
M2-CSA: Validation & Certi�cation:
Timed Automata, Abstract Interpretation

Jan-Georg Smaus

Université de Toulouse/IRIT

Year 2021/2022

1 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Introductory Remarks

Plan

1 Introductory Remarks

2 Timed Automata

3 Abstract Interpretation

2 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Introductory Remarks

Introduction Lecture by Erik Martin-Dorel

�Jan-Georg Smaus: Model Checking / Deductive Veri�cation�

Plan: Abstract interpretation, timed automata modelling (not so much
model checking; this was done during M1 in �Introduction to Embedded
Systems�).

3 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Introductory Remarks

Introduction Lecture by Erik Martin-Dorel

�Jan-Georg Smaus: Model Checking / Deductive Veri�cation�
Plan: Abstract interpretation, timed automata modelling (not so much
model checking; this was done during M1 in �Introduction to Embedded
Systems�).

3 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata

Plan

1 Introductory Remarks

2 Timed Automata
Basics
Composition of Timed Automata
Basics of the Tool Uppaal
Semantics
Regions
Case Study: LEGO Mindstorm

3 Abstract Interpretation

4 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Basics

Plan

1 Introductory Remarks

2 Timed Automata
Basics
Composition of Timed Automata
Basics of the Tool Uppaal
Semantics
Regions
Case Study: LEGO Mindstorm

3 Abstract Interpretation

5 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Basics

Acknowledgements

The slides of this chapter are based on slides written by Mamoun
Filali-Amine.

6 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Basics

Real-time (timed) models

Recall:

Temporal models: we have a concept of time as a sequence of
timepoints, i.e., the notion �X happens before Y�.

Timed or real-time models: we have a quantitative concept of time,
i.e., events happen �at a certain time�.

Here we consider real-time models exempli�ed by the formalism of timed
automata presented in Uppaal style.

Exercise 1

Where does the name �Uppaal� come from?

7 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Basics

Example

pstart q

y < 4, a, x = 0

c , y = 0

x == 5, b

locations (for usual automata: states): p, q.

edges p → q, q → q, q → p.
edge p → q

guard:y < 4 action : a reset : x = 0

edge q → q

guard:true action : c reset : y = 0

edge q → p

guard:x == 5 action : b

8 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Basics

Timed automaton run

pstart q

y < 4, a, x = 0

c , y = 0

x == 5, b

A state is given by a location plus the values of all clocks, e.g.

 p

3.2
3.2

.

A run is a sequence of alternating delay and discrete transitions: p

0.0
0.0

 delay−−−→
3.2

 p

3.2
3.2

 discrete−−−−→
a

 q

0
3.2

 delay−−−→
1.9

 q

1.9
5.1

 discrete−−−−→
c

 q

1.9
0.0

 delay−−−→
3.1

 q

5.0
3.1

 discrete−−−−→
b

 p

5.0
3.1


Note that the guards are ful�lled at each discrete transition.

9 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Basics

Timed automaton run

pstart q

y < 4, a, x = 0

c , y = 0

x == 5, b

A state is given by a location plus the values of all clocks, e.g.

 p

3.2
3.2

.

A run is a sequence of alternating delay and discrete transitions: p

0.0
0.0

 delay−−−→
3.2

 p

3.2
3.2

 discrete−−−−→
a

 q

0
3.2

 delay−−−→
1.9

 q

1.9
5.1

 discrete−−−−→
c

 q

1.9
0.0

 delay−−−→
3.1

 q

5.0
3.1

 discrete−−−−→
b

 p

5.0
3.1


Note that the guards are ful�lled at each discrete transition.

9 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Basics

Timed automaton trace

Given a run, e.g. p

0.0
0.0

 delay−−−→
3.2

 p

3.2
3.2

 discrete−−−−→
a

 q

0
3.2

 delay−−−→
1.9

 q

1.9
5.1

 discrete−−−−→
c

 q

1.9
0.0

 delay−−−→
3.1

 q

5.0
3.1

 discrete−−−−→
b

 p

5.0
3.1


a trace simply collects all the actions plus their absolute occurrence times.
In this example: (a, 3.2)(c , 5.1)(b, 8.2). We call such a sequence a timed
word.
Each absolute occurrence time is simply the sum of all previous delays, e.g.
8.2 = 3.2 + 1.9 + 3.1.

10 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Basics

Exercise

Exercise 2

Give a run whose trace is (a, . . .), (b, . . .), (a, . . .), (b, . . .).

11 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Basics

Timed automaton: De�nition

De�nition

A timed automaton A is a tuple (L, `o ,Σ,X ,−→, Inv) in which:

L is a �nite set of locations;

`o ∈ L is the initial location;

Σ is an alphabet of actions;

X is the set of clock variables or simply clocks (see later . . .);

−→ ⊆ L× C(X)× Σ× 2X × L is the set of edges (see later . . .);

Inv : L→ C(X) is the invariant mapping each location to a clock
constraint (see later . . .).

12 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Basics

Explanations

The domain of a clock is R+. A clock measures time in a continuous way.
Time advances implicitly. All the clocks are incremented synchronously.

De�nition (cont.)

−→ is the �edge relation� de�ned by a set of quintuples of
L× C(X)× Σ× 2X × L. A quintuple (`i , g , a,X

′, `f) is read as follows:

`i is the source location `f the target location of the edge;

g is the guard, which is a clock constraint;

a is the action label;

X ′ ⊆ X are the clocks to be reset when �ring the edge. In the
graphical representation we use assignments of the form x = 0 to
indicate the clocks to be reset.

Exercise 3

The domain of a clock is R+. What does this mean?
What does the notation 2X mean?

13 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Basics

Explanations

The domain of a clock is R+. A clock measures time in a continuous way.
Time advances implicitly. All the clocks are incremented synchronously.

De�nition (cont.)

−→ is the �edge relation� de�ned by a set of quintuples of
L× C(X)× Σ× 2X × L. A quintuple (`i , g , a,X

′, `f) is read as follows:

`i is the source location `f the target location of the edge;

g is the guard, which is a clock constraint;

a is the action label;

X ′ ⊆ X are the clocks to be reset when �ring the edge. In the
graphical representation we use assignments of the form x = 0 to
indicate the clocks to be reset.

Exercise 3

The domain of a clock is R+. What does this mean?
What does the notation 2X mean?

13 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Basics

Explanations (2)

An invariant is a clock constraint associated with a location `. It must hold
while the automaton is in `. The automaton must immediately exit ` just
before the invariant turns false due to the passing of time.

14 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Basics

Clock constraints

Clock constraints are generated by the following grammar:

C ::= x ./ c | C ∧ C

where ./∈ {≤, <,==, >,≥} and c is an integer and x is a clock from a
�nite set of clocks X .

Remark: The disjunction of two constraints (C ∨ C) or the negation of a
constraint(¬C) are not allowed.

Exercise 4

What does the notation ::= and | mean?
Can the restriction �C ∨ C forbidden� easily be circumvented?

15 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Basics

Constraint examples

x ≤ 5

x ≥ 3 ∧ y ≤ 9

x > 4 ∧ y == 10

x < 4 ∧ y ≤ 10

Questions:

Exercise 5

Forum!

Is x ≤ π a constraint?

Can we write x == 2?

Can we write ¬(x == 2)?

16 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Basics

Timed automaton run (repeated)

pstart q

y < 4, a, x = 0

c , y = 0

x == 5, b

De�ning a state slightly more formally:

A clock valuation is a function η : X → R+.
A state is a pair (location, clock valuation).
A run is a sequence of alternating delay and discrete transitions: p

0.0
0.0

 delay−−−→
3.2

 p

3.2
3.2

 discrete−−−−→
a

 q

0
3.2

 delay−−−→
1.9

 q

1.9
5.1

 discrete−−−−→
c

 q

1.9
0.0

 delay−−−→
3.1

 q

5.0
3.1

 discrete−−−−→
b

 p

5.0
3.1



17 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Basics

Timed automaton run (repeated)

pstart q

y < 4, a, x = 0

c , y = 0

x == 5, b

De�ning a state slightly more formally:
A clock valuation is a function η : X → R+.
A state is a pair (location, clock valuation).

A run is a sequence of alternating delay and discrete transitions: p

0.0
0.0

 delay−−−→
3.2

 p

3.2
3.2

 discrete−−−−→
a

 q

0
3.2

 delay−−−→
1.9

 q

1.9
5.1

 discrete−−−−→
c

 q

1.9
0.0

 delay−−−→
3.1

 q

5.0
3.1

 discrete−−−−→
b

 p

5.0
3.1



17 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Basics

Timed automaton run (repeated)

pstart q

y < 4, a, x = 0

c , y = 0

x == 5, b

De�ning a state slightly more formally:
A clock valuation is a function η : X → R+.
A state is a pair (location, clock valuation).
A run is a sequence of alternating delay and discrete transitions: p

0.0
0.0

 delay−−−→
3.2

 p

3.2
3.2

 discrete−−−−→
a

 q

0
3.2

 delay−−−→
1.9

 q

1.9
5.1

 discrete−−−−→
c

 q

1.9
0.0

 delay−−−→
3.1

 q

5.0
3.1

 discrete−−−−→
b

 p

5.0
3.1


17 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Basics

Exercise 6

Explain the previous slide in some words:

What is X in this example?

How is, e.g.,

 q

5.0
3.1

 a pair (location, clock valuation)?

18 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Basics

Timed automaton trace (repeated)

Given a run, e.g. p

0.0
0.0

 delay−−−→
3.2

 p

3.2
3.2

 discrete−−−−→
a

 q

0
3.2

 delay−−−→
1.9

 q

1.9
5.1

 discrete−−−−→
c

 q

1.9
0.0

 delay−−−→
3.1

 q

5.0
3.1

 discrete−−−−→
b

 p

5.0
3.1


a trace simply collects all the actions plus their absolute occurrence times.
In this example: (a, 3.2)(c , 5.1)(b, 8.2).
Each absolute occurrence time is simply the sum of all previous delays,
e.g. 8.2 = 3.2 + 1.9 + 3.1.

18 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Basics

Clock evolution

0 2 4 6 8

0

2

4

6

8

Time

C
lo
ck

V
al
u
e

The clock evolves with time. It can be reset, but afterwards in continues to
run immediately.

19 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Basics

Motivation for invariants

We have not looked at location invariants yet!
Consider a device that goes �Tick� initially and then again every second.

X = {x}
S1:

Initstart Active

Tick

x == 1,Tick,x = 0

Exercise 7

Does this timed automaton enforce the behaviour described above?

20 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Basics

Motivation for invariants (2)

S2:

Init
x ≤ 0

start
Active
x ≤ 1

Tick

x==1,Tick,x = 0

The invariant forces the automaton to stay in Active for at most one
second before taking the edge going �Tick�.

Exercise 8

What are the traces/runs of this automaton?

21 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Basics

A strange invariant

S2:

Init
x ≤ 0

start
Active
x ≥ 1

Tick

x==1,Tick,x = 0

Following [BY04], we require that invariants have the form x < c or x ≤ c

(downwards-closed invariants).
Reason: Invariants must be met when the location is entered and are there
to say when it is time to exit the location. So invariants must have a form
that ensures that they become false as time passes, not become true.

22 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Basics

A strange invariant

S2:

Init
x ≤ 0

start
Active
x ≥ 1

Tick

x==1,Tick,x = 0

Following [BY04], we require that invariants have the form x < c or x ≤ c

(downwards-closed invariants).
Reason: Invariants must be met when the location is entered and are there
to say when it is time to exit the location. So invariants must have a form
that ensures that they become false as time passes, not become true.

