the scope of this paper. Note
that there may be several reasons for assigning a class.

Definition 6. A class question is a triple Q = 〈T,R, x〉 such
that T = 〈A, d, C〉 is a classification theory, R is a classifier
on T, and x is an element of C.

Formally, an explanation for a class is a set of subsets of
literals. Every subset of literals, which may be the emptyset,
is one reason behind predicting the class. Hence, what we
call class explanation is the complete set of reasons.

Definition 7. Let T = 〈A, d, C〉 be a classification theory.
A class explanation on T is a set of subsets of LitT. Every
such subset is called a reason.

A class explainer, or explanation function, is a function
which assigns to every class question a class explanation.

Definition 8. A class explainer is a function F mapping ev-
ery question Q = 〈T,R, x〉 into a class explanation on T.

We provide below some formal properties that a reasonable
class explainer could satisfy. Such properties are important
for assessing the quality of an explanation function and for
comparing pairs of functions.

The first property states that an explainer should always
provide explanations. It is important to provide explanations
for humans (eg., customer for whom a loan has been refused).

Axiom 1 (Success). A class explainer F satisfies success iff
for any class question Q, F(Q) 6= ∅.

The second property states that an explainer should provide
informative explanations, and thus an empty explanation is
not recommended.

Axiom 2 (Explainability). A class explainer F satisfies ex-
plainability iff for any class question Q, ∀L ∈ F(Q), L 6= ∅.

The next property states that reasons in an explanation
should not contain unnecessary information.

Axiom 3 (Irreducibility). A class explainer F satisfies irre-
ducibility iff for any class question Q = 〈T,R, x〉, ∀L ∈
F(Q), ∀l ∈ L, ∃ I ∈ InstT \ InstTR(x) s.t. L \ {l} ⊆ I .

The next property states that every reason is a subset of at
least one instance. This ensures the feasability of reasons.
Recall that the latter represent causes; when they occur, the
classes they explain are suggested for instances.

Axiom 4 (Feasibility). A class explainer F satisfies feasibil-
ity iff for every class question Q = 〈T,R, x〉, ∀L ∈ F(Q),
∃ I ∈ InstTR(x) s.t. L ⊆ I .

Class explanations are the basis for explaining individual
instances. Indeed, explaining an instance amounts to justify
its class. The next axiom states that class explanations should

be not only sufficient for explaining instances but also for re-
producing the predictions of the classifier. The second prop-
erty makes it possible to use explanations on unseen data.
Axiom 5 (Representativity). A class explainer F satisfies
representativity iff for every class question Q = 〈T,R, x〉,
∀I ∈ InstTR(x), ∃L ∈ F(Q) s.t. L ⊆ I .

The following property states that an explanation should
only contain information that impacts a prediction.
Axiom 6 (Relevance). A class explainer F satisfies relevance
iff for every class question Q = 〈T,R, x〉, ∀L ∈ F(Q),
∀l ∈ L, l is relevant to x.

We saw previously that some literals can be more than rel-
evant for a class. They are core as their absence in an instance
prevents a class from being assigned by a classifier. The next
axiom is more demanding than the previous one, and requires
that an explanation contains only core literals.
Axiom 7 (Coreness). A class explainer F satisfies coreness
iff for every class question Q = 〈T,R, x〉, ∀L ∈ F(Q),
∀l ∈ L, l is core to x.

The next property ensures that information that is not part
of reasons of a class is irrelevant to the class. This ensures
exhaustivity of the explanation provided for the class.
Axiom 8 (Exhaustivity). A class explainer F satisfies Ex-
haustivity iff for every class question Q = 〈T,R, x〉, ∀l ∈
LitT, if l is relevant to x, then ∃ L ∈ F(Q) s.t. l ∈ L.

The following property ensures that every core literal to a
class should appear in the explanation of that class.
Axiom 9 (Completeness). A class explainer F satisfies com-
pleteness iff for every class question Q = 〈T,R, x〉, ∀l ∈
LitT, if l is core to x, then ∃ L ∈ F(Q) s.t. l ∈ L.

