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Dynamic  Programming  Algorithm  Optimization  for 
Spoken Word  Recognition 

HIROAKI  SAKOE 

Abstract-This paper  reports on an optimum  dynamic programming 
(DP)  based  time-normalization  algorithm for  spoken word recognition. 
First, a  general  principle of  time-normalization i s  given  using time- 
warping function.  Then, two time-normalized distance  definitions, 
d e d  symmetric and asymmetric  forms, are derived  from the principle. 
These two forms are compared  with  each other through theoretical 
discussions and experimental  studies. The  symmetric  form  algorithm 
superiority is  established. A new  technique, called slope  constraint, is 
successfully  introduced,  in which the warping function  slope  is restricted 
so as to improve  discrimination between words  in different categories. 
The effective  slope  constraint characteristic is qualitatively  analyzed, 
and the  optimum  slope  constraint  condition  is determined  through 
experiments. The optimized algorithm is then  extensively  subjected to 
experimentat  comparison with various  DP-algorithms,  previously  applied 
to spoken word recognition  by  different research  groups.  The experi- 
ment  shows that the present  algorithm gives no more  than about  two- 
thirds  errors,  even  compared to the best  conventional algorithm. 

I 
I.  INTRODUCTION 

T is  well known that speaking rate variation causes nonlinear 
fluctuation  in  a  speech  pattern  time axis. Elimination of 

this  fluctuation,  or  time-normalization,  has  been  one  of  the 
central  problems in spoken  word  recognition research. At an 
early stage, some linear normalization  techniques were exam- 
ined, in which timing  differences  between  speech  patterns 
were eliminated  by linear transformation of the  time axis. 
Reports  on these efforts  indicated that any linear transforma- 
tion is inherently insufficient for dealing with highly compli- 
cated  fluctuation  nonlinearity as  well  as that time-normalization 
significantly improves  recognition  accuracy. 

DP-matching, discussed in this paper, is a  pattern matching 
algorithm  with  a  nonlinear  time-normalization  effect.  In  this 
algorithm, the time-axis  fluctuation is approximately  modeled 
with  a  nonlinear warping function  of some carefully specified 
properties. Timing differences  between two speech  patterns 
are eliminated  by warping the time axis of  one so that  the 
maximum  coincidence is attained  with  the  other.  Then,  the 
time-normalized  distance is calculated as the minimized resid- 
ual distance  between  them.  This  minimization  process is very 
efficiently carried out by  use  of the  dynamic programming 
(DP) technique. The  basic idea  of  DP-matching  has been 
reported in  several publications [ 13 -[3] , where it has been 
shown  by  preliminary  experiment on Japanese digit words that 
a  recognition  accuracy as high as 99.8  percent  has  been  achieved, 
indicating the DP-matching effectiveness. 

This paper  reports  an  optimum  algorithm  for  DP-matching 
through theoretical discussions and  experimental studies. In- 
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vestigations were made, based on the  assumption that speech 
patterns are time-sampled  with  a  common  and  uniform  sam- 
pling period, as in most  general cases. One  of  the  problems 
discussed in this paper involves the relative superiority of either 
a  symmetric  form  of  DP-matching  or  an  asymmetric  one.  In 
the  asymmetric form, time-normalization is  achieved by trans- 
forming  the  time axis of  a  speech pattern  onto  that  of  the 
other.  In  the  symmetric  form,  on  the  other  hand,  both  time 
axes are transformed onto  a temporarily  defined  common axis. 
Theoretical  and  experimental  comparisons  show that  the sym- 
metric  form gives better recognition  than  the  asymmetric  one. 
Another  problem discussed concerns  slope  constraint  technique. 
Since too  much  of  the  warping  function flexibility sometimes 
results in poor  discrimination  between  words in  different 
categories, a  constraint is  newly introduced on the warping 
function slope. Detailed  slope  constraint  condition is optimized 
through  experimental studies. As a  further investigation, the 
optimized  algorithm is experimentally  compared  with several 
varieties of the DP-algorithm,  which have been  applied to 
spoken  word  recognition by  some research  groups [3] - [6]  . 
The optimized  algorithm  superiority is established, indicating 
the validity of  this investigation. 