22 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Composition of Timed Automata

Plan

1 Introductory Remarks

2 Timed Automata
Basics
Composition of Timed Automata
Basics of the Tool Uppaal
Semantics
Regions
Case Study: LEGO Mindstorm

3 Abstract Interpretation

23 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Composition of Timed Automata

An example

bright

dim

off

x>10

press?
press?
x=0

x<=10
press?

press?

studyt
y<5

relax

idle

press!

press!

press!

y=0

y>10

press!press!
y=0

This is a model for a lamp that can be dimmed (�simple click�) or bright
(�double click�), and its user.

Exercise 9

What is the di�erence between �double clicking� and �clicking twice�?

24 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Composition of Timed Automata

The alphabet

For the purpose of composition, we consider several component automata
that share the clock set X and the alphabet Σ.
Σ contains a special symbol (action) τ which is used whenever a
component does a transition privately.
The symbols in Σ \ {τ} are called channels.
We assume that in each component automaton, each edge is labelled either
by τ , or by (send action) c! or (receive action) c?, where c ∈ Σ \ {τ}. For
a given c ∈ Σ \ {τ}, we say that c! and c? are matching actions.

25 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Composition of Timed Automata

De�nition of product (composition)

We consider n timed automata Ai = (Li , `
o
i ,Σ,X ,−→i , Invi), i = 1, . . . , n.

The product A1‖ . . . ‖An is the automaton (L, `o ,Σ,X ,−→, Inv) where:

L = L1 × . . .× Ln;

`0 = (`01, . . . , `
0
n);

−→ is de�ned as:
private edge: for all (`1, . . . , `n) ∈ L, if for some i ∈ {1, . . . , n}, we
have if (`i , gi , τ, ri , `

′
i) ∈−→i , then

((`1, . . . , `i , . . . , `n), gi , τ, ri , (`1, . . . , `
′
i , . . . , `n)) ∈−→;

synchronised edge: for all (`1, . . . , `n) ∈ L, if for some i , j ∈ {1, . . . , n},
i < j , we have (`i , gi , c

′, ri , `
′
i) ∈−→i and (`j , gj , c

′′, rj , `
′
j) ∈−→j where

c ′′ and c ′ are matching actions, then ((`1, . . . , `i , . . . , `j , . . . , `n), gi ∧
gj , c, ri ∪ rj , (`1, . . . , `

′
i , . . . , `

′
j , . . . , `n)) ∈−→.

Inv((`1, . . . , `n)) = Inv1(`1) ∧ . . . ∧ Invn(`n);

Exercise 10

Why does it say Ai = (Li , `
o
i ,Σ,X ,−→i , Invi) and not

Ai = (Li , `
o
i ,Σi ,Xi ,−→i , Invi)

26 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Composition of Timed Automata

De�nition of product (composition)

We consider n timed automata Ai = (Li , `
o
i ,Σ,X ,−→i , Invi), i = 1, . . . , n.

The product A1‖ . . . ‖An is the automaton (L, `o ,Σ,X ,−→, Inv) where:

L = L1 × . . .× Ln;

`0 = (`01, . . . , `
0
n);

−→ is de�ned as:
private edge: for all (`1, . . . , `n) ∈ L, if for some i ∈ {1, . . . , n}, we
have if (`i , gi , τ, ri , `

′
i) ∈−→i , then

((`1, . . . , `i , . . . , `n), gi , τ, ri , (`1, . . . , `
′
i , . . . , `n)) ∈−→;

synchronised edge: for all (`1, . . . , `n) ∈ L, if for some i , j ∈ {1, . . . , n},
i < j , we have (`i , gi , c

′, ri , `
′
i) ∈−→i and (`j , gj , c

′′, rj , `
′
j) ∈−→j where

c ′′ and c ′ are matching actions, then ((`1, . . . , `i , . . . , `j , . . . , `n), gi ∧
gj , c, ri ∪ rj , (`1, . . . , `

′
i , . . . , `

′
j , . . . , `n)) ∈−→.

Inv((`1, . . . , `n)) = Inv1(`1) ∧ . . . ∧ Invn(`n);

Exercise 10

Why does it say Ai = (Li , `
o
i ,Σ,X ,−→i , Invi) and not

Ai = (Li , `
o
i ,Σi ,Xi ,−→i , Invi)

26 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Basics of the Tool Uppaal

Plan

1 Introductory Remarks

2 Timed Automata
Basics
Composition of Timed Automata
Basics of the Tool Uppaal
Semantics
Regions
Case Study: LEGO Mindstorm

3 Abstract Interpretation

27 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Basics of the Tool Uppaal

Uppaal

url: www.uppaal.com
Mature tool!

Graphical editor

Simulator

Veri�er (model checker)

28 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Basics of the Tool Uppaal

Guards in Uppaal

Recall the de�nition of clock constraints:

C ::= x < c | x ≤ c | x > c | x ≥ c | x == c | C ∧ C

In Uppaal we do not necessarily have to put a concrete number for a
constant c , but we can declare an integer constant parametrically (for easy
maintenance).

29 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Basics of the Tool Uppaal

Example of synchronisation

Declaration of channel:

chan c, d, e;

Usage:

send

c!

receive

c?

The two edges of the two processes synchronise via the channel. One
process is the sender and the other the receiver.

Exercise 11

What is a process? Compare to the notions of the previous section.

30 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Basics of the Tool Uppaal

Templates

To save e�ort and reduce a source of possible errors, there is special
support in Uppaal for de�ning processes that are identical up to some
constants. In Uppaal, a process is an instantiation of a template.

The template contains one or more parameters that can be
instantiated.

Example:

Template declaration:

process semaphore(int n)

...

Process declaration:

aMutexSem1 = semaphore(1);

aMutexSem2 = semaphore(2);

System declaration:

system aMutexSem1 aMutexSem2;

31 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Basics of the Tool Uppaal

Temporal logic used by Uppaal

So far, we can use Uppaal to model the actual behaviour of systems.
What is ultimately needed is to verify that the actual behaviour corresponds
to desired behaviour such as (recall lecture on model checking):

If a process asks in�nitely often for being executed then the operating
system will eventually execute it;

It is always possible to get back to the initial state;

...

To express such desired behaviours, Uppaal uses the temporal logic CTL.
We are brief here . . .

32 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Basics of the Tool Uppaal

Temporal logic used by Uppaal

So far, we can use Uppaal to model the actual behaviour of systems.
What is ultimately needed is to verify that the actual behaviour corresponds
to desired behaviour such as (recall lecture on model checking):

If a process asks in�nitely often for being executed then the operating
system will eventually execute it;

It is always possible to get back to the initial state;

...

To express such desired behaviours, Uppaal uses the temporal logic CTL.
We are brief here . . .

32 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Basics of the Tool Uppaal

CTL subset

The language contains

atomic state formulas:
x ≤ 3, y ≤ 5, i == 10 . . .
The formula P.` expresses that the process P is in location `.
The formula deadlock expresses that no transition is possible.

Boolean combinations

p ::= s | p and p | p or p | not p | p imply p | (p)

where s is an atomic state formula.

path formulas built using exactly one path quanti�er:
E<> p: there exists a run such that for some state of this run, p holds,
A[] p: for all runs, for all states of each run, p holds.

Exercise 12

Write down 4 di�erent CTL formulas each involving at least one Boolean
operator and one path quanti�er.

33 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Semantics

Plan

1 Introductory Remarks

2 Timed Automata
Basics
Composition of Timed Automata
Basics of the Tool Uppaal
Semantics
Regions
Case Study: LEGO Mindstorm

3 Abstract Interpretation

34 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Semantics

Semantics

We will now formally de�ne the runs of a timed automaton. The semantics
of a timed automaton is expressed as a transition system.
Recall that a state is a pair (location, clock valuation) . . .

35 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Semantics

De�nition

De�nition

Let A = (L, `o ,Σ,X ,−→, Inv). We de�ne its semantics as the transition
system: S(A) = (S ,Σ′,−→, I) where

S = L× (X −→ R+) (the state set)

Σ′ = Σ ∪ R+ (the alphabet)

I = {(`0, η) | ∀x ∈ X . η(x) = 0} (initial state)
The transition relation −→ is de�ned through two rules:

discrete transition: (`, η)
a−→ (`′, η′) if

the timed automaton has an edge (`, g , a,X ′, `′)
η |= g

η′ = [X ′ = 0]η
η′ |= Inv(`′)

delay transition: (`, η)
δ−→ (`, η + δ) with δ ∈ R+ if

∀d : 0 ≤ d ≤ δ ⇒ η + d |= Inv(`).

Note: there is an in�nite number of states and transitions.
36 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Semantics

Explanations

The entailment |= is de�ned by interpreting <,≤, . . . ,∧ in the standard
way, e.g.:

{x 7→ 0.5, y 7→ 1.0} |= y > 0.0 ∧ x < 1.0

{x 7→ 0.5, y 7→ 1.0} 6|= y > 0.0 ∧ x > 3.0

[X ′ = 0]η is de�ned as

([X ′ = 0]η)(x) :=

{
0 if x ∈ X ′

η(x) if x /∈ X ′

}
i.e., setting all clocks in X ′ to 0 and leaving the other clocks unchanged.
The clock valuation η + d is de�ned as

(η + d)(x) := η(x) + d for all clocks x ,

i.e., all clocks are advanced by d .

37 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Semantics

Explanations

The entailment |= is de�ned by interpreting <,≤, . . . ,∧ in the standard
way, e.g.:

{x 7→ 0.5, y 7→ 1.0} |= y > 0.0 ∧ x < 1.0

{x 7→ 0.5, y 7→ 1.0} 6|= y > 0.0 ∧ x > 3.0

[X ′ = 0]η is de�ned as

([X ′ = 0]η)(x) :=

{
0 if x ∈ X ′

η(x) if x /∈ X ′

}
i.e., setting all clocks in X ′ to 0 and leaving the other clocks unchanged.

The clock valuation η + d is de�ned as

(η + d)(x) := η(x) + d for all clocks x ,

i.e., all clocks are advanced by d .

37 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Semantics

Explanations

The entailment |= is de�ned by interpreting <,≤, . . . ,∧ in the standard
way, e.g.:

{x 7→ 0.5, y 7→ 1.0} |= y > 0.0 ∧ x < 1.0

{x 7→ 0.5, y 7→ 1.0} 6|= y > 0.0 ∧ x > 3.0

[X ′ = 0]η is de�ned as

([X ′ = 0]η)(x) :=

{
0 if x ∈ X ′

η(x) if x /∈ X ′

}
i.e., setting all clocks in X ′ to 0 and leaving the other clocks unchanged.
The clock valuation η + d is de�ned as

(η + d)(x) := η(x) + d for all clocks x ,

i.e., all clocks are advanced by d .

37 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Semantics

Examples of these de�nitions

Exercise 13

1 Does {x 7→ 1.0, y 7→ 1.0} |= y > 0.0 ∧ x < 1.0 hold?

2 Does {x 7→ 1.0, y 7→ 1.0} |= y > 0.0 ∧ x ≤ 1.0 hold?

3 Does {x 7→ 1.0, y 7→ 2.0} |= x > 1.0 hold?

4 [{x} = 0]{x 7→ 1.0, y 7→ 1.0} = . . .?

5 [{x , y} = 0]{x 7→ 1.0, y 7→ 1.0} = . . .?

6 [{x} = 0]{x 7→ 0.0, y 7→ 1.0} = . . .?