The previous axioms describe properties of one class ex-
planation. The last axiom is about the set of all such expla-
nations that can be generated from a theory. It ensures their
compatibility, avoiding thus erroneous explanations. The ax-
iom states that the union of two reasons supporting different
classes should be inconsistent. To illustrate the idea, con-
sider an explainer that provides respectively L = {(a, v)}
and L′ = {(b, v′)} for the classes x and y. Note that L∪L′ is
consistent, then there exists an instance I that contains L∪L′.
The two explanations support contradictory predictions for I .
Axiom 10 (Coherence). A class explainer F satisfies coher-
ence iff for any two class questions Q = 〈T,R, x〉 and
Q′ = 〈T′,R′, x′〉 s.t. T = T′, R = R′, and x 6= x′,
∀L ∈ F(Q), ∀L′ ∈ F(Q′), L ∪ L′ is inconsistent.

Feasibility guarantees the consistency of every reason.
Property 3. Let F be a class explainer that satisfies Feasibil-
ity, Q a class question. For any L ∈ F(Q), L is consistent.

From a couple of axioms, it follows that a reason causes
the class it explains. Indeed, its appearance in any instance
leads the classifier to assign that class to it.
Proposition 2. Let F be a class explainer that satisfies Fea-
sibility, Representativity and Coherence, Q = 〈T,R, x〉 a
class question. The following holds:

∀L ∈ F(Q),∀I ∈ InstT s.t. L ⊆ I, I ∈ InstTR(x).



Exhaustivity and Relevance ensure that the literals used in
the explanation of a class are exactly all those that are relevant
to the class. Likewise, Completeness and Coreness ensure
that explanations are based on all and only core literals.

Theorem 1. Let F be a class explainer and Q = 〈T,R, x〉
a class question. The following two points hold:

• F satisfies Exhaustivity and Relevance iff⋃
L∈F(Q)

L = {l ∈ LitT : l is relevant to x};

• F satisfies Completeness and Coreness iff⋃
L∈F(Q)

L = {l ∈ LitT : l is core to x}.

The above axioms are not all independent. Some of them
follow from others. We considered them in the paper since
they allow to discriminate between explainers. Some explain-
ers may satisfy only an implied axiom while others may sat-
isfy the one that does not follow from any other axiom.

Proposition 3. Let F be a class explainer.

• if F satisfies Representativity, then F satisfies Success;

• if F satisfies Coreness, then F satisfies Relevance;

• if F satisfies Exhaustivity, then F satisfies Complete-
ness;

• if F satisfies Feasibility, Coherence and Representativ-
ity, then F satisfies Explainability, Exhaustivity.

Most of the axioms are compatible, i.e., there exists at least
one explanation function that satisfies them all together (ob-
viously for any classifier and any theory). It is no surprise
that Coreness and Exhaustivity are incompatible since they
express diverging strategies that may be followed by explain-
ers. Finally, since core literals may not exist, the three axioms
(Success, Explainability, Coreness) are incompatible.

Proposition 4. The following holds:

• Success, Explainability, Irreducibility, Feasibility, Rep-
resentativity, Relevance, Exhaustivity, Completeness,
and Coherence are compatible;

• Success, Irreducibility, Feasibility, Representativity,
Relevance, Coreness, and Completeness are compatible;

• Explainability, Irreducibility, Feasibility, Relevance,
Coreness, and Completeness are compatible;

• Coreness and Exhaustivity are incompatible.

• Success, Explainability and Coreness are incompatible.

4 Explainers Based on Abductive Reasoning
One of the most studied explainers is based on abductive rea-
soning. It looks for sets of literals that are sufficient for as-
signing a class to a given instance. It thus explains instances
instead of classes. Its explanations are called minimal suffi-
cient subsets in [Camburu et al., 2020], prime implicants in
[Shih et al., 2018; Darwiche and Hirth, 2020] or abductive

explanations in [Ignatiev, 2020]. In [Amgoud, 2021a], ab-
ductive reasoning is used for explaining classes. The idea is
to highlight factors that caused a class.

In that spirit, we investigate a family of class explainers
based on the abductive reasoning. We call them the suffi-
ciency explainers. Such explainers generate explanations un-
der complete information (i.e., the whole set of instances is
available, which is reasonable for explaining some quite sim-
ple classifiers like decision trees) and adopt the following ab-
ductive principle: if a class x is assigned whenever a literal l
is observed, then we extrapolate that l is a reason for x.