11. DP-MATCHING  PRINCIPLE 
A. General  Time-Normalized  Distance  Definition 

as a  sequence  of  feature vectors. 
Speech can  be expressed  by  appropriate  feature  extraction 

Consider  the  problem of eliminating  timing  differences  between 
these  two  speech  patterns.  In  order to clarify the  nature of 
time-axis fluctuation  or  timing differences, let  us  consider an 
i - j plane,  shown in Fig. 1, where patterns A and B are  devel- 
oped along the i-axis and  j-axis, respectively. Where these 
speech  patterns are of  the same category,  the  timing differ- 
ences  between  them can be  depicted  by  a  sequence  of  points 
c = ( i , j ) :  

F =  c(l), c(2), ------, c (k ) ,  - - - - - - )  c ( K ) ,  (2) 

where 

c(k) = ( i (W(~)) .  

This  sequence  can be considered to represent  a  function  which 
approximately realizes a  mapping  from the time axis of pattern 
A onto  that of pattern B. Hereafter,  it is called a  warping 
function. When there is no timing  difference  between  these 
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A 
Fig. 1. Warping function  and  adjustment window  definition. 

patterns,  the  warping  function  coincides  with  the  diagonal 
line j = i. It deviates further  from  the diagonal line as the  tim- 
ing difference  grows. 

As a  measure  of the difference  between  two  feature  vectors 
ai and bi, a  distance 

d(c) = d( i , j )  = (I ai - bi I I  (3) 

is employed  between  them.  Then,  the  weighted  summation of 
distances on  warping function F becomes 

E (F)  = 2 d(c(k ) )  . ~ ( k )  
k = l  

(where w(k)  is a  nonnegative weighting coefficient, which is 
intentionally introduced to allow the E(F)  measure flexible 
characteristic) and is a  reasonable  measure for  the  goodness of 
warping  function F. It attains  its  minimum value  when 
warping function F is determined so as to optimally adjust 
the  timing difference. This minimum residual distance value 
can  be considered to be a  distance  between patternsA and B,  
remaining still after eliminating  the  timing  differences  between 
them, and is naturally expected to be stable against time-axis 
fluctuation. Based on  these  considerations, the time-normalized 
distance  between two speech  patterns A and B is defined as 
follows: 

D(A , B)  = Min (5) 
I;. 

where  denominator C w(k)  is employed to compensate for  the 
effect of K (number  of  points  on  the warping function F). 

Equation (5) is no more  than  a  fundamental definition of 
time-normalized distance. Effective characteristics of this 
measure greatly depend  on  the warping function specification 
and  the weighting 'coefficient definition. Desirable characteris- 
tics of the  time-normalized  distance measure  will vary, accord- 
ing to speech pattern properties (especially time axis expression 
of  speech  pattern) to  be dealt with.  Therefore,  the  present 
problem is restricted to the  most general  case  where the fol- 
lowing two  conditions  hold: 

Condition 1: Speech  patterns are time-sampled  with  a  com- 
mon  and  constant  sampling  period. 

Condition 2 :  We have no a priori knowledge  about which 
parts of speech  pattern  contain linguistically important 
information. 
In this case, it is reasonable to consider  each  part of a  speech 
pattern to contain an equal  amount of linguistic information. 

B. Restrictions on Warping Function 
Warping function F ,  defined by (2), is a  model  of  time-axis 

fluctuation in a  speech pattern. Accordingly, it should  ap- 
proximate  the  properties of actual time-axis fluctuation.  In 
other words,  function F ,  when viewed  as a mapping from  the 
time axis of  pattern A onto  that of  pattern B,  must preserve 
linguistically essential structures in pattern A time axis and 
vice versa. Essential speech  pattern  time-axis  structures are 
continuity,  monotonicity (or restriction of relative timing 
in a  speech),  limitation  on  the  acoustic  parameter transition 
speed in a  speech,  and so on. These conditions can  be  realized 
as the  following restrictions on  warping  function F (or points 

= ( i ( k M k ) ) .  
1) Monotonic  conditions: 

i(k - 1) 5 i (k )  and j(k - 1) s j ( k ) .  

