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Abstract According to a celebrated result of Kesten (Acta Math 131:207–
248, 1973), random difference equations have a power-law distribution tail
in the asymptotic sense. Empirical evidence shows that classical estimators
of tail exponent of random difference equations, such as Hill estimator, are
extremely biased for larger values of tail exponents. It is argued in this work
that the bias occurs because the power-tail region is too far in the tail from a
practical perspective. This is supported by analysis of a few examples where a
stationary distribution of random difference equation is known explicitly, and
by proving a weaker form of the so-called second order regular variation of
distribution tails of random difference equations, which measures deviations
from the asymptotic power tail. The latter, in particular, suggests a specific
second order term for a distribution tail. Estimation of tail exponents can
be adapted by taking this second order term into account. One such method
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available in the literature is examined, and a new, simple, regression type
estimator is proposed. Simulation study shows that the proposed estimator
works very well. ARCH models of interest in Finance and multiplicative
cascades used in Physics are considered as motivating examples throughout
the work. Extension to multidimensional random difference equations with
nonnegative entries is also considered.

Keywords Random difference equations · Tail exponent and its estimation ·
Second order regular variation · ARCH models · Multiplicative cascades

AMS 2000 Subject Classifications Primary—60G70 · 60H25

1 Introduction

We are interested in tail exponents of random difference equations (RDEs,
in short), also known as random recurrence equations, autoregressive models
with random coefficients. In one dimension, RDE is given by

Xn = An Xn−1 + Bn, n ≥ 1, (1.1)

where (An, Bn) are typically assumed to be i.i.d. vectors and X0 is some starting
position. Important examples of RDEs include autoregressive conditionally
heteroscedastic (ARCH) processes used in Finance or multiplicative cascades
of interest in Physics. Several examples are introduced in detail in Section 2.
We shall focus throughout on one dimensional RDE in Eq. 1.1 though the
multidimensional case will also be considered (see Section 5.3 below).

Under mild assumptions, the series {Xn} in Eq. 1.1 has a stationary solution
X satisfying the equation (which we also call RDE)

X d= AX + B, (1.2)

where (A, B) =d (A1, B1) independent of X, and the tail distribution of X
has a power tail. This result was first shown by Kesten (1973) and studied
further by many authors, for example, Grintsyavichyus (1981), Goldie (1991)
to name a few. It is stated in the following theorem (analogous result for the
multidimensional case is given in Theorem 5.1).

Theorem 1.1 (Kesten 1973, Theorem 5) Let {Xn}n≥1 be defined by Eq. 1.1.
Suppose that (An, Bn), n ≥ 1, are i.i.d. random vectors such that

E log |A1| < 0, (1.3)

and that, for some α > 0,

E|A1|α = 1, (1.4)

E|A1|α log+ |A1| < ∞, 0 < E|B1|α < ∞. (1.5)
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If, in addition, log |A1| does not have a lattice distribution and B1 is not a
constant times (1 − X1), then

Xn
d→ X, (1.6)

where

X d=
∞∑

k=1

A1 . . . Ak−1 Bk, (1.7)

and the series on the right-hand side of Eq. 1.7 converges a.s. Moreover,

P(X < −x) ∼ c−x−α and P(X > x) ∼ c+x−α, as x → ∞, (1.8)

where at least one of c− and c+ is nonzero.

We are interested in questions concerning estimation of the tail exponent
α appearing in Eq. 1.8. A common estimation method is based on a Hill
estimator (see, for example, Embrechts et al. 1997). If Y1, . . . , Yn are n given
observations with a common distribution of Y (independent or not, depending
on the context) and

Y(1) ≥ Y(2) ≥ . . . ≥ Y(n)

are the observations in the decreasing order, the Hill estimator is defined as

α̂H =
(

1

k

k∑

i=1

(log Y(i) − log Y(k+1))

)−1

, (1.9)

where k is a threshold. If the underlying distribution of Y has a power tail

P(Y > y) ∼ cy−α, as y → ∞, α > 0, (1.10)

the Hill estimator in Eq. 1.9 of α is known to have nice theoretical properties
such as consistency, asymptotic normality under fairly mild assumptions. In
practice, the presence of heavy tails is assessed by examining the so-called Hill
plot. This plot is produced by plotting α̂H as a function of threshold k (from the
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Fig. 1 Hill estimator from Pareto distribution with α = 1.5.
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Fig. 2 Hill plot for 5000 independent realizations of ARCH(1) model with α = 10.

smallest k to larger k). An example is given in Fig. 1 based on i.i.d. observations
from the Pareto distribution with α = 1.5. If the distribution tail has power law,
as in Fig. 1, the Hill plot levels off in a region of small k and that level is taken
as the Hill estimate for the power-tail exponent.