Let us formally define the sufficiency explainers. As a pre-
liminary, we need a notation for the set of all those subsets of
literals that are sufficient to force a certain class:
Definition 9. Let Q = 〈T,R, x〉 be a class question. We
denote by SuffQ the set of every L ⊆ LitT such that:

• L is consistent;
• ∀ I ∈ InstT, if L ⊆ I , then I ∈ InstTR(x).
We are ready to define our family of explainers based on

complete information and the abductive reasoning:
Definition 10 (Sufficiency). A sufficiency class explainer is a
class explainer F such that, for every class question Q,

• F(Q) ⊆ SuffQ,
• ∀ I ∈ InstTR(x), ∃ L ∈ F(Q), L ⊆ I .
Next, we characterize the sufficiency explainers with three

axioms, namely Feasibility, Representativity, and Coherence.
As a preliminary, we first show that every class explainer sat-
isfying the three aforementioned axioms returns explanations
which are subsets of those generated by SuffQ:
Theorem 2. If a class explainer F satisfies Feasibility, Rep-
resentativity and Coherence, then, for any class question
Q = 〈T,R, x〉, the inclusion F(Q) ⊆ SuffQ holds.

We are ready for the characterization:
Theorem 3. A class explainer F satisfies Feasibility, Repre-
sentativity, Coherence iff F is a sufficiency class explainer.

It is worth mentioning that a sufficiency class explainer vi-
olates Relevance, Coreness and Irreducibility (see Table 1).
In what follows, we provide two specific explainers of this
family. The first one, called the all-abductive explainer
(aAbd), returns all sufficient reasons for a class.
Definition 11 (aAbd). We denote by aAbd the class explainer
transforming every class question Q into SuffQ.

Example 1 (Cont.) Examples of reason for Admit are:
{(E, 1), (F, 0)}, {(E, 1), (F, 0), (GPA, 1)}.

The following result shows that the class explainer aAbd
satisfies most of the axioms.
Theorem 4. The following properties hold:

• aAbd satisfies Success, Explainability, Feasibility, Rep-
resentativity, Exhaustivity, Completeness, Coherence;

• aAbd violates Irreducibility, Relevance and Coreness.
We turn to a second specific sufficiency explainer, called

the min-abductive explainer (mAbd). The latter returns the
minimal sufficient reasons for a class.



Sufficiency aAbd mAbd aCtf mCtf xCtf f -rAbd
Success • • • • • •
Explainability • • • • •
Irreducibility • • • • •
Feasibility • • • • • • •
Representativity • • • • •
Relevance • • • •
Coreness • • •
Exhaustivity • • •
Completeness • • • • • •
Coherence • • •

Table 1: The symbol • stands for the axiom is satisfied by the explainer.

Definition 12 (mAbd). The min-abductive class explainer
(mAbd) is a class explainer transforming every class question
Q = 〈T,R, x〉 into the set of every L ⊆ LitT such that:

• L is consistent;
• ∀ I ∈ InstT such that L ⊆ I , I ∈ InstTR(x);
• ∀ L′ ⊂ L, L′ does not satisfy the above point.

Example 1 (Cont.) The class Admit has three reasons, which
correspond to the three preconditions of the rules. The same
holds for Deny.

The explainer mAbd refines aAbd by keeping only the min-
imal (for set-inclusion) explanations.
Proposition 5. For any class question Q = 〈T,R, x〉,
mAbd(Q) = {L ∈ aAbd(Q) : ∀L′ ⊂ L,L′ /∈ aAbd(Q)}.

The min-abductive explainer satisfies all our axioms ex-
cept Coreness. Due to the minimality condition, mAbd en-
sures that every literal in an explanation is relevant to the
explained class. Furthermore, it keeps only the minimally
sufficient subset of literals for causing a class.
Theorem 5. mAbd satisfies Success, Explainability, Irre-
ducibility, Feasibility, Representativity, Relevance, Exhaus-
tivity, Completeness, and Coherence, but violates Coreness.

We now present below a representation theorem which
characterizes the abductive explainer mAbd. We show that
mAbd is the only explainer satisfying all axioms except core-
ness (recall that some axioms imply others).
Theorem 6. A class explainer F satisfies Irreducibility, Fea-
sibility, Representativity, and Coherence iff F = mAbd.