7 {x 7→ 1.0, y 7→ 1.0}+ 0.5 = . . .?

8 {x 7→ 1.0, y 7→ 2.0}+ 0.5 = . . .?

38 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Semantics

Timed automaton run (repeated)

A run starting from a state is a �nite or in�nite sequence of alternating
delay and discrete transitions.

 p

0.0
0.0

 delay−−−→
3.2

 p

3.2
3.2

 discrete−−−−→
a

 q

0
3.2

 delay−−−→
1.9

 q

1.9
5.1

 discrete−−−−→
c

 q

1.9
0.0

 delay−−−→
3.1

 q

5.0
3.1

 discrete−−−−→
b

 p

5.0
3.1



39 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Regions

Plan

1 Introductory Remarks

2 Timed Automata
Basics
Composition of Timed Automata
Basics of the Tool Uppaal
Semantics
Regions
Case Study: LEGO Mindstorm

3 Abstract Interpretation

40 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Regions

Region graph

A state of the timed transition system of a timed automaton is a couple:

(`, η).

Exercise 14

What is `? What is η?

The state space as well as the branching of this transition system is in�nite.

The algorithmic veri�cation of timed automaton properties is possible
thanks to the region graph technique by Alur and Dill [AD94] ([BY04]).
The reasoning on the in�nite state space is replaced by a reasoning on a
�nite partition of the state space. An element of this partition is called a
region. All elements of the region have the same relevant properties:

same discrete transitions;

same delay transititions.

41 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Regions

Region graph

A state of the timed transition system of a timed automaton is a couple:

(`, η).

Exercise 14

What is `? What is η?

The state space as well as the branching of this transition system is in�nite.
The algorithmic veri�cation of timed automaton properties is possible
thanks to the region graph technique by Alur and Dill [AD94] ([BY04]).
The reasoning on the in�nite state space is replaced by a reasoning on a
�nite partition of the state space. An element of this partition is called a
region. All elements of the region have the same relevant properties:

same discrete transitions;

same delay transititions.

41 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Regions

Regions: the intuition

Even though there are in�nitely many clock valuations, what matters really?

For knowing whether a discrete transition can be taken or not, it may matter
whether for some clock x , it holds that x < c, x = c, or x > c.

For knowing which clock x , among all the clocks, will be the next one to
change its value (due to the passing of time)

from x < c to x = c; or
from x = c to x > c; or
from x > c to x = c + 1,

the ordering of the fractional parts of the clocks matters.

Thus, some assigments must be distinguished whereas others can be considered
as equivalent, for our purposes.
Regions capture exactly this information.

Exercise 15

Why is it reasonable to say that there is de�nitely no essential di�erence between
{x 7→ 1.5, y 7→ 3.3} and {x 7→ 1.6, y 7→ 3.4}?
Why might there be an essential di�erence between {x 7→ 1.5, y 7→ 3.3} and
{x 7→ 2.0, y 7→ 3.8}?

42 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Regions

Regions: the intuition

Even though there are in�nitely many clock valuations, what matters really?

For knowing whether a discrete transition can be taken or not, it may matter
whether for some clock x , it holds that x < c, x = c, or x > c.

For knowing which clock x , among all the clocks, will be the next one to
change its value (due to the passing of time)

from x < c to x = c; or
from x = c to x > c; or
from x > c to x = c + 1,

the ordering of the fractional parts of the clocks matters.

Thus, some assigments must be distinguished whereas others can be considered
as equivalent, for our purposes.
Regions capture exactly this information.

Exercise 15

Why is it reasonable to say that there is de�nitely no essential di�erence between
{x 7→ 1.5, y 7→ 3.3} and {x 7→ 1.6, y 7→ 3.4}?
Why might there be an essential di�erence between {x 7→ 1.5, y 7→ 3.3} and
{x 7→ 2.0, y 7→ 3.8}?

42 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Regions

Region automaton example

Consider the following automaton:

`start

x > 1, a, x := 0

We partition its state space as follows :

{{(`, x) | x = 0}, {(`, x) | 0 < x < 1}, {(`, x) | x = 1}, {(`, x) | 1 < x}}
Then its region graph is the following:

r{`}×{0}start r{`}×0<x<1 r{`}×{1} r{`}×1<x
δ

δ

δ δ

δ

a43 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Regions

Properties of the region graph

Finite number of states.

Finite number of transitions (�nite branching).

The �equivalence� between the region graph automaton and the transitition
system of a timed automaton allows us to decide basic temporal properties
over timed automata.

44 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Regions

Region equivalence

Some preliminaries:

For any clock variable x , let Cx be the largest integer appearing in
constraints involving x .

for t ∈ R, its integral part is denoted: btc, its fractional part is
denoted fract(t)

b2.32c = 2 fract(2.32) = 0.32

45 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Regions

Clock valuation equivalence

Example: We have a timed automaton with two clocks x and y . x is
compared to 1 and 2: Cx = 2. y is compared to 0 and 1: Cy = 1. The
equivalence classes are:

Corner points: (0, 0), (1, 1),

open line segments {(x , y) : (0 < x < 1) ∧ (x = y)},
open regions
{(x , y) : 0 < x < y < 1},{(x , y) : (1 < x < 2) ∧ (y > 1)}
. . .

46 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Regions

Region equivalence relation

Visual illustration later . . .

De�nition (≡REG)

Two valuations η and η′ are region-equivalent: η ≡REG η′ i�

for all x , either bη(x)c = bη′(x)c, or both η(x) > Cx and η′(x) > Cx ;

for all x with η(x) ≤ Cx , we have fract(η(x)) = 0 i� fract(η′(x)) = 0;

for all x , y with η(x) ≤ Cx and η(y) ≤ Cy , we have
fract(η(x)) ≤ fract(η(y)) i� fract(η′(x)) ≤ fract(η′(y)).

Given a valuation η, the set of all valuations η′ such that η ≡REG η′ is
called the region of η, written R(η).

The number of regions is huge!

The number of regions �nite!

Regions can be visualised geometrically . . .

47 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Regions

Region equivalence relation

Visual illustration later . . .

De�nition (≡REG)

Two valuations η and η′ are region-equivalent: η ≡REG η′ i�

for all x , either bη(x)c = bη′(x)c, or both η(x) > Cx and η′(x) > Cx ;

for all x with η(x) ≤ Cx , we have fract(η(x)) = 0 i� fract(η′(x)) = 0;

for all x , y with η(x) ≤ Cx and η(y) ≤ Cy , we have
fract(η(x)) ≤ fract(η(y)) i� fract(η′(x)) ≤ fract(η′(y)).

Given a valuation η, the set of all valuations η′ such that η ≡REG η′ is
called the region of η, written R(η).

The number of regions is huge!

The number of regions �nite!

Regions can be visualised geometrically . . .

47 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Regions

Region equivalence relation

Visual illustration later . . .

De�nition (≡REG)

Two valuations η and η′ are region-equivalent: η ≡REG η′ i�

for all x , either bη(x)c = bη′(x)c, or both η(x) > Cx and η′(x) > Cx ;

for all x with η(x) ≤ Cx , we have fract(η(x)) = 0 i� fract(η′(x)) = 0;

for all x , y with η(x) ≤ Cx and η(y) ≤ Cy , we have
fract(η(x)) ≤ fract(η(y)) i� fract(η′(x)) ≤ fract(η′(y)).

Given a valuation η, the set of all valuations η′ such that η ≡REG η′ is
called the region of η, written R(η).

The number of regions is huge!

The number of regions �nite!

Regions can be visualised geometrically . . .

47 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Regions

Region equivalence

Exercise 16

Let Cx = 2,Cy = 3,Cz = 5.
Determine which pairs of clock valuations are region-equivalent:
1 : {x 7→ 1.3, y 7→ 2.7, z 7→ 4.4} 2 : {x 7→ 1.4, y 7→ 2.7, z 7→ 4.3}
3 : {x 7→ 1.3, y 7→ 2.7, z 7→ 5.5} 4 : {x 7→ 1.4, y 7→ 2.8, z 7→ 4.5}
5 : {x 7→ 1.3, y 7→ 2.8, z 7→ 4.4} 6 : {x 7→ 1.3, y 7→ 2.7, z 7→ 10.0}
7 : {x 7→ 1.7, y 7→ 2.3, z 7→ 10.0} 8 : {x 7→ 1.3, y 7→ 2.7, z 7→ 4.5}

48 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Regions

Region automaton example

Let us consider the following automaton A with the set of clocks = {x , y}.

`0start

`1

y ≤ 2, a, y := 0

x ≤ 2, b, x := 0

y ≤ 2 ∧ x ≥ 3, c

Cx = 3
Cy = 2

49 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Regions

Region automaton example

Let us consider the following automaton A with the set of clocks = {x , y}.

`0start

`1

y ≤ 2, a, y := 0

x ≤ 2, b, x := 0

y ≤ 2 ∧ x ≥ 3, c

Cx = 3
Cy = 2

49 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Regions

The regions of this example

Regionsx,y =

{(x , y) | x = 0 ∧ y = 0},
... (points)

{(x , y) | x = 3 ∧ y = 2},
{(x , y) | 0 < x ∧ x < 1 ∧ y = 0},

... (bounded segments)
{(x , y) | x = 3 ∧ 1 < y ∧ y < 2},
{(x , y) | 3 < x ∧ y = 0},

... (unbounded segments)
{(x , y) | x = 3 ∧ y > 0},

{(x , y) | 0 < x < 1 ∧ 0 < y < 1 ∧ x − y < 0},
... (bounded regions)

{(x , y) | 2 < x < 3 ∧ 1 < y < 2 ∧ x − y > 1},
{(x , y) | 3 < x ∧ y < 1},

... (unbounded regions)
{(x , y) | 3 < x ∧ 2 < y}


50 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Regions

The regions of this example visualised

To simplify, we ignore discrete transitions and resets here. We only care for
the passing of time.

0 1 2 3 4 5

0

1

2

3

4

x

y

51 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Regions

Time successors in this example

What are the (time) successors of a region, i.e., how does the region
change through the passing of time? We pick one region of our example:

0 1 2 3 4 5

0

1

2

3

4

x

y

52 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Regions

Time successors in this example

What are the (time) successors of a region, i.e., how does the region
change through the passing of time? We pick one region of our example:

0 1 2 3 4 5

0

1

2

3

4

x

y

52 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Regions

Time successors in this example

What are the (time) successors of a region, i.e., how does the region
change through the passing of time? We pick one region of our example:

0 1 2 3 4 5

0

1

2

3

4

x

y

52 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Regions

Time successors in this example

What are the (time) successors of a region, i.e., how does the region
change through the passing of time? We pick one region of our example:

0 1 2 3 4 5

0

1

2

3

4

x

y

52 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Regions

Time successors in this example

What are the (time) successors of a region, i.e., how does the region
change through the passing of time? We pick one region of our example:

0 1 2 3 4 5

0

1

2

3

4

x

y

52 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Regions

Time successors in this example

What are the (time) successors of a region, i.e., how does the region
change through the passing of time? We pick one region of our example:

0 1 2 3 4 5

0

1

2

3

4

x

y

52 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Regions

Time successors in this example

What are the (time) successors of a region, i.e., how does the region
change through the passing of time? We pick one region of our example:

0 1 2 3 4 5

0

1

2

3

4

x

y

52 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Regions

Time successors in this example

What are the (time) successors of a region, i.e., how does the region
change through the passing of time? We pick one region of our example:

0 1 2 3 4 5

0

1

2

3

4

x

y

52 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Regions

Time successors in this example

What are the (time) successors of a region, i.e., how does the region
change through the passing of time? We pick one region of our example:

0 1 2 3 4 5

0

1

2

3

4

x

y

52 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Regions

Another example

Exercise 17

Illustrate the time successors for the starting region {(1, 0)}.

