
Logic & Constraint Prog.

About Prolog search strategy

IENAC S Sept. 2015



Unification

Logic programming emerged from the procedural interpretation of
logic formulas of the form:

p(X1, . . . , Xn)← ϕp

which can be read:
“In order to prove p(X1, . . . , Xn), it is sufficient to prove ϕp.”



Unification

Logic programming emerged from the procedural interpretation of
logic formulas of the form:

p(X1, . . . , Xn)← ϕp

which can be read:
“In order to prove p(X1, . . . , Xn), it is sufficient to prove ϕp.”

Q: What if we try to prove p(t1, . . . tn), where t1, . . . , tn are terms ?



Unification

Logic programming emerged from the procedural interpretation of
logic formulas of the form:

p(X1, . . . , Xn)← ϕp

which can be read:
“In order to prove p(X1, . . . , Xn), it is sufficient to prove ϕp.”

Q: What if we try to prove p(t1, . . . tn), where t1, . . . , tn are terms ?
A: Replace the Xis with the tis in ϕp



Unification

Logic programming emerged from the procedural interpretation of
logic formulas of the form:

p(X1, . . . , Xn)← ϕp

which can be read:
“In order to prove p(X1, . . . , Xn), it is sufficient to prove ϕp.”

Q: What if we try to prove p(t1, . . . tn), where t1, . . . , tn are terms ?
A: Replace the Xis with the tis in ϕp

Q: What if there are terms in the head of the rule? p(u1, . . . , un)← ϕp



Unification

Logic programming emerged from the procedural interpretation of
logic formulas of the form:

p(X1, . . . , Xn)← ϕp

which can be read:
“In order to prove p(X1, . . . , Xn), it is sufficient to prove ϕp.”

Q: What if we try to prove p(t1, . . . tn), where t1, . . . , tn are terms ?
A: Replace the Xis with the tis in ϕp

Q: What if there are terms in the head of the rule? p(u1, . . . , un)← ϕp

A: try to unify (match) the ui’s and the ti’s, and make the appropriate
substitutions in ϕp

Example p(X, [X, Y,X ]) can be unified with p(2, L):
2→ X, [2, Y, 2]→ L.



Non terminating queries

Directed graph = binary relation⇒ predicate edge/2:
edge(X, Y ) is true if there is an edge between from vertice X to vertice
Y .
edge(a, c). edge(a, d).
edge(c, e). edge(e, f ).
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Non terminating queries : Retrieval in a graph
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Definition of a predicate path/2, such that path(X, Y ) is true if there
is a path, of any length, from X to Y :
(Hint: there must an edge from X to Y , or an edge from X to some
Z from which...)
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Directed graph = binary relation⇒ predicate edge/2:
edge(X, Y ) is true if there is an edge between from vertice X to vertice
Y .
edge(a, c). edge(a, d).
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Definition of a predicate path/2, such that path(X, Y ) is true if there
is a path, of any length, from X to Y :
(Hint: there must an edge from X to Y , or an edge from X to some
Z from which...)
path(X, Y )← edge(X, Y ) ∨ (edge(X,Z) ∧ path(Z, Y )).
Draw the search trees for the following queries:
path(a, e)? path(e, a)? path(a, U)?

Now, draw the search trees for the query path(a, f )? if we re-define
path/2 as follows:
path(X, Y )← edge(X, Y ) ∨ (path(X,Z) ∧ edge(Z, Y )).



Non terminating queries : Retrieval in a graph

Is it better with the following definition?
path(X, Y )← edge(X, Y ) ∨ (edge(Z, Y ) ∧ path(Z, Y )).
⇒ In general, it is better to instantiate variables before the recursive
call(s).



Prolog negation is not logical negation (again)

Consider the previous graph, but suppose edges mean “attacks” be-
tween nodes. We say that a node is safe if:
• it is not attacked at all; or
• it is not attacked by any safe node.

Prolog definition: safe(X)← ¬(edge(Y,X) ∧ safe(Y )).

Draw the search tree for the following queries:
safe(a)? safe(c)? safe(f )? safe(U)?
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In some typical applications of graph traversal (e.g. a route planner)
one does not only want to check if there is a path from X to Y , but
also to return that path.
We do not know the length of the path in advance⇒ store it in a list
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Recursive predicates that “construct” a list

In some typical applications of graph traversal (e.g. a route planner)
one does not only want to check if there is a path from X to Y , but
also to return that path.
We do not know the length of the path in advance⇒ store it in a list
⇒ Define a predicate path/3 such that path(X, Y, P ) is true if P is a
list of vertices on a path from X to Y :
path(X, Y, P )← edge(X, Y ) ∧ P = [ ]

∨(edge(X,Z) ∧ path(Z, Y, P1) ∧ P = [Z|P1]).