Statement of the problem When tail exponent α is large, Hill plots for RDEs
show tail exponent estimates surprisingly biased. For example, Fig. 2 shows a
typical Hill plot for an ARCH(1) model (see Section 2.1) having tail exponent
α = 10, based on 5,000 independent realizations of the process at a chosen,
fixed time. Observe from the figure how far the Hill plot is from the true value
of α. Perhaps even more surprising is that estimation improves only slightly by
taking any reasonably larger sample size. For example, Fig. 3 also shows the
Hill plot for a million independent realizations. The basic goal of this work is
to understand why above estimation of tail exponents fails in RDEs for larger
values of exponents and how this can be remedied.

Here are some further important comments about the above problem.

• Why do we consider RDEs? The problem described above seems to
be characteristic to all RDEs. We illustrate this in Section 2 through
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Fig. 3 Hill plot for a million independent realizations of ARCH(1) model with α = 10.
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simulations in a number of different RDE models. One of our main goals
is also to explain this in theory.

• Why should one care about larger tail exponent? The problem described
above and supporting simulations involve larger values of tail exponent α.
It is important to ask then why one should care about larger α. Several
points should be made in this regard. First, in some applications of RDE
models, larger values of α are, in fact, expected. This is the case, for
example, with multiplicative cascades and other so-called multifractal
models of interest in Physics. Second, observed bias in estimation of α

becomes larger with increasing α and is still present (though smaller) for
smaller α. If one believes that RDE models are appropriate for data at
hand, this should be taken into account for either larger or smaller tail
exponent α. Moreover, it would be desirable to have an estimation method
that takes into account the possibilities of bias, and which performs well for
both larger and smaller values of α. Proposed estimation methods will be
discussed in Section 4.

• Independent versus dependent observations. Two types of observations
can be considered in regard to the problem stated above. First, one may
suppose that observations are obtained from the RDE in Eq. 1.1 and hence
dependent in time. Second, one may suppose given independent copies of
XN for large fixed N (which can be thought as independent copies of the
stationary solution X). For simplicity, we shall focus throughout on the
second case. Perhaps surprising but this case is also relevant in practice
(for example, in the context of multiplicative cascades) and the problem
stated above is as equally relevant. Moreover, for dependent data given by
Eq. 1.1, tail exponent estimation problems are known to get only worse.
See Section 5.2 for related discussion.

Possible explanations for the problem Since we have removed temporal
dependence from observations, two explanations seem plausible for the above
problem:

1. Convergence to stationary solution in Eq. 1.2 is so slow that the observa-
tion XN is still far from the stationary solution X.

2. The result in Eq. 1.8 is asymptotic in nature. It can happen that the region
where Eq. 1.8 actually happens is too far in the tail to be observed for
practical purposes. In other words, even with a huge number of data points,
there are significant deviations from the Pareto tail in practice.

In fact, in the context of RDEs, using their Markov structure, one expects
that underlying measure PN induced by RDE in Eq. 1.1 converges to its
invariant measure P∞ induced by Eq. 1.2 at a geometrically fast rate. The
latter fact is known as geometric ergodicity. Basrak et al. (2002b) and Stelzer
(2009) show detailed description of geometric ergodicity of the RDE {Xn}.
We also summarize their result in Theorem 5.3 in Appendix A to the reader’s
convenience.
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Theoretical properties of tail distribution We therefore suspect that the tail
exponent is not observed because of the second explanation above. As clearly
pointed out in Resnick (1997), all nice theoretical properties of Hill and other
related estimators are valid only when the underlying distribution is close
to Pareto distribution. If the underlying distribution deviates from Pareto
distribution, bias is inevitable.

There is a general theoretical framework, called second order regular
variation or 2RV, in short (see, for example, de Haan and Ferreira 2006),
that allows one to study bias in first order regular variation such as Eq. 1.8.
The tail distribution F(x) = P(X > x) is second order regularly varying with
first order parameter α > 0 and second order parameter ρ < 0 (denoted as F ∈
2RV(−α, ρ)) if there exists a function G(x) → 0 as x → ∞ which ultimately
has constant sign such that, for any a > 0,

lim
x→∞

F(ax)

F(x)
− a−α

G(x)
= ca−α aρ − 1

ρ
, (1.11)

for some constant c �= 0. Second order regular variation can be thought as

F(x) − c1x−α ∼ l2(x)x−α+ρ, (1.12)

where l2(x) is a slowly varying function at infinity (Bingham et al. 1989,
Thoerem 3.6.6, p. 158). The right-hand side of Eq. 1.12 is thought as a bias.
For practical (estimation) questions, the slowly varying function in Eq. 1.12 is
taken as

l2(x) = c2

for some constant c2, that is,

F(x) − c1x−α ∼ c2x−α+ρ. (1.13)

Remark It is important to note that 2RV is asymptotic in nature. Even if
proved for RDEs, it does not yield the exact region where Eq. 1.12 holds.
Hence, without further analysis, establishing 2RV, in principle, does not
completely address the problem raised in this work. Despite these limitations,
2RV at least indicates that there exists a bias and that it should be taken into
account, for example, in questions of estimation.