53 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Regions

The full region graph

Time successors are needed for simulating the delay transitions of a
timed automaton.

To de�ne the full region graph, we also need to consider the discrete
transitions. This is pretty straightforward, but we do not go into this
much detail in this course.

54 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Regions

What are regions good for?

The �equivalence� between the region graph automaton and the transitition
system of a timed automaton allows us to decide basic temporal properties
over timed automata.
In particular, consider two timed automaton states (`, η) and (`′, η′), and
the corresponding regions R(η) and R(η′). Then

(`′, η′) is reachable from (`, η) in the timed automaton if and only if

(`′,R(η′)) is reachable from (`,R(η)) in the region graph of the
automaton.

Thus we have a way of deciding reachability.

55 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Case Study: LEGO Mindstorm

Plan

1 Introductory Remarks

2 Timed Automata
Basics
Composition of Timed Automata
Basics of the Tool Uppaal
Semantics
Regions
Case Study: LEGO Mindstorm

3 Abstract Interpretation

56 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Case Study: LEGO Mindstorm

What we Could Do . . .

We now want to present an example of how Uppaal can be used to verify
properties of a physical system �in practice�.

One approach would be to present an example that works perfectly without
any problems whatsoever . . .
. . . thereby hiding the fact that in the real world, things do not usually go
that smoothly.

Instead, we will present an example that works far from perfectly . . .
. . . and discuss some directions of improvement, without actually realising
them.

57 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Case Study: LEGO Mindstorm

What we Could Do . . .

We now want to present an example of how Uppaal can be used to verify
properties of a physical system �in practice�.

One approach would be to present an example that works perfectly without
any problems whatsoever . . .

. . . thereby hiding the fact that in the real world, things do not usually go
that smoothly.

Instead, we will present an example that works far from perfectly . . .
. . . and discuss some directions of improvement, without actually realising
them.

57 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Case Study: LEGO Mindstorm

What we Could Do . . .

We now want to present an example of how Uppaal can be used to verify
properties of a physical system �in practice�.

One approach would be to present an example that works perfectly without
any problems whatsoever . . .
. . . thereby hiding the fact that in the real world, things do not usually go
that smoothly.

Instead, we will present an example that works far from perfectly . . .
. . . and discuss some directions of improvement, without actually realising
them.

57 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Case Study: LEGO Mindstorm

What we Could Do . . .

We now want to present an example of how Uppaal can be used to verify
properties of a physical system �in practice�.

One approach would be to present an example that works perfectly without
any problems whatsoever . . .
. . . thereby hiding the fact that in the real world, things do not usually go
that smoothly.

Instead, we will present an example that works far from perfectly . . .
. . . and discuss some directions of improvement, without actually realising
them.

57 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Case Study: LEGO Mindstorm

What we Could Do . . .

We now want to present an example of how Uppaal can be used to verify
properties of a physical system �in practice�.

One approach would be to present an example that works perfectly without
any problems whatsoever . . .
. . . thereby hiding the fact that in the real world, things do not usually go
that smoothly.

Instead, we will present an example that works far from perfectly . . .

. . . and discuss some directions of improvement, without actually realising
them.

57 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Case Study: LEGO Mindstorm

What we Could Do . . .

We now want to present an example of how Uppaal can be used to verify
properties of a physical system �in practice�.

One approach would be to present an example that works perfectly without
any problems whatsoever . . .
. . . thereby hiding the fact that in the real world, things do not usually go
that smoothly.

Instead, we will present an example that works far from perfectly . . .
. . . and discuss some directions of improvement, without actually realising
them.

57 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Case Study: LEGO Mindstorm

LEGO Mindstorm c©

LEGO Mindstorm is a product by the LEGO company. It is a
construction kit containing

a controller with a display;
light sensors;
touch sensors;
electric motors (rotors);
wheels;
100s of small mechanical pieces, some resembling classical LEGO
bricks.

The box costs around 400e and had its peek of popularity in the
2000's, but there is still a big community.

There are dozens of programming languages for programming the
controller.

58 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Case Study: LEGO Mindstorm

A Machine for Sorting LEGO Bricks

For our case study, we have chosen a machine for sorting LEGO bricks.

Many such machines have been constructed. For us, it was important
to choose a construction with an interesting real-time aspect.

Our case study is inspired by [IKL+99].

The machine has been built by Delphin Duquenne, Salim Koumad,
Julien Wallart, and Antoine Willems, but the code presented here is by
Jan-Georg Smaus.

We use the NXC language.

Exercise 18

Search the web for videos of sorting machines constructed from Lego
mindstorm. Post a link of a machine you �nd interesting, and discuss
whether it has a particularly interesting real-time aspect, or not.

59 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Case Study: LEGO Mindstorm

The Purpose of the Machine

Sorting LEGO bricks: White bricks should be kicked o� the belt, black (or
any other colour) bricks should remain on the belt.

60 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Case Study: LEGO Mindstorm

The Program (1)

//The speeds

#define BELTSPEED 36

#define ARMSPEED -50

// NXT 2.0 Color sensor connected to port 3.

#define COLORSENSOR SENSOR_3

The exact values of those speed are a matter of calibration.

Exercise 19

Why is BELTSPEED positive and ARMSPEED negative?

61 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Case Study: LEGO Mindstorm

The Program (2)

task main()

{

float color = 0;

SetSensorColorFull(IN_3); //set the color sensor light on

OnFwd(OUT_A,BELTSPEED);

while (true) //never ending loop

{

TextOut(1,LCD_LINE1,"color ");

color = COLORSENSOR;

NumOut(50,LCD_LINE1,color);

if (color == 6) //6 = white

{

Wait(1300);

RotateMotor(OUT_B, ARMSPEED, 360);

}

}

}

62 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Case Study: LEGO Mindstorm

Discussion of the Program

Exercise 20

1 When/where does the program stop the moving belt?

2 What are TextOut and NumOut good for?

3 What does the line color = ... do?

4 What is the time unit of NXC?

5 What does the �360� stand for?

63 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Case Study: LEGO Mindstorm

Uppaal Model

We will now construct a Uppaal model of this system.

One important principle is compositionality: the system is composed
of several Uppaal processes.

Of course, an Uppaal model is a-priori an abstraction of the physical
reality. For this case study, we make several radical simpli�cations.

Exercise 21

(not to be answered now, but only once you have understood the model)
Try to observe what these simpli�cations are and discuss how serious they
are!

64 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Case Study: LEGO Mindstorm

Uppaal Model

We will now construct a Uppaal model of this system.

One important principle is compositionality: the system is composed
of several Uppaal processes.

Of course, an Uppaal model is a-priori an abstraction of the physical
reality. For this case study, we make several radical simpli�cations.

Exercise 21

(not to be answered now, but only once you have understood the model)
Try to observe what these simpli�cations are and discuss how serious they
are!

64 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Case Study: LEGO Mindstorm

The Decomposition

What could be the Uppaal components?

The controller: essentially executes the program.

A brick: as there could be several bricks, we will use templates.
It would be �dishonest� if we modelled black and white bricks
independently each in such a way that we get the results we want; the
only di�erence between a black brick and a white brick is in the
colour! Templates help us to argue this point convincingly.

The belt: the only reason we need it in the model is that the belt
process controls that two bricks cannot be on the physical belt at the
same place at the same time. Each brick �controls� its own position.

The light sensor: all it does is receive a signal from the bricks which it
passes on to the controller. Not worthwhile to de�ne a process for
that! Instead, the brick communicates directly with the controller.

The arm: receives a �start kicking� signal from the controller.

65 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Case Study: LEGO Mindstorm

The Decomposition

What could be the Uppaal components?

The controller: essentially executes the program.

A brick: as there could be several bricks, we will use templates.
It would be �dishonest� if we modelled black and white bricks
independently each in such a way that we get the results we want; the
only di�erence between a black brick and a white brick is in the
colour! Templates help us to argue this point convincingly.

The belt: the only reason we need it in the model is that the belt
process controls that two bricks cannot be on the physical belt at the
same place at the same time. Each brick �controls� its own position.

The light sensor: all it does is receive a signal from the bricks which it
passes on to the controller. Not worthwhile to de�ne a process for
that! Instead, the brick communicates directly with the controller.

The arm: receives a �start kicking� signal from the controller.

65 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Case Study: LEGO Mindstorm

The Decomposition

What could be the Uppaal components?

The controller: essentially executes the program.

A brick: as there could be several bricks, we will use templates.
It would be �dishonest� if we modelled black and white bricks
independently each in such a way that we get the results we want; the
only di�erence between a black brick and a white brick is in the
colour! Templates help us to argue this point convincingly.

The belt: the only reason we need it in the model is that the belt
process controls that two bricks cannot be on the physical belt at the
same place at the same time. Each brick �controls� its own position.

The light sensor: all it does is receive a signal from the bricks which it
passes on to the controller. Not worthwhile to de�ne a process for
that! Instead, the brick communicates directly with the controller.

The arm: receives a �start kicking� signal from the controller.

65 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Case Study: LEGO Mindstorm

Templates and Cheating

Exercise 22

Think of some way of cheating, by modelling black and white bricks
di�erently.

66 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Case Study: LEGO Mindstorm

The Channels

white: A white brick tells the controller: �I am beneath the sensor�.

black: A black brick tells the controller: �I am beneath the sensor�.

enterBrick: A brick tells the belt: �I start lying on you.�

kick: The controller tells the arm: �kick!�.

reachedBelt: The arm tells any brick that wants to hear it: �I
reached the belt and I am ready to kick you� (broadcast channel).

leftBelt: The arm tells any brick that wants to hear it: �I left the
belt� (broadcast channel).

Exercise 23

Channels are for communication between processes. However, in some
cases, the notion of �communication� is used in a strongly metaphorical
sense. For which of the above channels is this particularly true?

67 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Case Study: LEGO Mindstorm

The Brick Template

notKickedOff

kickedOff
beginTouch

onBeltClock <= brickLengthTime

atArm
onBeltClock <=brickLengthTime

afterSensor
onBeltClock <= beltMaxTime

atSensor

onBeltClock <= brickLengthTime

beforeSensor
onBeltClock <= beforeSensorTime

onBeltClock == brickLengthTime

onBeltClock == brickLengthTime
leftBelt?

reachedBelt?

onBeltClock >= beltMinTime
onBeltClock := 0

onBeltClock == brickLengthTime
onBeltClock := 0

color == 1
black!

color == 0
white!

color == 0 and
onBeltClock == beforeSensorTime

white!
onBeltClock := 0

color == 1 and
onBeltClock == beforeSensorTime

black!
onBeltClock := 0

enterBrick!
onBeltClock := 0

Exercise 24

How does a black brick
behave di�erently from a
white brick?
In particular, does a white
brick �jump o� the belt� on
its own?

68 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Case Study: LEGO Mindstorm

The Belt

blocked
blockedWait <= brickLengthTime

ready

blockedWait == brickLengthTime

enterBrick?
blockedWait := 0

Exercise 25

What is the belt process good for?

69 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Case Study: LEGO Mindstorm

The Controller

waitingToKick

kickWait <= kickWaitTime

waitingForBlock

black?

white?

kickWait == kickWaitTime

kick!

white?

kickWait := 0

black?