2) Continuity  conditions: 

i (k)  - i(k - 1) 5 1 and j ( k )  - j (k  - 1) 5 1. 

As a result of these  two restrictions, the following relation 
holds  between two consecutive points. 

{ 
w ,  i(k) - 11, 

c(k - 1) = (i(k) - 1, j ( k )  - l), (6)  
or (i(k) - 1, j(k)). 

3) Boundary  conditions: 

i ( 1 ) =  1, j ( l ) =  1,and 

i(K) = I, j ( K )  = J .  (7) 

4) Adjustment  window  condition (see  Fig. 1): 

I i (k ) - j (k) I l r  (8) 

where r is an  appropriate positive integer called window  length. 
This  condition  corresponds to  the  fact  that time-axis fluctua- 
tion in usual cases  never  causes a too excessive timing difference. 

5) Slope  constraint  condition: 
Neither too  steep nor too gentle a  gradient  should be  allowed 

for warping function F because such  deviations may  cause un- 
desirable time-axis  warping.  Too  steep  a gradient, for  example, 
causes  an unrealistic correspondence  between  a very short 
pattern A segment  and  a relatively long  pattern B segment. 
Then,  such  a case occurs where a  short  segment in consonant 
or  phoneme  transition  part  happens to be in good  coincidence 
with  an  entire  steady vowel part. Therefore,  a restriction called 
a  slope  constraint  condition, was set upon  the warping function 
F ,  so that  its first derivative  is of discrete form. The slope  con- 
straint  condition is realized as a restriction on  the possible rela- 
tion among (or the possible configuration of) several consecu- 
tive points  on  the warping function, as is shown in  Fig. 2(a) 
and (b). To put  it  concretely, if point c(k)  moves forward in 
the  direction  of i (orj)-axis consecutive rn times, then  point 
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Fig. 2. Slope constraint on warping function. 

c(k)  is not allowed to step  further  in  the same direction before 
stepping at least n times in the diagonal direction. The effective 
intensity  of  the slope constraint can  be evaluated  by  the 
following measure 

P = n/m. (9)  

The  larger the P measure,  the  more rigidly the warping func- 
tion slope is restricted. When p = 0, there are no restrictions 
on  the warping function slope. When p = 00 (that is rn = 0), 
the warping function is restricted to diagonal line j = i. Nothing 
more  occurs  than  a  conventional pattern matching no  time- 
normalization.  Generally  speaking, if the  slope  constraint is 
too severe, then  time-normalization would not workeffectively. 
If the  slope  constraint is too  lax,  then discrimination  between 
speech  patterns in different categories is degraded.  Thus,  set- 
ting neither  a  too large nor  a too small  value for p is desirable. 
Section IV reports the results of an investigation on an opti- 
mum  compromise on p value through several experiments. 

In Fig. 2(c)  and  (d),  two  examples  of permissible point c(k)  
paths  under  slope  constraint  condition p = 1 are shown. The 
Fig. 2(c) type is directly derived from  the above definition, 
while  Fig. 2(d) is  an approximated  type,  and  there is another 
constraint.  That is, the  second derivative of warping function 
F is restricted, so that  the  point c(k) path  does not  orthogo- 
nally change its  direction. This  new constraint  reduces  the 
number of paths to be searched.  Therefore,  the simple  Fig. 
2(d)  type is adopted  afterward,  except  for  the p = 0 case. 