To the best of our knowledge and understanding, 2RV is still an open and
difficult problem for any larger class of RDEs. Instead of trying to prove 2RV,
we shall focus on its weaker forms by considering the asymptotics of

P(X > x) − P(AX > x), (1.14)

where A is the multiplier appearing in Eq. 1.2, and more specifically that of
∫ ∞

x
(P(X > u) − P(AX > u)) du. (1.15)
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We will show under mild assumptions that, as x → ∞,
∫ ∞

x
(P(X > u) − P(AX > u)) du ∼ cx−α, (1.16)

which also suggests that, as x → ∞,

P(X > x) − P(AX > x) ∼ cαx−α−1. (1.17)

The expressions in Eqs. 1.14 and 1.15 are much easier to consider than Eq. 1.11
because AX can be related back to X by using the RDE in Eq. 1.2. In fact, as
seen from Section 3, Eq. 1.16 follows just by using the RDE structure in Eq. 1.2
and the Kesten’s result itself. A particularly simple case of RDE is considered
in the beginning of Section 3.

How is Eq. 1.17 related to 2RV in Eq. 1.11? Observe that with g(x) =
−xαG(x)F(x), Eq. 1.11 can be rewritten as

lim
x→∞

xα P(X > x) − (ax)α P(X > ax)

g(x)
= c

aρ − 1

ρ
. (1.18)

Equation 1.17, on the other hand, can be expressed as

lim
x→∞

xα P(X > x) − xα(EAα)−1 P(X > A−1x)

x−1
= cα, (1.19)

since EAα = 1 by Eq. 1.4. Hence, Eq. 1.19 can be viewed as 2RV in Eq. 1.18
at random a = 1/A.

From a practical perspective, Eq. 1.17 says that there is a bias in Eq. 1.8
(if there is no bias in Eq. 1.8, then P(X > x) − P(AX > x) = 0). Moreover, if
one believes that F(x) satisfies Eq. 1.13, then necessarily ρ = −1 and

P(X > x) − c1x−α ∼ c2x−α−1, (1.20)

as x → ∞ (Proposition 3.1 below).

Discussion on estimation If one believes in RDE model and that the model
has 2RV, it is natural to estimate tail exponent by taking 2RV into account. Tail
exponent estimation based on 2RV has been studied by a number of authors.
In particular, Peng (1998) shows asymptotic bias of Hill estimator under 2RV
and proposes linear estimator considering second order parameter to adjust
for the asymptotic bias. More recently, Gomes and Rodrigues (2008) consider
weighted Hill estimator where the weights are determined by 2RV parameters.
Feuerverger and Hall (1999) utilize normalized log-spacings of order-statistics

i(log Y(i) − log Y(i+1)),

which are known to follow Exponential distribution with mean 1 by Rényi’s
representation theorem for order statistics. Under the relation in Eq. 1.13,
these authors derive the maximum likelihood estimators of parameters α, ρ.
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We will apply the approach of Feuerverger and Hall (1999) to estimate tail
exponent in RDE in Section 4. In that section, we also propose a simple estima-
tor of linear regression type based on Eq. 1.20. By taking log-transformation,
observe that Eq. 1.20 becomes

log
(
F(x)

) ≈ log c1 − α log x + log
(
1 + c2/c1x−1

) ≈ log c1 − α log x + c2/c1x−1.

(1.21)

Equation 1.21 suggests that regressing the logarithm of empirical tail distribu-
tion on (1, log x, 1/x) gives the least squares estimator of tail exponent α. This
is a generalization of the regression

log
(
F(x)

) ≈ log c1 − α log x,

which considers only the first order regular variation. Simulation study shows
that our proposed estimator performs very well. Section 4 only touches upon
estimation questions under the framework in Eq. 1.20. A much more detailed
study of these questions can be found in Baek and Pipiras (2009).