It could be envisaged that the translation of the program into the Uppaal
process is done automatically as in [IKL+99].

Exercise 26

So how was the present controller model generated?

70 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Case Study: LEGO Mindstorm

The Arm

hasLeftBelt

armClock <= beyondBeltZone

aboveBelt
armClock <= endBeltZone

startedMoving
armClock <= beginBeltZone

armClock == beyondBeltZone

armClock == endBeltZone
leftBelt!

armClock == beginBeltZone
reachedBelt!

kick?
armClock := 0

Exercise 27

Sketch the movement of the arm and indicate the corresponding locations
of the above process.

71 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Case Study: LEGO Mindstorm

Sanity Check for Synchronisation

Wherever we have a process that might want to send a signal and cannot
do so because there is no recipient available, we must ask: does this
blocking correspond to reality?
For example:

The arm has started moving and is just about to reach the zone above
the belt. Should it be blocked because there is no brick ready to
receive its reachedBelt signal?

A brick wants to enter the belt. Should it be blocked because there is
currently still another brick at the beginning of the belt?

Exercise 28

Answer the above questions.

72 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Case Study: LEGO Mindstorm

Sanity Check for Synchronisation

Wherever we have a process that might want to send a signal and cannot
do so because there is no recipient available, we must ask: does this
blocking correspond to reality?
For example:

The arm has started moving and is just about to reach the zone above
the belt. Should it be blocked because there is no brick ready to
receive its reachedBelt signal?

A brick wants to enter the belt. Should it be blocked because there is
currently still another brick at the beginning of the belt?

Exercise 28

Answer the above questions.

72 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Case Study: LEGO Mindstorm

Sanity Check for Synchronisation

Wherever we have a process that might want to send a signal and cannot
do so because there is no recipient available, we must ask: does this
blocking correspond to reality?
For example:

The arm has started moving and is just about to reach the zone above
the belt. Should it be blocked because there is no brick ready to
receive its reachedBelt signal?

A brick wants to enter the belt. Should it be blocked because there is
currently still another brick at the beginning of the belt?

Exercise 28

Answer the above questions.

72 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Case Study: LEGO Mindstorm

Setting the Parameters

Setting the parameters must be done by down-to-earth chronometric and
geometric measurements (see TP!).

73 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Case Study: LEGO Mindstorm

What Properties?

What properties might one want to prove?

Deadlock freedom

It is possible for a white brick to be kicked o� and it is impossible for
it to reach the end of the belt.

It is possible for a black brick to reach the end of the belt and it is
impossible for it be kicked o�.

If a white brick enters the belt, it will eventually be kicked o�.

If a black brick enters the belt, it will eventually reach the end of the
belt.

All of the above for the following scenarii, if applicable:

There is exactly one white brick in the game.

There is exactly one black brick in the game.

There are exactly one black and one white brick in the game.

There are two white bricks and one black brick in the game.

See TP!
74 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Case Study: LEGO Mindstorm

Lessons

Simple behaviours (e.g., just one brick!) can be found by observation
or by trusting the semantics of NXC (e.g., Wait(1300) will cause the
controller to wait exactly 130ms). This can be used to design each
process.

Uppaal can detect that by the complex interaction of those simple
behaviours, phenomena may occur (i.e., states are reachable) that one
might not discover by physical experiments.

The crucial question is: have we really modelled the interfaces
between the process faithfully enough?
If not, it might turn out that while our abstractions are good enough
for the single processes, they are not good enough for the composition
(e.g., one bricks vs. several bricks).
If yes, we obtain a guarantee we can trust.

75 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Case Study: LEGO Mindstorm

Improvements

On the model side:

Relative correctness: if the light sensor captures the signal, the white
brick will be kicked o�.

Probabilistic veri�cation

Be more faithful: include tolerances in many places.

On the physical side:

Improve the arm.

76 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Timed Automata Conclusion

Conclusion

Timed automata are a modelling framework for systems where real
time matters, i.e., where we are interested in events that happen at a
particular time.

We have only looked at few examples and no realistic ones, but there
exist countless examples.

The de�nition of timed automata is quite restrictive, e.g., it is not
possible to have stopwatches, or to have clocks that run at a di�erent
speed . . .

Thanks to these restrictions, timed automata are accessible to
automatic veri�cation.

The tool Uppaal proves it.

77 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Abstract Interpretation

Plan

1 Introductory Remarks

2 Timed Automata

3 Abstract Interpretation
Abstract Interpretation: Data Abstraction I
Abstract Interpretation: Program Abstraction
Abstract Interpretation: Data Abstraction II
Abstract Interpretation: Executing an Abstract Program
Frama-C

78 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Abstract Interpretation

Acknowledgements

The slides and exercises of this chapter are based on material by Loïc
Correnson, Nikolai Kosmatov, A. Miné, and Pierre Roux, and on [KKP+15].

79 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Abstract Interpretation Abstract Interpretation: Data Abstraction I

Plan

1 Introductory Remarks

2 Timed Automata

3 Abstract Interpretation
Abstract Interpretation: Data Abstraction I
Abstract Interpretation: Program Abstraction
Abstract Interpretation: Data Abstraction II
Abstract Interpretation: Executing an Abstract Program
Frama-C

80 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Abstract Interpretation Abstract Interpretation: Data Abstraction I

Abstract Interpretation at a glance

Goal: Infer information for possi-
ble values of all variables at each
program point, e.g. that at point
2, x ∈ [−1, 12].

81 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Abstract Interpretation Abstract Interpretation: Data Abstraction I

Abstract Interpretation at a glance

Goal: Infer information for possi-
ble values of all variables at each
program point, e.g. that at point
2, x ∈ [−1, 12].

81 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Abstract Interpretation Abstract Interpretation: Data Abstraction I

Abstract Interpretation at a glance

Goal: Infer information for possi-
ble values of all variables at each
program point, e.g. that at point
2, x ∈ [−1, 12].

81 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Abstract Interpretation Abstract Interpretation: Data Abstraction I

Image on the left

On top, the coloured lines depict the executions of a system, and the red
cloud is a dangerous zone. The system is good.
In the middle, we work with an approximation of the dangerous zone that
wrongly suggests that the system is not good.
At the bottom, we work with a re�ned approximation of the dangerous
zone that shows that the system is good.

Exercise 29

Why might we want to work with an approximation of the dangerous zone,
bigger than the actual dangerous zone? What is the �advantage� of the
square (with rounded corners) of the middle image, compared to the cloud?

82 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Abstract Interpretation Abstract Interpretation: Data Abstraction I

Basic Idea

Abstract interpretation was introduced by [CC77] and is a form of
static analysis.

Idea: replace computation on concrete data by computation on
abstract data so that the abstract computation overaproximates
�cheaply� the concrete computation.

Running example: P (positive integers), N (negative . . .), Z (0), PZ
(non-negative), NZ (non-positive), PNZ (all).

83 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Abstract Interpretation Abstract Interpretation: Data Abstraction I

An example: Euclid's algorithm

int x = a, y = b;

int s = 1, t = 0, u = 0, v = 1;

while(y > 0){

int r = x % y;

int q = x / y;

x = y;

y = r;

int w = u;

u = s - u * q;

s = w;

w = v;

v = t - v * q;

t = w;

}

return x;

Exercise 30

What does this program
compute?
What are s, t, u, v?

84 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Abstract Interpretation Abstract Interpretation: Data Abstraction I

Abstraction of example

int x = P, y = P;

int s = P, t = Z, u = Z, v = P;

while(y > Z){

int r = x % y;

int q = x / y;

x = y;//x = P is invariant

y = r;//y = PZ is invariant

int w = u;

u = s - u * q;//alternates between PZ and NZ

s = w;//alternates between PZ and NZ

w = v;

v = t - v * q;//alternates between PZ and NZ

t = w;//alternates between PZ and NZ

}

return x;

85 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Abstract Interpretation Abstract Interpretation: Data Abstraction I

Let's be concrete!

We consider a domain D of concrete objects.
For instance, consider D = 2Z. Intuition: the set of values a given
variable can take at a given program point.

This is just one example, and even in this course, we will discuss a
more general instance of concrete domain.

Exercise 31

What is 2Z?

Operations on concrete domain de�ned in �natural� way, where errors lead
to absence of results, e.g.:

{1, 4}+ {5, 9} = {6, 10, 9, 13};
{10, 20}/{−2, 0, 2} = {−10,−5, 5, 10}
{10, 20}/{0} = ∅

Exercise 32

{1, 4} × {5, 9} = . . . ?

86 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Abstract Interpretation Abstract Interpretation: Data Abstraction I

Let's be concrete!

We consider a domain D of concrete objects.
For instance, consider D = 2Z. Intuition: the set of values a given
variable can take at a given program point.
This is just one example, and even in this course, we will discuss a
more general instance of concrete domain.

Exercise 31

What is 2Z?

Operations on concrete domain de�ned in �natural� way, where errors lead
to absence of results, e.g.:

{1, 4}+ {5, 9} = {6, 10, 9, 13};
{10, 20}/{−2, 0, 2} = {−10,−5, 5, 10}
{10, 20}/{0} = ∅

Exercise 32

{1, 4} × {5, 9} = . . . ?

86 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Abstract Interpretation Abstract Interpretation: Data Abstraction I

Let's be concrete!

We consider a domain D of concrete objects.
For instance, consider D = 2Z. Intuition: the set of values a given
variable can take at a given program point.
This is just one example, and even in this course, we will discuss a
more general instance of concrete domain.

Exercise 31

What is 2Z?

Operations on concrete domain de�ned in �natural� way, where errors lead
to absence of results, e.g.:

{1, 4}+ {5, 9} = {6, 10, 9, 13};
{10, 20}/{−2, 0, 2} = {−10,−5, 5, 10}
{10, 20}/{0} = ∅

Exercise 32

{1, 4} × {5, 9} = . . . ?

86 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Abstract Interpretation Abstract Interpretation: Data Abstraction I

Order v between concrete objects

De�nition (order v between concrete objects)

For the concrete domain above, an object o ′ overapproximates an object o
if o ⊆ o ′ (i.e., v is de�ned as ⊆).

Example: {1, 2} v {1, 2, 5}. �{1, 2, 5} overapproximates {1, 2}.�

87 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Abstract Interpretation Abstract Interpretation: Data Abstraction I

Order v between concrete objects

De�nition (order v between concrete objects)

For the concrete domain above, an object o ′ overapproximates an object o
if o ⊆ o ′ (i.e., v is de�ned as ⊆).

Example: {1, 2} v {1, 2, 5}. �{1, 2, 5} overapproximates {1, 2}.�

87 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Abstract Interpretation Abstract Interpretation: Data Abstraction I

Aside: Intervals

As an ad-hoc shorthand for writing certain sets of integers, we can use
intervals, e.g. {3, 4, 5} = [3, 5].

We also sometimes use the notation

nZ + m := {n · x + m | x ∈ Z}

Exercise 33

1 [1, 5] = . . .?

2 {2, 3, 4, 5, 7} v [2, 7]?

3 3Z + 5 v 6Z + 5?

88 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Abstract Interpretation Abstract Interpretation: Data Abstraction I

Aside: Intervals

As an ad-hoc shorthand for writing certain sets of integers, we can use
intervals, e.g. {3, 4, 5} = [3, 5].
We also sometimes use the notation

nZ + m := {n · x + m | x ∈ Z}

Exercise 33

1 [1, 5] = . . .?

2 {2, 3, 4, 5, 7} v [2, 7]?

3 3Z + 5 v 6Z + 5?