C. Discussions on Weighting  Coefficient 
Since the criterion function  in (5) is a rational expression, 

its  maximization is an unwieldy  problem. If the  denominator 

in (5) 

N =  w(k)  
K 

k=l 

(called normalization coefficient) is independent of warping 
function F ,  it can  be put  out  of  the  bracket, while simplifying 
the  equation as follows: 

This simplified problem can  be effectively solved by use of the 
dynamic  programming  technique.  There are two typical 
weighting coefficient definitions which  enable  this simplifica- 
tion. They  are as follows. 

1) Symmetric  form: 

w(k)  = (i(k) - i(k - 1)) + ( j(k) - i(k - l)), (1 2) 

then 

N = I + J ,  (1 3) 

where I and J are lengths of speech  patterns A and B, respec- 
tively  [see (l)] . 

2)  Asymmetric form: 

w(k)  = (i(k) - i(k - l)), (1 4) 

then 

, N = I .  (1 5 )  

(Or equivalently, w(k)  = ( j ( k )  - j (k  - l)), then N = J. )  
The basic concepts  of  the  symmetric  and  asymmetric  forms 

were  originally defined by Sakoe  and  Chiba [3]. The problem 
of their relative superiority has  been left unsolved. 

If it is  assumed that time axes i and j are both  continuous, 
then, in the symmetric  form,  the  summation in (5) means  an 
integration along the  temporarily  defined axis E = i t j .  In the 
asymmetric  form,  on  the other  hand,  the summation means 
an integration along time axis i. As a result of this difference, 
time-normalized  distance is symmetric,  or D ( A ,  B) = D ( B ,  A ) ,  
in the  symmetric  form,  though not in the  asymmetric  form. 
Another  more  important result, caused by  the  difference in 
the integration axis, is that, as  is shown in Fig. 3, weighting 
coefficient w(k)  reduces to zero in  the  asymmetric  form, 
when the  point in  warping function steps in the direction of 
j -axis, or c(k)  = c(k - 1) t (0, 1). This  means that some fea- 
ture vectors bi are  possibly excluded  from  the  integration in 
the asymmetric form. On the  contrary, in the case of  sym- 
metric form, minimum w ( k )  value  is equal to 1 , and no  exclu- 
sion occurs. Since  discussions here are  based on  the  assumption 
that each  part in a  speech pattern should be treated  equally,  an 
exclusion  of any feature  vectors  from  integration  should be 
avoided  as long as possible. It can  be expected,  therefore,  that 
the  symmetric  form will  give better recognition  accuracy than 
the  asymmetric form. However, it  should be noted  that  the 
slope constraint  reduces  the  situation where the  point in 
warping function steps in the  j-axis direction. The difference 
in performance  between  the  symmetric  one  and  asymmetric 
one  will gradually vanish as the slope  constraint is intensified. 
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Fig. 3. Weighting coefficient W(k) for  both symmetric and asymmetric 
forms. 

111. PRACTICAL  DIPMATCHING ALGORITHM 
A .  DP-Equation 

A simplified definition  of time-normalized distance D ( A ,  B)  
given by (1 1 )  is one of the typical  problems to which the well- 
known DP-principle [7] can be applied.  The basic algorithm 
for calculating ( 1  1 )  is written as follows. 

Initial  condition: 

gl (c(1)) = d(c(1))  - w(1). (1 6) 
DIP-equation: 

gk (c(k)) :@:) [gk-1 ( c (k -  l > ) t  d(c(k))  w ( k ) l .  

(17) 

Time-normalized distance: 

1 
D(A , B)  = gK (C(K)). ( 1  8) 

It is implicitly assumed here that c(0)  = (0, 0). Accordingly, 
w(1) = 2 in  the  symmetric form,  and w(1) = 1 in  the  asym- 
metric  form. By realizing the restriction on  the warping func- 
tion described in Section 11-B and  substituting (12) or (14) for 
weighting coefficient w(k)  in (17), several practical algorithms 
can be derived. As one of the simplest examples, the algorithm 
for  symmetric form,  in which no slope constraint is employed 
(that is P = 0), is shown here. 

Initial  condition: 

g ( l , 1 ) = 2 d ( l ,  1 ) .  