Draw the search tree for the queries path(a, e, P ), path(a, b, P ) and
path(a, f, P ).

Exercise 1 On the graph example again.

Question 1.1 What happens if we add an edge from c to a?

Question 1.2 Re-define your predicate path/3, so that it is still complete
when the graph has cycles.
(Hint: use a list of “forbidden” nodes, and an intermediate predicate
path/4.)



Recursive predicates that “construct” a list

Exercise 2 Write definitions for the following predicates to manipu-
late lists:
select/3: a predicate that can be used to “delete” an occurrence of an

element of a list. For instance, to the query select(X, [a, b, c, a], R)
Prolog should answer:
X = a ∧ R = [b, c, a] ∨ X = b ∧ R = [a, c, a] ∨ X = c ∧ L =
[a, b, a] ∨X = a ∧ L = [a, b, c].

concat/3: concat(L,M,R) is true if R is the list that contain the ele-
ments of L followed by those of M .

Exercise 3 Define a predicate to compute the length of a list, and
anoter predicate to generate a list of a given length.



When the result is at a leaf of the Prolog’s search tree

It often happens that the result that we want to construct is only
available at the leaves of the search tree.
Suppose for instance that we want a predicates that can “reverse” a
list:
reverse([a, b, c], R)⇒ R = [c, b, a]

First solution with append: append(L1, L2, L3) is true if “L3 = L1.L2”.
reverse(L,M)← L = [ ] ∧M = [ ]
∨ L = [X|R] ∧ reverse(R, S) ∧ append(S, [X ],M).

Number of operations in O(|L|2).
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Better solution?
reverse(L,M)← L = [X|R]∧ reverse(R, [X|M ]) . . .
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Better solution?
reverse(L,M)← L = [X|R]∧ reverse(R, [X|M ]) . . .
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reverse([b, c], [a|M ])

reverse([c], [b, a|M ])



When the result is at a leaf of the Prolog’s search tree

Better solution?
reverse(L,M)← L = [X|R]∧ reverse(R, [X|M ]) . . .

reverse([a, b, c],M) ?

reverse([b, c], [a|M ])

reverse([c], [b, a|M ])

reverse([ ], [c, b, a|M ])



When the result is at a leaf of the Prolog’s search tree

Better solution?
reverse(L,M)← L = [X|R]∧ reverse(R, [X|M ]) . . .

reverse([a, b, c],M) ?

reverse([b, c], [a|M ])

reverse([c], [b, a|M ])

reverse([ ], [c, b, a|M ])

With an accumulator:
reverse(L,A,M)← L = [X|R] ∧ reverse(R,[X|A],M) ∨ L = [ ] ∧M = A
reverse(L,M)← reverse(L, [ ],M)
Number of operations in O(|L|)

Remark The predicates member/2, append/3, select/3 and reverse/2 are
usually predefined in Prolog.



List of solutions

Sometimes we would be happy to compute a list of all solutions to a
given predicate.
Suppose for instance we want all movies directed by Woody Allen,
sorted in alphabetical ordering.
?? Difficult:
• all solutions to the query director(’Allen, Woody’,M) are in differ-

ent branches of Prolog’s search tree
• all branches of the search tree are independent of one another



List of solutions

Good implementations of Prolog provide a meta-predicate that lists
solutions to a given query:
findall(T,G(T ), L): here G(T ) means that G is goal (formula) in which

the term T appears; then the call will
• call the goal B;
• for each solution found, instanciate the term T according to

the solution;
• construct the list L of these instances T .

For instance, with the movie database excerpt:
findall(A, directed(’Fatih Akin’, A), L)?⇒ L = [’Adam Bousdoukos’, ’Moritz Bleibtreu’, ’Anna Bederke’]
findall([D,M, Y ], director(D,M), L).⇒ L = . . .



List of solutions

bagof(T,G(T ), L): similar to findall, but the results are grouped ac-
cording to the values of variables of G which do not appear in
T

On the example: bagof(A, directed(D,A), L)?⇒ . . .

Exercise 4 Consider the graph above again: define a predicate reach-
able/2, such that reachable(X,L) is true if L is the list of vertices to
which there is a path from X.
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One disadvantage of recursion compared to iteration is that, in gen-
eral, a recursion necessitates to store in a stack that the successives
values of the parameters with which the recursive predicate is called.
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Last call optimization

One disadvantage of recursion compared to iteration is that, in gen-
eral, a recursion necessitates to store in a stack that the successives
values of the parameters with which the recursive predicate is called.
For instance, consider the following program, that prints on the screen
the integers from X to N :
count(X,X).
count(X,N)← X < N ∧ write(X) ∧ Y isX + 1 ∧ nl ∧ count(Y,N).