88 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Abstract Interpretation Abstract Interpretation: Data Abstraction I

Abstract Domains

De�nition (Abstract domain D])

An abstract domain speci�es:

a set D] of abstract objects;

abstract operations that mimic in the abstract the concrete operations
on D.

Example: D] = {P, N, Z, PZ, NZ, PNZ}.
P +# P = P (�positive + positive = positive�), . . .

Exercise 34

N×# N = . . .? N×# P = . . .? N×# Z = . . .?

89 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Abstract Interpretation Abstract Interpretation: Data Abstraction I

Abstract Domains

De�nition (Abstract domain D])

An abstract domain speci�es:

a set D] of abstract objects;

abstract operations that mimic in the abstract the concrete operations
on D.

Example: D] = {P, N, Z, PZ, NZ, PNZ}.
P +# P = P (�positive + positive = positive�), . . .

Exercise 34

N×# N = . . .? N×# P = . . .? N×# Z = . . .?

89 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Abstract Interpretation Abstract Interpretation: Data Abstraction I

Abstractions

De�nition (abstraction α)

An abstraction (function) α maps each concrete object o to an abstract
object o], which is a simpli�cation of o.

Example: α({1, 7}) = P, α({1, 7, 9, 10}) = P, . . .

Exercise 35

α({0, 1, 7}) = . . .? α({−1,−7}) =? α({−7, 1}) = . . .?

90 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Abstract Interpretation Abstract Interpretation: Data Abstraction I

Abstractions

De�nition (abstraction α)

An abstraction (function) α maps each concrete object o to an abstract
object o], which is a simpli�cation of o.

Example: α({1, 7}) = P, α({1, 7, 9, 10}) = P, . . .

Exercise 35

α({0, 1, 7}) = . . .? α({−1,−7}) =? α({−7, 1}) = . . .?

90 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Abstract Interpretation Abstract Interpretation: Data Abstraction I

Concretisations

De�nition (concretisation γ)

A concretisation (function) γ maps each abstract object o] to the greatest
(wrt. v) concrete object o such that α(o) = o].

Example: What is γ(P)?
We have α({1, 7}) = P, α({1, 7, 9, 10}) = P, α({1, 7, 9, 10, 11, 25}) = P,
. . . , but the greatest set ∈ 2Z (the greatest concrete object) o such that
α(o) = P is the set {1, 2, 3, . . .}. Hence γ(P) = {1, 2, 3, . . .}.

Exercise 36

γ(N) = . . .? γ(Z) = . . .?

91 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Abstract Interpretation Abstract Interpretation: Data Abstraction I

Concretisations

De�nition (concretisation γ)

A concretisation (function) γ maps each abstract object o] to the greatest
(wrt. v) concrete object o such that α(o) = o].

Example: What is γ(P)?

We have α({1, 7}) = P, α({1, 7, 9, 10}) = P, α({1, 7, 9, 10, 11, 25}) = P,
. . . , but the greatest set ∈ 2Z (the greatest concrete object) o such that
α(o) = P is the set {1, 2, 3, . . .}. Hence γ(P) = {1, 2, 3, . . .}.

Exercise 36

γ(N) = . . .? γ(Z) = . . .?

91 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Abstract Interpretation Abstract Interpretation: Data Abstraction I

Concretisations

De�nition (concretisation γ)

A concretisation (function) γ maps each abstract object o] to the greatest
(wrt. v) concrete object o such that α(o) = o].

Example: What is γ(P)?
We have α({1, 7}) = P, α({1, 7, 9, 10}) = P, α({1, 7, 9, 10, 11, 25}) = P,
. . . , but the greatest set ∈ 2Z (the greatest concrete object) o such that
α(o) = P is the set {1, 2, 3, . . .}. Hence γ(P) = {1, 2, 3, . . .}.

Exercise 36

γ(N) = . . .? γ(Z) = . . .?

91 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Abstract Interpretation Abstract Interpretation: Data Abstraction I

Order v] between abstract objects

We de�ne an abstract order v] as follows:

De�nition (v])

∀o], o]′, o] v] o]
′

:⇔ γ(o]) v γ(o]
′
)

Example: P v] PZ because γ(P) = {1, 2, 3, . . .} v {0, 1, 2, 3, . . .} = γ(PZ).

Exercise 37

Draw the entire v]-lattice for {P, Z, N, PZ, NZ, PNZ}.

92 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Abstract Interpretation Abstract Interpretation: Data Abstraction I

Order v] between abstract objects

We de�ne an abstract order v] as follows:

De�nition (v])

∀o], o]′, o] v] o]
′

:⇔ γ(o]) v γ(o]
′
)

Example: P v] PZ because γ(P) = {1, 2, 3, . . .} v {0, 1, 2, 3, . . .} = γ(PZ).

Exercise 37

Draw the entire v]-lattice for {P, Z, N, PZ, NZ, PNZ}.

92 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Abstract Interpretation Abstract Interpretation: Data Abstraction I

Concrete � abstract : summary

abst
ract

ion
α

concretisation γ

abst
ract

ion
α

concretisation γ

co
n
cr
et
e
or
d
er
v

ab
st
ra
ct

or
d
er
v

]

concrete world D abstract world D]

93 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Abstract Interpretation Abstract Interpretation: Data Abstraction I

Concrete � abstract : summary on PNZ-example

{4, 7}

P{1, 2, 3, . . .}

abs
tra

ctio
n α

concretisation γ

co
n
cr
et
e
or
d
er
v

ab
st
ra
ct

or
d
er
v

]

concrete world D abstract world D]

94 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Abstract Interpretation Abstract Interpretation: Data Abstraction I

Abstract operations

To manipulate abstract objects we need to de�ne abstract operations that
correctly mimic the concrete operations.
unary] : D] → D] or binary] : (D] ×D])→ D]

This is done as follows.

unary](x) = α(unary(γ(x)))

binary](x , y) = α(binary(γ(x), γ(y)))

. . .

We will get back to this later . . .

95 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Abstract Interpretation Abstract Interpretation: Program Abstraction

Plan

1 Introductory Remarks

2 Timed Automata

3 Abstract Interpretation
Abstract Interpretation: Data Abstraction I
Abstract Interpretation: Program Abstraction
Abstract Interpretation: Data Abstraction II
Abstract Interpretation: Executing an Abstract Program
Frama-C

96 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Abstract Interpretation Abstract Interpretation: Program Abstraction

A toy language

Syntax

stm ::= v = expr ; | stm stm

| if (expr > 0) { stm } else { stm }
| while (expr > 0) { stm }

expr ::= v | n | rand(n, n)
| expr + expr | expr − expr | expr × expr | expr/expr

v ∈ V, a set of variables

n ∈ Z

rand(n1, n2) simulates an input value.

Exercise 38

Write a naive program for computing b
√
nc (0 if n < 0).

97 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Abstract Interpretation Abstract Interpretation: Program Abstraction

Toy language example

Example

x = rand(0, 12); y = 42;

while (x > 0) {
x = x − 2;
y = y + 4;

}

A run
(values at loop entry point) :

x 7 5 3 1 -1
y 42 46 50 54 58

Remarks

very simple language, without functions,

but representative of an imperative language like C

it's Turing-complete

98 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Abstract Interpretation Abstract Interpretation: Program Abstraction

Towards program semantics

So far we have seen how concrete data (numbers, sets of numbers) are
abstracted, and how operations on abstract data objects mimic operations
on concrete data objects.

This will be the basis for now looking at program semantics and
abstractions. Important aspects:

Variables and their values (memory states);

program points (we denote the set of program points by L).

99 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Abstract Interpretation Abstract Interpretation: Program Abstraction

Towards program semantics

So far we have seen how concrete data (numbers, sets of numbers) are
abstracted, and how operations on abstract data objects mimic operations
on concrete data objects.
This will be the basis for now looking at program semantics and
abstractions. Important aspects:

Variables and their values (memory states);

program points (we denote the set of program points by L).

99 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Abstract Interpretation Abstract Interpretation: Program Abstraction

Concrete semantics, expressions

Expressions are evaluated w.r.t. a memory state (environment), i.e., a
function that assigns a value (for simplicity: ∈ Z) to each variable, i.e., a
function that lives in V→ Z.

One might expect that the value of an expression is simply a number in Z,
but due to the presence of a random number generator, it is actually a set
of numbers in Z. So here is the signature of the semantics of expressions :
JeKE : (V→ Z)→ 2Z

JvKE (ρ) = {ρ(v)}
JnKE (ρ) = {n}
Jrand(n1, n2)KE (ρ) = {n ∈ Z | n1 ≤ n ≤ n2}
Je1 + e2KE (ρ) = {n1 + n2 | n1 ∈ Je1KE (ρ) ∧ n2 ∈ Je2KE (ρ)}
. . .

Exercise 39

Let ρ = {x 7→ 2, y 7→ 6}.
Jx + yKE (ρ) = . . .?

100 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Abstract Interpretation Abstract Interpretation: Program Abstraction

Concrete semantics, expressions

Expressions are evaluated w.r.t. a memory state (environment), i.e., a
function that assigns a value (for simplicity: ∈ Z) to each variable, i.e., a
function that lives in V→ Z.
One might expect that the value of an expression is simply a number in Z,
but due to the presence of a random number generator, it is actually a set
of numbers in Z.

So here is the signature of the semantics of expressions :
JeKE : (V→ Z)→ 2Z

JvKE (ρ) = {ρ(v)}
JnKE (ρ) = {n}
Jrand(n1, n2)KE (ρ) = {n ∈ Z | n1 ≤ n ≤ n2}
Je1 + e2KE (ρ) = {n1 + n2 | n1 ∈ Je1KE (ρ) ∧ n2 ∈ Je2KE (ρ)}
. . .

Exercise 39

Let ρ = {x 7→ 2, y 7→ 6}.
Jx + yKE (ρ) = . . .?

100 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Abstract Interpretation Abstract Interpretation: Program Abstraction

Concrete semantics, expressions

Expressions are evaluated w.r.t. a memory state (environment), i.e., a
function that assigns a value (for simplicity: ∈ Z) to each variable, i.e., a
function that lives in V→ Z.
One might expect that the value of an expression is simply a number in Z,
but due to the presence of a random number generator, it is actually a set
of numbers in Z. So here is the signature of the semantics of expressions :
JeKE : (V→ Z)→ 2Z

JvKE (ρ) = {ρ(v)}
JnKE (ρ) = {n}
Jrand(n1, n2)KE (ρ) = {n ∈ Z | n1 ≤ n ≤ n2}
Je1 + e2KE (ρ) = {n1 + n2 | n1 ∈ Je1KE (ρ) ∧ n2 ∈ Je2KE (ρ)}
. . .

Exercise 39

Let ρ = {x 7→ 2, y 7→ 6}.
Jx + yKE (ρ) = . . .?