5 Explainers Based on Counterfactual
Reasoning

We turn to a second family of explainers, called the neces-
sity explainers. It is based on complete information and the
following counterfactual principle: if a literal l is observed
whenever a class x is assigned, then we extrapolate that l is a
reason for assigning x. Put differently, if l was not observed,
then x would not have been assigned, hence the word coun-
terfactual. As a preliminary to define the necessity explainers,
we need a notation for those subsets of literals that are neces-
sary to a certain class:

Definition 13. Let Q = 〈T,R, x〉 be a class question. We
denote by NecQ the set of every L ⊆ LitT such that:

• L is consistent;

• ∀ I ∈ InstT, if L 6⊆ I , then I 6∈ InstTR(x).

Note that the necessary subsets of literals for a class x con-
stitute the power set of the intersection of all instances of x.

Proposition 6. Let Q = 〈T,R, x〉 be a class question. Then,
NecQ = Pow[

⋂
InstTR(x)].

We are ready to define our family of explainers based on
complete information and the counterfactual reasoning.

Definition 14 (Necessity). A necessity class explainer is a
class explainer F such that, for every class question Q,
F(Q) ⊆ NecQ.

Let us investigate a specific member of the family, which
returns all necessary subsets of literals:

Definition 15. The all-counterfactual explainer (aCtf) is a
function transforming every class question Q into NecQ.

Example 1 (Cont.) Let Q be the question centered
on Admit and Q′ the question centered on Deny. We
have

⋂
InstTR(Admit) = {〈E, 1〉}. Thus, NecQ =

Pow({〈E, 1〉}) = {∅, {〈E, 1〉}}. Thus, aCtf(T,R,Admit) =
{∅, {〈E, 1〉}}. Similarly,

⋂
InstTR(Deny) = ∅. Thus,

NecQ′ = Pow(∅) = {∅}. Thus, aCtf(T,R,Deny) = {∅}.
We axiomatically analyse aCtf:

Theorem 7. aCtf satisfies Success, Irreducibility, Feasibil-
ity, Representativity, Relevance, Coreness, Completeness. It
violates Explainability, Exhaustivity, and Coherence.

We turn to a second specific explainer, which minimizes
the necessary subsets:

Definition 16 (mCtf). The min-counterfactual explainer
(mCtf) is the function transforming every class question Q =
〈T,R, x〉 into the set of every subset L of LitT such that:

• L 6= ∅; L is consistent;

• ∀ I ∈ InstT, if L 6⊆ I , then I 6∈ InstTR(x);

• ∀ L′ ⊂ L, L′ does not satisfy the above two points.

Example 1 (Cont.) We have mCtf(T,R,Admit) =
{{〈E, 1〉}} and mCtf(T,R,Deny) = ∅.



We axiomatically analyze mCtf. Note that we lose Success
and Representativity, but we gain Explainability.

Theorem 8. mCtf satisfies Explainability, Irreducibility,
Feasibility, Relevance, Coreness, and Completeness. It vio-
lates Success, Representativity, Exhaustivity, and Coherence.

Finally, we introduce a third specific explainer, which max-
imizes the necessary subsets.

Definition 17 (xCtf). The max-counterfactual explainer
(xCtf) is the function transforming every class question Q =
〈T,R, x〉 into the set of every subset L of LitT such that:

• L is consistent;

• ∀ I ∈ InstT, if L 6⊆ I , then I 6∈ InstTR(x);

• ∀ L′ ⊃ L, L′ does not satisfy the above two points.

Notice that xCtf returns only one reason, namely the in-
tersection of all instances of the class in question:

Proposition 7. Let Q = 〈T,R, x〉 be a class question. Then,
xCtf(Q) = {

⋂
InstTR(x)}.

Example 1 (Cont.) We have xCtf(T,R,Admit) =
{{〈E, 1〉}} and xCtf(T,R,Deny) = {∅}.

We axiomatically analyze xCtf and observe that it satisfies
exactly the same axioms as aCtf. So, returning all necessary
subsets or the largest one (i.e., the intersection of the instances
of the class in question) lead to the same axioms.

Theorem 9. xCtf satisfies Success, Irreducibility, Feasibil-
ity, Representativity, Relevance, Coreness, and Complete-
ness. It violates Explainability, Exhaustivity, and Coherence.