The querycount(1, 1000000) works fine
But if we define a predicate to count backwards:

revcount(X,X).
revount(X,N)← X<N∧YisX+1∧ revcount(Y,N)∧write(Y )∧nl

the query revount(1,1000000) leads to a crash: stack overflow!



Last call optimization

Explanation Most compilers for functional / logic programming lan-
guages are able to transform a recursion into an iteration, if the re-
cursive call is the last one in the rule.
In prolog, the recursion is usually transformed into an iteration if:
• the recursive call is the last one in the rule, and
• no other rule can be tried after the recursive call

(the other rules must therefore in general appear before the re-
cursive one

• no more backtrack is possible with the other goals in the rule



Generate and test
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Generate and test : The “Map coloring” example
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Choose a color for each region, so that no
two adjacent regions have the same color.
3 colors: green, orange, purple
(Is it possible with less colors?)

solution(A,B,C,D,E)← generate(A,B,C,D,E) ∧ test(A,B,C,D,E).
generate(A,B,C,D,E)←

color(A) ∧ color(B) ∧ color(C) ∧ color(D) ∧ color(E).
color(X)← X = green ∨X = purple ∨X = orange.
text(A,B,C,D,E)← A 6= B ∧B 6= E ∧ E 6= D ∧D 6= A
∧ C 6= A ∧ C 6= B ∧ C 6= E ∧ C 6= D.



Generate and test : The “Map coloring” example

C

A B

D E

Choose a color for each region, so that no
two adjacent regions have the same color.
3 colors: green, orange, purple
(Is it possible with less colors?)

solution(A,B,C,D,E)← generate(A,B,C,D,E) ∧ test(A,B,C,D,E).
generate(A,B,C,D,E)←

color(A) ∧ color(B) ∧ color(C) ∧ color(D) ∧ color(E).
color(X)← X = green ∨X = purple ∨X = orange.
text(A,B,C,D,E)← A 6= B ∧B 6= E ∧ E 6= D ∧D 6= A
∧ C 6= A ∧ C 6= B ∧ C 6= E ∧ C 6= D.

⇒ How many leaves does the search tree have?
(In general, this problem is called graph coloring.)



Exercises

Exercise 5 Consider the movie database. Let us define the degree
of movie separation between two actors or actresses A1 and A2 as
follows: it is 0 if they played in the same movie at least once; it is 1 if
they did not play in the same movie, but played in movies that have
at least one common actor or actress; it is 2 if it is not 1 and there
are two other actors or actresses B1 and B2 who played in the same
movie, and such that A1 and B1 (respectively A2 and B2) played in
the same movie; and so on. . . That is, it is the length of the shortest
“movie path” between them. By definition, the degree will be infinite
if there is no “movie connection” between two persons.



Exercises : On graph traversal

Question 5.1 Define a predicate that can be used to find actors and
actresses who have a degree of movie separation of 2 with a given
actor or actress A.
Question 5.2 Define a predicate that can compute the degree of movie
separation between two given actors or actresses.



Exercises : On graph traversal

Exercise 6 The ”flights” prolog database 1 contains Prolog facts with
the following information:

• flying times, for instance
vol(it, 386, blagnac, cdg, [14, 30], [15, 30])
indicates that flight 386 of the company “it” takes off from Blagnac
airport at 14h30 and lands at Charles-de-Gaulle at 15h30; in par-
ticular, times of the day are represented using lists giving the hour
and minutes.

• flight prices, for instance
tarif(it, toulouse, paris, 500)
indicates that a ticket to fly from Toulouse to Paris with “it” costs
500e;

• the cost of airport taxes, for instance
taxe(toulouse,100)
indicates that every passenger using an airport in Toulouse must
pay a 100etax every time;

1www.irit.fr/˜Jerome.Mengin/prolog/vols-payants-bd.pl



Exercises : On graph traversal

• location of airports, for instance
aeroport(toulouse, blagnac)
indicates that Blagnac airport is near Toulouse.

Question 6.1 Load the file, and submit queries to get: all flight num-
bers from Blagnac to Orly, flight numbers from Marseille to Paris, all
London airports.

Question 6.2 Define a relation directConnection/4 such that connection(AD, HD, AA, HA)
is true if there is a direct flight from airport AD to airport AA leaving
after time HD and arriving before HA.

Question 6.3 Define now a relation route/4 such that route(AD, HD, AA, HA)
is true if there is a sequence of flights to go from airport AD to airport
AA leaving after time HD and arriving before HA. In case of stopovers,
there must be at least 30 minutes if flights arrive and start from the
same airport, and 2 hours if one must change airport in the same city.