DP-equation: 

Restricting condition  (adjustment window): 

Time-normalized distance: 

1 D ( A ,  B) = g ( I ,  J ) ,  where N = I t J. (22) 

Calculation details are briefly depicted  in  Section 111-€3. 

The algorithm, especially the  DP-equation,  should be modified 
when the asymmetric form is adopted  or some slope constraint 
is employed. In Table I ,  algorithms are summarized for  both 
symmetric  and  asymmetric  forms,with various slope constraint 
conditions.  In  this  table,  DP-equations  for asymmetric forms 
are shown in some improved  form. The first expression in  the 
bracket of  the asymmetric  form  DP-equation  for P = 1 (that is, 
g(i - 1 ,  j - 2)  t (d(i ,  j - 1) + d ( i ,  j ) ) /2 )  corresponds to 
the case  where c(k - 1 )  = ( i (k ) ,  j (k)  - 1) and c(k  - 2 )  = 
(i(k - 1) - 1 ,  j (k  - 1 )  - 1 ) .  Accordingly, if the  definition  in 
(14) is strictly  obeyed, w(k)  is equal to  zero while w(k - 1) is 
equal to 1 ,  thus completely omitting  the d(c(k)) from  the 
summation.  In  order to avoid this  situation to a certain extent, 
the  weighting coefficient w(k - 1 )  = 1 is  divided between two 
weighting coefficients w(k - 1) and w(k).  Thus, (d( i ,  j - 1) + 
d( i ,  j ) ) /2  is substituted  for d( i ,  j - 1) + 0 * d( i ,  j )  in  this  ex- 
pression. Similar modifications are applied to other  asymmetric 
form  DP-equations.  In fact,  it has been established, by a pre- 
liminary experiment,  that this  modification significantly im- 
proves the asymmetric form performance. 

B. Calculation Details 
DP-equation  or g(i ,  j )  must  be  recurrently calculated in as- 

cending order  with respect to coordinates i and j ,  starting  from 
initial condition at (1, 1 )  up to ( I ,  J ) .  The domain  in which 
the  DP-equation  must be calculated is specified by 

1s is I ,  15 j z  J :  

and 

j - r 5 i 5 j t r (adjustment window). 

A practical procedure  for calculating the time-normalized 
distance is shown in Fig. 4 as a flowchart. 

IV. EXPERIMENTS AND RESULTS 
A. Experiment Outline 

In  order to quantitatively evaluate various types of  DP- 
matching, several recognition experiments were conducted. 
The speech analyzer used through these experiments was a 10- 
channel bandpass filter  bank  which covered up to a 5.9-kHz 
frequency range.  The output  ofeach channel was time-sampled 
every 18 ms and was  digitized in  order  that  it could be fed  into 
the digital computer (NEAC-3100). Automatic gain control 
effect was  realized  by  dividing each  filter output level  by their 
sum total,  at every sampling period.  The so-called time- 
frequency  amplitude  pattern thus obtained was stored on a 
digital magnetic tape file. Recognition  experiments were con- 
ducted  for the speech pattern read out of this file. The recog- 
nition scheme  used  was the  forced decision pattern matching 
method, where the  input  pattern (unknown) was decided to 
be of the same category as the reference pattern to which  the 
maximum coincidence (that is the minimum time-normalized 
distance) was achieved. Distance d( i ,  j )  was  measured  by the 
Chebyshev norm, which was employed  in the previous work 
(21 . Reference patterns were adapted to each speaker. That 
is, one  repetition of the complete  vocabulary,  pronounced by 
each  speaker, was used as the reference patterns  for  each 
speaker. 
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TABLE I 
SYMMETRIC AND ASYMMETRIC DP-ALGORITHMS WITH SLOPE CONSTRAINT CONDITION P = 0, 4, 1, AND 2 

I 
Schematic 

DP-equation 4 explanation 

Symmetric 

g(i, j) = 

Symmetric min g(i-l,j-l)+2d(i,j) [ 1 g(i,j-I)+d(i,j) 

g(i-l,j)+d(i,j) 