100 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Abstract Interpretation Abstract Interpretation: Program Abstraction

Type of the concrete program semantics

The concrete semantics is of this type:

L→ 2V→Z

A function that to each program point (in L)

maps a set of possible memory states:

a function that to each variable (in V)
maps its value in memory (in Z)

101 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Abstract Interpretation Abstract Interpretation: Program Abstraction

Type of the concrete program semantics

The concrete semantics is of this type:

L→ 2V→Z

A function that to each program point (in L)

maps a set of possible memory states:

a function that to each variable (in V)
maps its value in memory (in Z)

101 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Abstract Interpretation Abstract Interpretation: Program Abstraction

Example

0x = rand(0, 12);1y = 42;

while 2(x > 0) {

3x = x − 2;

4y = y + 4
}5

0 1 2

34

5
x = rand(0, 12) y = 42

x > 0

x = x − 2

y = y + 4

x ≤ 0

Denoting by Si the semantics at point i :

S0 = V→ Z (V = {x , y})
S1 = {f ∈ (V→ Z) | f (x) ∈ [0, 12]}
S2 = {f | f (x) ∈ [−1, 12], f (y) ∈ {42, 46, . . . , 62, 66}, 2f (x) + f (y) ∈ [42, 66]}
S3 = {f | f (x) ∈ [1, 12], f (y) ∈ {42, 46, . . . , 62, 66}, 2f (x) + f (y) ∈ [42, 66]}
S4 = {f | f (x) ∈ [−1, 10], f (y) ∈ {42, 46, . . . , 62, 66}, 2f (x) + f (y) ∈ [38, 62]}
S5 = {f | f (x) ∈ [−1, 0], f (y) ∈ {42, 46, . . . , 62, 66}, 2f (x) + f (y) ∈ [42, 66]}

Exercise 40

Is (x = 10, y = 46) possible at point 2? Is (x = 10, y = 54) possible?
102 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Abstract Interpretation Abstract Interpretation: Program Abstraction

What exactly are we abstracting?

The concrete semantics is uncomputable, we want to simplify it. But what
exactly are we simplifying?

L is �nite and we would like to know what happens at each program
point
⇒ we keep it.

V is �nite and we are interested in all the variables
⇒ we keep them.

Z (and hence the set of functions V→ Z) is in�nite
⇒ this is what we are abstracting.1

Exercise 41

Is x = 10 possible at point 2? Is y = 54 possible at point 2?

1But even abstract domains can be in�nite and require further abstraction techniques.
103 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Abstract Interpretation Abstract Interpretation: Program Abstraction

What exactly are we abstracting?

The concrete semantics is uncomputable, we want to simplify it. But what
exactly are we simplifying?

L is �nite and we would like to know what happens at each program
point

⇒ we keep it.

V is �nite and we are interested in all the variables
⇒ we keep them.

Z (and hence the set of functions V→ Z) is in�nite
⇒ this is what we are abstracting.1

Exercise 41

Is x = 10 possible at point 2? Is y = 54 possible at point 2?

1But even abstract domains can be in�nite and require further abstraction techniques.
103 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Abstract Interpretation Abstract Interpretation: Program Abstraction

What exactly are we abstracting?

The concrete semantics is uncomputable, we want to simplify it. But what
exactly are we simplifying?

L is �nite and we would like to know what happens at each program
point
⇒ we keep it.

V is �nite and we are interested in all the variables
⇒ we keep them.

Z (and hence the set of functions V→ Z) is in�nite
⇒ this is what we are abstracting.1

Exercise 41

Is x = 10 possible at point 2? Is y = 54 possible at point 2?

1But even abstract domains can be in�nite and require further abstraction techniques.
103 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Abstract Interpretation Abstract Interpretation: Program Abstraction

What exactly are we abstracting?

The concrete semantics is uncomputable, we want to simplify it. But what
exactly are we simplifying?

L is �nite and we would like to know what happens at each program
point
⇒ we keep it.

V is �nite and we are interested in all the variables

⇒ we keep them.

Z (and hence the set of functions V→ Z) is in�nite
⇒ this is what we are abstracting.1

Exercise 41

Is x = 10 possible at point 2? Is y = 54 possible at point 2?

1But even abstract domains can be in�nite and require further abstraction techniques.
103 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Abstract Interpretation Abstract Interpretation: Program Abstraction

What exactly are we abstracting?

The concrete semantics is uncomputable, we want to simplify it. But what
exactly are we simplifying?

L is �nite and we would like to know what happens at each program
point
⇒ we keep it.

V is �nite and we are interested in all the variables
⇒ we keep them.

Z (and hence the set of functions V→ Z) is in�nite
⇒ this is what we are abstracting.1

Exercise 41

Is x = 10 possible at point 2? Is y = 54 possible at point 2?

1But even abstract domains can be in�nite and require further abstraction techniques.
103 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Abstract Interpretation Abstract Interpretation: Program Abstraction

What exactly are we abstracting?

The concrete semantics is uncomputable, we want to simplify it. But what
exactly are we simplifying?

L is �nite and we would like to know what happens at each program
point
⇒ we keep it.

V is �nite and we are interested in all the variables
⇒ we keep them.

Z (and hence the set of functions V→ Z) is in�nite

⇒ this is what we are abstracting.1

Exercise 41

Is x = 10 possible at point 2? Is y = 54 possible at point 2?

1But even abstract domains can be in�nite and require further abstraction techniques.
103 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Abstract Interpretation Abstract Interpretation: Program Abstraction

What exactly are we abstracting?

The concrete semantics is uncomputable, we want to simplify it. But what
exactly are we simplifying?

L is �nite and we would like to know what happens at each program
point
⇒ we keep it.

V is �nite and we are interested in all the variables
⇒ we keep them.

Z (and hence the set of functions V→ Z) is in�nite
⇒ this is what we are abstracting.1

Exercise 41

Is x = 10 possible at point 2? Is y = 54 possible at point 2?

1But even abstract domains can be in�nite and require further abstraction techniques.
103 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Abstract Interpretation Abstract Interpretation: Program Abstraction

How to abstract 2V→Z?

Abstract 2V→Z into V→ 2Z, and then 2Z into one D]. Note that the
values of x and y are independent, i.e., any actual dependencies are lost!

Exercise 42

Discuss the previous phrase using the two exercises above.

104 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Abstract Interpretation Abstract Interpretation: Program Abstraction

Two pictures are worth a thousand words

Previous example at program point 2 (loop invariant)

non relational

x

y
66

42

−1 12

relational

x

y
66

42

−1 12

Exercise 43

Identify the point
(x = 10, y = 54).

Side note: in both cases, we assume an abstraction that works with
�contiguous areas�, not �discrete points� ⇒ interval domain, see later.

105 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Abstract Interpretation Abstract Interpretation: Program Abstraction

Two pictures are worth a thousand words

Previous example at program point 2 (loop invariant)

non relational

x

y
66

42

−1 12

relational

x

y
66

42

−1 12

Exercise 43

Identify the point
(x = 10, y = 54).

Side note: in both cases, we assume an abstraction that works with
�contiguous areas�, not �discrete points� ⇒ interval domain, see later.

105 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Abstract Interpretation Abstract Interpretation: Program Abstraction

Two pictures are worth a thousand words

Previous example at program point 2 (loop invariant)

non relational

x

y
66

42

−1 12

relational

x

y
66

42

−1 12

Exercise 43

Identify the point
(x = 10, y = 54).

Side note: in both cases, we assume an abstraction that works with
�contiguous areas�, not �discrete points� ⇒ interval domain, see later.

105 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Abstract Interpretation Abstract Interpretation: Program Abstraction

Two pictures are worth a thousand words

Previous example at program point 2 (loop invariant)

non relational

x

y
66

42

−1 12

relational

x

y
66

42

−1 12

Exercise 43

Identify the point
(x = 10, y = 54).

Side note: in both cases, we assume an abstraction that works with
�contiguous areas�, not �discrete points� ⇒ interval domain, see later.

105 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Abstract Interpretation Abstract Interpretation: Data Abstraction II

Plan

1 Introductory Remarks

2 Timed Automata

3 Abstract Interpretation
Abstract Interpretation: Data Abstraction I
Abstract Interpretation: Program Abstraction
Abstract Interpretation: Data Abstraction II
Abstract Interpretation: Executing an Abstract Program
Frama-C

106 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Abstract Interpretation Abstract Interpretation: Data Abstraction II

Various abstract domains

We have looked at some basic ideas of data abstraction.

We have looked at program abstraction.

We will now get back to data abstraction, to understand how abstract
domains are set up and give a couple of examples of abstract domains.

The presentation above suggests that concrete data comes �rst, one
de�nes an abstraction and then a concretisation. But actually the
setup an abstract domain works the other way round:

de�ne what are the abstract objects;
specify the concretisation γ.
The de�nition of α results from this:

α(o) = min{o# | o ⊆ γ(o#)}

107 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Abstract Interpretation Abstract Interpretation: Data Abstraction II

Various abstract domains

We have looked at some basic ideas of data abstraction.

We have looked at program abstraction.

We will now get back to data abstraction, to understand how abstract
domains are set up and give a couple of examples of abstract domains.

The presentation above suggests that concrete data comes �rst, one
de�nes an abstraction and then a concretisation. But actually the
setup an abstract domain works the other way round:

de�ne what are the abstract objects;
specify the concretisation γ.
The de�nition of α results from this:

α(o) = min{o# | o ⊆ γ(o#)}

107 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Abstract Interpretation Abstract Interpretation: Data Abstraction II

Various abstract domains

We have looked at some basic ideas of data abstraction.

We have looked at program abstraction.

We will now get back to data abstraction, to understand how abstract
domains are set up and give a couple of examples of abstract domains.

The presentation above suggests that concrete data comes �rst, one
de�nes an abstraction and then a concretisation. But actually the
setup an abstract domain works the other way round:

de�ne what are the abstract objects;
specify the concretisation γ.
The de�nition of α results from this:

α(o) = min{o# | o ⊆ γ(o#)}

107 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Abstract Interpretation Abstract Interpretation: Data Abstraction II

Domain of signs

De�nition

Lattice for D] = {PNZ, NZ, PZ, Z,⊥}:

PNZ

NZ PZ

Z

⊥

γ(PNZ)= Z
γ(NZ) = (−∞, 0]
γ(PZ) = [0,+∞)
γ(Z) = {0}
γ(⊥) = ∅

We de�ne:

α(S) =


PNZ if ∃s, s ′ ∈ S , s < 0, s ′ > 0
NZ if ∀s ∈ S , s ≤ 0 ∧ ∃s ∈ S , s < 0
PZ if ∀s ∈ S , s ≥ 0 ∧ ∃s ∈ S , s > 0
Z if S = {0}
⊥ if S = ∅

108 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Abstract Interpretation Abstract Interpretation: Data Abstraction II

Domain of signs

De�nition

Lattice for D] = {PNZ, NZ, PZ, Z,⊥}:

PNZ

NZ PZ

Z

⊥

γ(PNZ)= Z
γ(NZ) = (−∞, 0]
γ(PZ) = [0,+∞)
γ(Z) = {0}
γ(⊥) = ∅

We de�ne:

α(S) =


PNZ if ∃s, s ′ ∈ S , s < 0, s ′ > 0
NZ if ∀s ∈ S , s ≤ 0 ∧ ∃s ∈ S , s < 0
PZ if ∀s ∈ S , s ≥ 0 ∧ ∃s ∈ S , s > 0
Z if S = {0}
⊥ if S = ∅

108 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Abstract Interpretation Abstract Interpretation: Data Abstraction II

Domain of signs: abstract arithmetic operations

Recall: unary](x) = α(unary(γ(x))), binary](x , y) = α(. . .).

x] +] y] = α
({

x + y
∣∣ x ∈ γ(x]), y ∈ γ(y])

})
=

+] PNZ NZ PZ Z ⊥
PNZ PNZ PNZ PNZ PNZ ⊥
NZ PNZ NZ PNZ NZ ⊥
PZ PNZ PNZ PZ PZ ⊥
Z PNZ NZ PZ Z ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥

. . .