6 Explaining Under Incomplete Information
In this section, we investigate explanations under incomplete
information (i.e., not all instances are available, which is typi-
cally the case with the dataset a classifier has been trained on,
or the dataset generated for existing explainers like Anchors
and LIME). Working with incomplete information makes
sense, in particular, for complex classifiers whose querying
may not be reasonable for all instances. Note that our ab-
ductive and counterfactual explainers (defined in the previous
sections) work with the whole set of instances. However, in
practice only a subset of instances (dataset) is available. The
question is: does our previous results still hold if reasons are
generated from a proper subset of InstT? The answer is
unfortunately negative. We define a parameterized family of
explainers that provide minimally sufficient reasons from a
dataset. The parameter is a function which selects the dataset
to be used. Such a definition abstracts Anchors and LIME
since they both use datasets generated in different ways.

Definition 18 (Fragments). Let T = 〈A, d, C〉 be a classifi-
cation theory, R a classifier on T, and S ⊆ InstT. We say
that S is a fragment in T and R iff, for every x ∈ C, we have
that InstTR(x) ∩ S 6= ∅.
Definition 19. A fragment selector is a function f transform-
ing every couple (T,R) such that T is a classification theory
and R a classifier on T into a fragment in T and R.

We are now ready to introduce the novel family.

Definition 20. Let f be a fragment selector. The f -relaxed
abductive explainer (f -rAbd) is the function transforming ev-
ery class question Q = 〈T,R, x〉 into the set of every subset
L of LitT such that:

• ∃ I ∈ f(T,R) such that L ⊆ I;
• ∀ I ∈ f(T,R) such that L ⊆ I , I ∈ InstTR(x);
• ∀ L′ ⊂ L, L′ does not satisfy the above point.

Property 4. Let f be a fragment selector and Q = 〈T,R, x〉
a class question. For any L ∈ f -rAbd(Q), L is consistent.

We show that, for every fragment selector f , f -rAbd sat-
isfies Success, Explainability, Feasibility and Irreducibility,
and it violates the remaining axioms. This is not surprising
since it generates explanations from a subset of instances.
Theorem 10. Let f be a fragment selector. f -rAbd satisfies
Success, Explainability, Feasibility and Irreducibility. It vio-
lates Coreness, Relevance, Completeness, Exhaustivity, Rep-
resentativity and Coherence.

The following result shows that f -rAbd satisfies a weak
version of Representativity. Indeed, every instance of the set
f(T,R) is a superset of at least one reason of its class.
Proposition 8. Let f be a fragment selector. f -rAbd sat-
isfies Weak Representativity, i.e., for every class question
Q = 〈T,R, x〉, for every I ∈ f(T,R) ∩ InstTR(x), there
exists L ∈ f -rAbd(Q) such that L ⊆ I .

Existing heuristics explanation functions like Anchor and
LIME violate Coherence, leading to incorrect outcomes in
some cases. Recall that both Anchors and LIME are not class
explainers, they are instance explainers, i.e., they provide rea-
sons for assigning R(I) to an instance I .

7 Related Work
There haven’t been a lot of axiomatic approaches to explain-
ability. Most of existing works propose instances of explain-
ers and analyse them either experimentally (eg. [Ignatiev et
al., 2019]) or formally (eg. [Darwiche and Hirth, 2020]).
None of these works have discussed axioms. In [Wolf et al.,
2019], some axioms have been proposed for instance explain-
ers. Our axioms concern class explainers.

Contrastive explanations are widely studied. They describe
what should be modified in order to avoid a class. It has been
shown in [Amgoud, 2021a] that they are dual to the reasons
generated by mAbd. Hence, they represent the same concept.
That’s why in this paper, we investigated only one of them.

8 Conclusion
This paper studied foundations of explainers that justify
classes. It provided key axioms that an explainer would sat-
isfy and characterised various explainers that satisfy them.
It highlighted the key axioms that separate sufficient reasons
from necessary ones (i.e., counterfactuals). Another impor-
tant result of the paper concerns the family of explainers that
generate reasons from a subset of instances. We showed that
they violate relevance, leading to erroneous explanations.

As a future work, we plan to extend our axioms for dealing
with other types of explanations like the conversational ones.
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