Asymmetric 
g(i-l,j)+d(i,.i) 1 

Symmetric 

Asymmetric 

g(i-l,j-3)+2d(i,j-2)+d(i,j-l)+d(i,j) 
g(i-l,j-2)+2d(i,j-l)+d(i,j) 

g(i-2,j-l)+2d(i-l,J)+d(i,j) 
g(i-3,j-1)+2d(i-Z,~)+d(i-l,j)+d(i,j) 

g(i-l,j-2)+(d(i,j-l)+d(i,j))/2 

g(i-Z,j-l)+d(i-l,;)+d(i,J) 
g(i-3,j-l)+d(i-2,~)+d(i-l,j)+d(i,j) 

1 

Symmetric  min g(i-l,j-l)+2d(i,j) [ 
g(i-l,j-2)+2d(i,j-l)+d(i,j) 

g(i-2,j-l)+2d(i-l,j)+d(i,j) 

g(i-l,j-2)+(d(i,j-l)+d(i,j))/2 

g(i-2,j-l)+d(i-l,j)+d(i,j) 1 Asymmetric 

~ Symmetrlc 1 mi: [(i-l,j-l)+2d(i,j) ] , 1 g(i-2,j-3)+2d(i.-I,j-2)+2d(i,j-l)+d(i,j) 

g(i-3,j-2)+2d(j-2,j-1)+2d(i-l,j)+d(i,j) 

g(i-2,j-3)+2(d(i-l,j-2)+d(i,j-l)+d(i,j))/3 
g(i-l,j-l)+d(i,j.) 
g(i-3,j-2)+d(i-2,j-l)+d(i-l,j)+d(i,j) 

2 

Asymmetric 

Experiments were conducted  in  three parts. The first part 
was carried out with the objectives of comparing  the perfor- 
mances  of  symmetric  form  DP-matching  and  asymmetric  form 
DP-matching,  and  optimizing  the  slope  constraint  condition. 
In  the  second  part,  further  optimization  of  the slope con- 
straint  condition was investigated. In  the final part  of  the 
experiments,  the  algorithm  thus  optimized was compared  with 
several  DP-algorithms proposed  by different research  groups. 

B. Experiment ( I )  
The  objective  of this experiment was to compare  symmetric 

form DP-matching and  asymmetric  form  DP-matching perfor- 
mances,  and to determine the best  compromise for  the  slope 
constraint  intensity  (parameter P). Speech  data used in this 
experiment were Japanese digit words (see Table 11) isolatedly 
spoken  by 10 male speakers. Six repetitions  of the 10 digit 
words were  made  by each  speaker.  Then, for each  speaker, 
each  of  the six repetitions was  used  as a reference  pattern 
set.  For  each  reference  pattern  set,  the remaining  five repeti- 
tions were supplied to recognition.  Therefore, 10 (persons) 
X 6 (reference pattern sets) X 50 (input patterns) = 3000 
(recognition tests) were conducted. The DP-matching  sub- 
jected to this experiment covered both symmetric  and  asym- 
metric  forms,  with  slope  constraint  condition  of P = 0, i, 1 ,  
and 2. In  each case, window  length r was set equal to 6 ,  which 
covered the  utmost +lo8 ms timing difference. A linear time- 
normalization  method was also tested where  the  time axis of 
the  input  pattern was adjusted to that of  the  reference pattern 
with linear transformation. 