109 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Abstract Interpretation Abstract Interpretation: Data Abstraction II

Domain of signs: abstract arithmetic operations

Recall: unary](x) = α(unary(γ(x))), binary](x , y) = α(. . .).

x] +] y] = α
({

x + y
∣∣ x ∈ γ(x]), y ∈ γ(y])

})
=

+] PNZ NZ PZ Z ⊥
PNZ PNZ PNZ PNZ PNZ ⊥
NZ PNZ NZ PNZ NZ ⊥
PZ PNZ PNZ PZ PZ ⊥
Z PNZ NZ PZ Z ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥

. . .

109 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Abstract Interpretation Abstract Interpretation: Data Abstraction II

Domain of signs: abstract arithmetic operations (2)

Exercise 44

−] PNZ NZ PZ Z ⊥
PNZ

NZ

PZ

Z

⊥

110 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Abstract Interpretation Abstract Interpretation: Data Abstraction II

Domain of signs: abstract arithmetic operations with errors

What about posible arithmetic errors, speci�cally, division by 0?
Recall that in the concrete, errors lead to absence of results,
e.g. {10, 20}/{−2, 0, 2} = {−10,−5, 5, 10}. Hence abstract division will be

Exercise

Exercise:
/] PNZ NZ PZ Z ⊥
PNZ

PNZ PNZ PNZ ⊥ ⊥

NZ

PNZ PZ NZ ⊥ ⊥

PZ

PNZ NZ PZ ⊥ ⊥

Z

Z Z Z ⊥ ⊥

⊥

⊥ ⊥ ⊥ ⊥ ⊥

Hence, if we infer abstract value PZ for variable x at a certain point, it
means that x is de�nitely non-negative provided we reach that program
point; an error might have occurred before.

111 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Abstract Interpretation Abstract Interpretation: Data Abstraction II

Domain of signs: abstract arithmetic operations with errors

What about posible arithmetic errors, speci�cally, division by 0?
Recall that in the concrete, errors lead to absence of results,
e.g. {10, 20}/{−2, 0, 2} = {−10,−5, 5, 10}. Hence abstract division will be

Exercise

Exercise:
/] PNZ NZ PZ Z ⊥
PNZ PNZ PNZ PNZ ⊥ ⊥
NZ PNZ PZ NZ ⊥ ⊥
PZ PNZ NZ PZ ⊥ ⊥
Z Z Z Z ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥

Hence, if we infer abstract value PZ for variable x at a certain point, it
means that x is de�nitely non-negative provided we reach that program
point; an error might have occurred before.

111 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Abstract Interpretation Abstract Interpretation: Data Abstraction II

Domain of intervals

De�nition

Lattice of intervals (D] =
{[n1, n2] | n1, n2 ∈ Z, n1 ≤ n2} ∪ {[n1,∞) | n1 ∈ Z} ∪ {(−∞, n2] | n2 ∈
Z} ∪ {(−∞,∞),⊥})

(−∞,+∞)
...

· · · [−1, 1] · · ·

· · · [−1, 0] [0, 1] · · ·

· · · [−1,−1] [0, 0] [1, 1] · · ·

⊥
γ((−∞,+∞)) = (−∞,+∞)
γ((−∞, n]) = (−∞, n]
γ([n,+∞)) = [n,+∞)

γ([n1, n2]) = [n1, n2]
γ(⊥) = ∅

112 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Abstract Interpretation Abstract Interpretation: Data Abstraction II

Domain of intervals: abstraction

We de�ne:

α(S) =

{
[n1, n2] where n1 = min S and n2 = max S
⊥ if S = ∅

Same principle as in previous examples: a set S of integers is abstracted as
the smallest (w.r.t. v) element in the abstract domain, i.e., the tightest
interval, whose concretisation contains S .
We lose information but we want to lose as little as possible, given an
abstract domain.

113 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Abstract Interpretation Abstract Interpretation: Data Abstraction II

Domain of intervals: Abstract operations

x] +] y] = α
({

x + y
∣∣ x ∈ γ(x]), y ∈ γ(y])

})
={

[a + c, b + d] where x] = [a, b] and y] = [c, d]
⊥ if x] = ⊥ or y] = ⊥

Exercise 45

Subtraction, multiplication

114 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Abstract Interpretation Abstract Interpretation: Executing an Abstract Program

Plan

1 Introductory Remarks

2 Timed Automata

3 Abstract Interpretation
Abstract Interpretation: Data Abstraction I
Abstract Interpretation: Program Abstraction
Abstract Interpretation: Data Abstraction II
Abstract Interpretation: Executing an Abstract Program
Frama-C

115 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Abstract Interpretation Abstract Interpretation: Executing an Abstract Program

Reminder: The Toy Program

0x = rand(0, 12);1y = 42;

while 2(x > 0) {

3x = x − 2;

4y = y + 4
}5

116 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Abstract Interpretation Abstract Interpretation: Executing an Abstract Program

Executing the Program Using the Interval Domain

x y x y x y

0: (−∞,∞) (−∞,∞)

1: [0, 12] (−∞,∞)

2∗: [0, 12] [42, 42] 2∗: [−1, 8] [50, 50] 2∗: [−1, 4] [58, 58]
3: [1, 12] [42, 42] 3: [1, 8] [50, 50] 3: [1, 4] [58, 58]
4: [−1, 10] [42, 42] 4: [−1, 6] [50, 50] 4: [−1, 2] [58, 58]

2∗: [−1, 10] [46, 46] 2∗: [−1, 6] [54, 54] 2∗: [−1, 2] [62, 62]
3: [1, 10] [46, 46] 3: [1, 6] [54, 54] 3: [1, 2] [62, 62]
4: [−1, 8] [46, 46] 4: [−1, 4] [54, 54] 4: [−1, 0] [62, 62]

2: [−1, 0] [66, 66]
5: [−1, 0] [66, 66]

∗: quitting the loop is also possible since values ≤ 0 are included in the

interval for x , leading to possibilities 5: [0, 0] [42, 42] , 5: [−1, 0] [46, 46] ,

5: [−1, 0] [50, 50] , 5: [−1, 0] [54, 54] , 5: [−1, 0] [58, 58] ,

5: [−1, 0] [62, 62] , so in summary 5: [−1, 0] [42, 66] .

117 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Abstract Interpretation Abstract Interpretation: Executing an Abstract Program

Information Extracted from Execution

For program point 2, we have to take the union of all points marked
�2� above, and thus infer x = [−1, 12], y = [42, 66] (see slide 105).

We infer this information much more cheaply than by executing in the
concrete.

Especially for an in�nite abstract domain like the interval domain, this
may still be too expensive and one might consider additional
abstraction techniques.

On the other hand, one might consider re�nement techniques.

This abstract execution just gives an idea of the principle.

118 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Abstract Interpretation Frama-C

Plan

1 Introductory Remarks

2 Timed Automata

3 Abstract Interpretation
Abstract Interpretation: Data Abstraction I
Abstract Interpretation: Program Abstraction
Abstract Interpretation: Data Abstraction II
Abstract Interpretation: Executing an Abstract Program
Frama-C

119 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Abstract Interpretation Frama-C

Frama-C, a Collection of Tools

The development of Frama-C originates around 1990.

Several tools inside a single platform

tools provided as plug-ins

21 plug-ins in the open source distribution
outside open source plug-ins
closed source plug-ins, either at CEA (about 20) or outside

plug-ins connected to a kernel

provides a uniform setting
provides general services
synthesizes useful information

120 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Abstract Interpretation Frama-C

Frama-C, a Collection of Tools

The development of Frama-C originates around 1990.
Several tools inside a single platform

tools provided as plug-ins

21 plug-ins in the open source distribution
outside open source plug-ins
closed source plug-ins, either at CEA (about 20) or outside

plug-ins connected to a kernel

provides a uniform setting
provides general services
synthesizes useful information

120 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Abstract Interpretation Frama-C

Frama-C, a Development Platform

developed in OCaml (≈ 180 kloc in the open source distribution, ≈
300 kloc with proprietary extensions)

library dedicated to analysis of C code; development of plug-ins by
third party

powerful low-cost analyser

Here: EVA for abstract interpretation.

121 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Abstract Interpretation Frama-C

ACSL: Introduction

ACSL = ANSI/ISO C Speci�cation Language

First-order logic.

Speci�cation of a function states pre-conditions and post-conditions.

122 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Abstract Interpretation Frama-C

ACSL: Introduction

ACSL = ANSI/ISO C Speci�cation Language

First-order logic.

Speci�cation of a function states pre-conditions and post-conditions.

122 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Abstract Interpretation Frama-C

ACSL: Simple example

/*@ requires \valid(a) && \valid(b);

requires \separated(a,b);

ensures *a == \at(*b,Pre) && *b == \at(*a,Pre);

*/

void swap(int * a, int * b);

requires : pre-condition

\valid and \separatated: built-in ACSL predicates

ensures and \at, Pre (entry point of function)

123 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Abstract Interpretation Frama-C

ACSL: Loop invariants

int a[10];

/*@

loop invariant 0 <= i <= 10;

loop invariant \forall integer j; 0 <= j < i ==> a[j] == j;

*/

for (int i = 0; i < 10; i++) a[i] = i;

loop invariants are true for each loop step: on �rst entry, and must
be preserved, except for goto, break, continue.

Works for for, while, do ... while loops.

Particularly useful for deductive veri�cation.

124 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Abstract Interpretation Frama-C

ACSL: Loop invariants (2)

Discussion of example:

Bounds of the index: i<=10 although test is i<10.

Second invariant states that the i-1 �rst cells of the array have been
initialized. Why true at beginning?

125 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Abstract Interpretation Frama-C

Annotations

In addition to function speci�cations, ACSL o�ers the possibility of writing
annotations in the code, in the form of assertions, properties that must be
true at a given point.

126 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Bibliography

Bibliography I

Rajeev Alur and David L. Dill.
A theory of timed automata.
Theoretical Computer Science, 126(2):183�235, 1994.

Johan Bengtsson and Wang Yi.
Timed automata: Semantics, algorithms and tools.
In Jörg Desel, Wolfgang Reisig, and Grzegorz Rozenberg, editors,
Lectures on Concurrency and Petri Nets 2003, volume 3098 of LNCS,
pages 87�124. Springer-Verlag, 2004.

P. Cousot and R. Cousot.
Abstract interpretation: A uni�ed lattice model for static analysis of
programs by construction or approximation of �xpoints.
In Proceedings of the 4th Symposium on Principles of Programming

Languages, pages 238�252. ACM Press, 1977.

127 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

Bibliography

Bibliography II

Torsten K. Iversen, Kåre J. Kristo�ersen, Kim G. Larsen, Morten
Laursen, Rune G. Madsen, Ste�en K. Mortensen, Paul Pettersson, and
Chris B. Thomasen.
Model-checking real-time control programs � verifying LEGO
mindstorms systems using uppaal.
Technical Report RS-99-53, BRICS, 1999.
BRICS Report Series.

Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles,
and Boris Yakobowski.
Frama-C: A software analysis perspective.
Formal Asp. Comput., 27(3):573�609, 2015.

128 M2-CSA: V & C Université de Toulouse/IRIT Year 2021/2022

	Introductory Remarks
	Timed Automata
	Basics
	Composition of Timed Automata
	Basics of the Tool Uppaal
	Semantics
	Regions
	Case Study: LEGO Mindstorm
	Conclusion

	Abstract Interpretation
	Abstract Interpretation: Data Abstraction I
	Abstract Interpretation: Program Abstraction
	Abstract Interpretation: Data Abstraction II
	Abstract Interpretation: Executing an Abstract Program
	Frama-C

	Appendix
	Bibliography