Question 6.4 Extend the preceding relation so that one can get the
price of the ticket, and the itinerary. (Airport taxes are paid for the
starting and arrival airports, as well as once for each stopover.)



Exercises : On graph traversal

Exercise 7 Once upon a time a farmer went to the market and pur-
chased a fox, a goose, and a bag of beans. On his way home, the
farmer came to the bank of a river and hired a boat. But in crossing
the river by boat, the farmer could carry only himself and a single
one of his purchases - the fox, the goose, or the bag of the beans.
If left alone, the fox would eat the goose, and the goose would eat
the beans. The farmer’s challenge was to carry himself and his pur-
chases to the far bank of the river, leaving each purchase intact.2 You
are asked to write a Prolog program to discover how he did it. More
precisely, you must define a predicate that computes a sequence of
crossings that leads from the initial state (the farmer and his goods
on one side of the river) to the final state (the farmer and his goods
on the other side). A state of the problem can be described with a
lists of the elements on the initial side of the river. For instance, the
initial state could be described by [f, g, x, c]. The main predicate of
your program, plan/1, must be defined so that the query:
?− plan(L).

2en.wikipedia.org/wiki/Fox, goose and bag of beans puzzle



Exercises : On graph traversal

yields a list of successive states that lead from the initial state to the
final state: L = [ [f, x, g, c] , [x, c] , [f, x, c] . . . [ ] ].

Question 7.1 Define a predicate safeState/1 such that safeState(E) is
true if E represents a state where the fox is not left alone with the
goose, and the goose is not left with the corn. (Use the built-in pred-
icate member/2.)

Question 7.2 Define a predicate crossing/2 such that crossing(E1, E2) is
true if it is possible to change from state E1 to state E2 with a single
crossing of the farmer, with or without one good. (Use the built-in
predicate select/3.)

Question 7.3 Define a predicate plan/4 such that plan(I, F, P,N) is true
if it possible to go from state I to state F with the states in the list
P as intermediary states, without going through the states in the list
of forbidden states N . (Note: checking that a state is not in N is not
trivial, since there are different possibilities to describe one state; for
instance, [f, x, c] and [x, f, c] may refer to the same state.)

Question 7.4 Finally define plan/1: plan(P ) must be true if P is a



Exercises : On graph traversal

sequence of states that describe a valid plan from the initial state to
the final state.



Exercises : On list operations

Exercise 8 You are asked to write a program that analyses how some
objects are composed of other objects: their components, that can
themselves be decomposed into components. A small database con-
tains, for each object, the list of its components, using a relation com-
ponents/2: components(O,L) is true if L is the list of components of
object O.
components(a, [b, c, d, c]). components(b, [e, f ]). components(f, [g, e]). components(c, [h, h, h]).
Thus a has four components, two of type c ; b can itself be decom-
posed, as well as c and f , whereas d, e, g and h are elementary com-
ponents.
Question 8.1 Define a predicate allComp/2, such that allComp(O,L) is
true if L is the list of all the components, elementary or not, that con-
stitute object O - including O itself. For instance, the query allComp(a, U)
should yield the answer U = [a, b, e, f, g, e, c, h, h, h, d, c, h, h, h]. (The
built-in predicate append/3 can be useful.)
Question 8.2 Define a predicate compEl, such that compEl(O,L) is true
if L is the list of elementary components of object O. For instance,
the query compEl(a, U) should yield U = [e, g, e, h, h, h, d, h, h, h].



Exercises : On the “Generate & test paradigm”

Exercise 9 Ann, Bill, Charlie, Don, Eric own one box each but we
don’t know which box. We know the size and color of each box: one
box is of size 3 and black; one is of size 1 and black; one is of size
1 and white; one is of size 2 and black; the last one is of size 3 and
white. We also have some information about the characteristics of
the boxes owned by each person :
• Ann and Bill have boxes with

the same colour;
• Don and Eric have boxes with

the same colour;

• Charlie and Don have boxes
with the same size;

• Eric’s box is smaller than Bill’s.

We want to know who owns which box. In order to solve the problem,
you can:
1. Write a Prolog database with the characteristics of the boxes, as-

sociating a number to each box, for instance: box(2, 1, black) rep-
resents that the second box is of size 1 and black;

2. Write a predicate to compute the solution of the problem: solution(A,B,C,D,E)
must be true if A is the box owned by Ann, B the one owned by
Bill, and so on. . .



Exercises : On the “Generate & test paradigm”

Exercise 10 The arithmetic cryptographic puzzle: Find distinct digits
for S, E, N, D, M, O, R, Y such that S and M are non- zero and the
equation SEND+MORE=MONEY is satisfied.