Results are shown in Fig. 5 as two error rate curves. In this 

S t o r t   i = i  , 1.1 
Initio1  condition - i = i + l  

DP- equation 

Fig. 4. DP-matching flowchaxt. 

figure, it can  be  seen that  the performance  of  the  asymmetric 
form  DP-matching is evidently inferior to  that of the  symmetric 
one,  and  that  the  difference in performance  between  them 
tends to vanish gradually as the slope  constraint is intensified. 
It can  also  be  seen that symmetric form DP-matching perfor- 
mance is utterly  unaffected by a  slope  constraint  of  up to 
P = 1. On the  other  hand,  the asymmetric  form  DP-matching 
performance is  very effectively improved  by  slope  constraint. 
The optimum  condition is P =  1. When the  slope  constraint 
is intensified beyond P = 1 ,  the performance  of  the  asym- 
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TABLE I1 
TEX JAPANESE DIGITS AND THEIR PHOXEMIC TRANSCRIPTIONS 

0 9 a 7 5 6  4 3 1 2  

rei k j u  hatji T~BM roku go jon san n i  i t j i  

metric form, as  well  as that of the symmetric one tends to 
be degraded. Since extremely intensified slope constraint 
does not give any time-normalization,it is naturally understood 
that  further growth  in slope constraint will result in some 
worse performance than  that of linear time-normalization 
method (0.8 percent  error). 

C. Experiment (11) 
In order to  further examine the effect of the slope constraint 

on  the symmetric form DP-matching performance,  another ex- 
periment was carried out for a 50-Japanese geographical name 
vocabulary. This vocabulary includes such confusing pairs of 
words as “Chiba”-“Shiga”, “0kayama”-“Wakayama”, 
“Fukushima”-“Tokushima”,  and “Hyogo”-“Kyoto”. Each of 
two male speakers and two female speakers uttered six repeti- 
tions of the complete vocabulary. The first  repetitions of each 
speaker were used as the reference patterns. The remaining 
five repetitions of each speaker were used as unknown input 
patterns,  thus providing 4 (persons) X 50 (vocabulary size) X 
5 (repetitions) = 1000 (recognition tests). The window length 
r here was set equal to 8, which covered utmost k144 ms 
timing difference. 

Results are shown in Fig. 6 for each of the slope constraint 
conditions. These results show that  the slope constraint  has  a 
marked effect  on the performance of the symmetric form DP 
matching, too. Optimum performance is also attained at P = 1. 

D. Experiment (111) 
Various DP-algorithms have been applied to spoken word 

recognition, by different research groups. Four typical ones, 
including those proposed by Sakoe and Chiba [3] , Velichko 
and Zagoruyko [4] , White and Neely [SI , and Itakura [6]  , 
were subjected to comparison with the algorithms described 
in this  paper. Details of each algorithm are summarized in 
Table 111. Some modifications were made to equalize the 
experimental condition,  but these modifications are not harm- 
ful to time-normalizing abilities of algorithms. Both the 
Japanese digit data and Japanese geographical name data were 
again used as test data. Results are shown in Table IV. From 
these results, it can be observed that the symmetric form DP- 
matching with slope constraint P = 1, described in  this  paper, 
is the best of various DP-algorithms applied to spoken word 
recognition. 

V. DISCUSSIONS 
From the results shown in Fig. 5, it can be observed that 

the  symmetric  form DP-matching performance is significantly 
superior to  that of the asymmetric one. It can also be seen 
that  the difference in performance between them  tends to 
decrease as the slope constraint grows. These observations 
completely agree with the theoretical discussions presented 
in  Section II, indicating the validity of this investigation. 
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Fig. 5. Experiment (I) results (for Japanese digit words). 
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Fig. 6. Experiment (11) results (for 50 Japanese geographical names). 

From Figs. 5 and 6, it can be determined that the slope con- 
straint  condition  with P =  1 is the  optimum  point for  both 
symmetric and asymmetric forms. Moreover, as can  be seen 
from Table I, the  DP-equation  for P = .1 is of the most simple 
form, next to  that  for P = 0. Thus,  the slope constraint  con- 
dition  with P = 1 is favorable for  computational economy, 
as well as for best performance. The slope constraint hardly 
affects the performance of the  symmetric  form DP-matching 
in case of Japanese digit vocabulary. This is perhaps due to 
the fact that,  in case  of Japanese digit words, the vocabulary 
size is so small and the separation between  the words in  the 
vocabulary is inherently so good that an optimally high recog- 
nition accuracy was achieved  even without slope constraint. 
Nevertheless, the usefulness of the slope constraint  for the 
symmetric form was established by the experiment  on  the 
Japanese geographical name data. Summing up these discus- 
sions, the symmetric form  with slope constraint  condition 
P = 1 is the optimum  condition, when the speech patterns 
are time-sampled with  a common and uniform sampling 
period. 
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TABLE 111 
FOUR VARITIES OF DP-ALGORITHMS  SUBJECTED TO COMPARISON I N  EXPERIMENT (111) 

Algorithm 
Initial 

Sakoe and 

d l ,  1) = 
Coefficient  N Condition 

DP-equation Normalization 

g(i-1, 

Chiba (31 

Velichko and 

Zagoruyko [4] 
a(1’ ’) 

g(i, j )  = 

+ d(i, j )  
d(1, 1) 1) + d(i, j) I 

2 )  + d(i, j) 1 
g(i, j-1) 

g(i-1, j )  1 max [I, J I 

where a(i, j )  = 1-d(i, j )  

White and 

Neely (51 g(i,  j-1) + d(i, J 
d(1, 1)  g(i-1,  j-1) + d(i!)j) (1 + J) 

g(i-1, j) + d(i, j )  

d(1, 1)  g(i-1, j-1) + d(i, J )  I 
g(i-1,  j)l+al. d(i,,j) 

g(i-1, j - 2 )  + d(i, j) 1 Itakura [6J 

where a = - (i(k-1) = i(k-2)) 

a = 1 (i(k-1) ~f i(k-2)) 

The  optimized  algorithm was experimentally  compared  with 
several DP-algorithms,  including  those  reported  by  other re- 
search  groups,  Results  show that  the present  algorithm gives 
considerably  better  performance,  for both Japanese digit data 
and  Japanese  geographical name data. This superiority can be 
attributed to careful investigations made to realize a  pattern 
matching  algorithm  with rational characteristics of comparing 
each  part of speech pattern evenly  as far as possible. 

As for  the  computational  time,NEAC-3100  computer  (index 
modified  addition/substruction  execution  time is 8 ps )  required 
about 3 s for each digit word  recognition  and  about 30 s for 
geographical  name recognition. These computational  times 
scarcely depended  upon the employed  DP-equation.  Recent 
high-speed digital integrated circuit devices and pipeline pro- 
cessor techniques made it feasible to realize the real time DP- 
matching  operation.  Actually,  a  DP-matching  processor  has 
been  constructed  which recognizes 60 geographical names 
in 300 ms after  the  utterance [8]. 

VI. CONCLUSIONS 

The optimum  DP-algorithm,  applied to speech  recognition, 
was investigated, Two  forms  of  pattern  matching method, 
symmetric  and  asymmetric  forms, were proposed along with 
a new technique called slope  constraint. These varieties were 
then  compared  through theoretical and  experimental investiga- 
tions. Conclusions are  as follows. 

1) The symmetric  form gives better recognition  accuracy 
than  the asymmetric  form. 

2) Slope  constraint is actually effective. Optimum perfor- 
mance  is attained  when  the  slope  constraint  condition is P = 1. 

The validity of these results was ensured by a good  agreement 
between theoretical discussions and  experimental results. 

The optimized  algorithm was then  experimentally  compared 
with several other  DP-algorithms  applied to spoken  word 
recognition by different research  groups,  and  the superiority 
of the  algorithm  described in this  paper was established. 
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TABLE IV 
EXPERIMENT (111) RESULTS 

Japanese digit words 50 Japanese 
Geographical  names 

Sakoe and Chiha 
Symmetric P = 1 
[in this paper] 

Sakoe and Chiba 
Asymmetric P = 1 
(in this paperJ 

Sakoe and Chiba 
(31 0.3 1.5 

Velichko and 
Zagoruyko [4] I 2.0 

m i t e  and 
Neely [SJ I 0.33 

Itakura C6] 

5.9 0.87 Linear method 

1.3 0.4 
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