The rest of this work is organized in the following way. Several examples of
RDEs and some simulation studies with unobservable exponents for RDEs
are introduced in Section 2. In Section 3, we prove the weaker form in
Eq. 1.16 of second order regular variation in RDEs. In Section 4, we introduce
simple least squares estimator of tail exponent and study performance through
simulations. All these sections concern one dimensional RDEs. Some further
issues including a multidimensional extension are discussed in Section 5.

2 Examples of RDEs and simulation study

In this section, several examples of one dimensional RDEs in Eq. 1.1 are given.
These include autoregressive conditionally heteroscedastic processes of order
1, an example with an explicit stationary distribution and multiplicative cas-
cades. We also report here further simulation study supporting the statement
of the problem discussed in Section 1. The simulations are to show that the
problem seems prevalent for all RDEs.

2.1 ARCH(1) models

A particular example of RDEs is a popular autoregressive conditionally
heteroscedastic (ARCH(1)) model of order 1, defined by

ξt = σtεt, σ 2
t = β + λξ 2

t−1, (2.1)

where {εt} are i.i.d. N (0, σ 2) random variables and coefficients β and λ are
strictly positive. The squares of ARCH(1) series can be written as

ξ 2
t = λε2

t ξ
2
t−1 + βε2

t , (2.2)
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which is the RDE in Eq. 1.1 with

Xt = ξ 2
t , At = λε2

t , Bt = βε2
t . (2.3)

By Theorem 1.1, the tail exponent κ = α/2 of ξ 2 is the solution of


(κ + 1/2) = √
π(2σ 2λ)−κ . (2.4)

Equation 2.4 does not have a closed-form solution. For example, if σ 2 = 1,
numerical calculations yield:

κ 2 3 4 5 6 7 8 9 10
λ .577 .406 .312 .254 .214 .185 .163 .145 .105.

Note also that, by symmetry, the tail exponent of ξ is α = 2κ because

P(ξ > x) = 1/2P(ξ 2 > x2) ∼ c/2(x2)−κ = c/2x−2κ .

Consider the ARCH(1) series in Eq. 2.1 with λ = .254, β = 1, εt =d N (0, 1).
From the above table, the tail exponent is

α = 10.

In this simulation, we generated R = 5, 000 independent samples with N =
5, 000 iterations of ARCH(1) series. Figure 4 shows tail exponent estimation,
and again it does not find the true tail exponent α = 10.

Remark Empirical observations for ARCH(1) models similar to those above
can also be found in Beirlant et al. (1999) (see Figure 12 on p. 195). Though this
was the only place in the literature that we found to make such observations.
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Fig. 4 ARCH(1) with α = 10.
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2.2 Examples of RDEs with explicit power-tail distributions

The following appears to be the only known family of RDEs for which a
stationary solution has a power-tail distribution in closed form. Consider the
so-called beta prime distribution β(a, b) given by the density

1

B(a, b)
xa−1(1 + x)−a−b 1{x>0}, a, b > 0. (2.5)

Simple algebra shows that

β(a, b)
d= 1

Z
− 1, (2.6)

where Z =d B(b , a) follows the beta distribution. Now fix k ∈ N and let
a1, . . . , ak, b be positive reals. Denote ak+1 = a1 and set

A = Y1 . . . Yk, B = Y1 . . . Yk + . . . + Yk−1Yk + Yk, (2.7)

where Yk =d β(a j+1, a j + b) for j = 1, . . . , k. Then, as shown in Goldie (1991),
Chamayou and Letac (1991),

X d= β(a1, b) (2.8)

satisfies RDE in Eq. 1.2 with A, B in Eq. 2.7.
Observe that the distribution tail of random variable X in Eq. 2.8 satisfies

P(X > x) =
∫ ∞

x

1

B(a1, b)
ua1−1(1 + u)−a1−b du

= 1

B(a1, b)

∫ ∞

x
u−b−1

(
1 + 1

u

)−a1−b

du

= 1

B(a1, b)

∫ ∞

x
u−b−1

(
1 − (a1 + b)u−1 + o(u−1)

)
du. (2.9)

Therefore, we have

P(X >x) − 1

B(a1, b)

1

b
x−b ∼ −(a1+b)

B(a1, b)

∫ ∞

x
u−b−2du = −(a1+b)

B(a1, b)(b +1)
x−b−1,

(2.10)

as x → ∞, that is, the tail exponent for X is b and the second order term has
the exponent b + 1.

Consider the above example with k = 2, a1 = a2 = 1 and b = 9. The tail
exponent in this case is b = 9. The simulations here are based on 5,000
independent realizations of XN with N = 100 iterations. Figure 5 shows tail
exponent estimation with asymptotic 95% confidence interval of Hill estimator
in dotted line. In addition, Fig. 6 shows tails of empirical and theoretical
distributions over the range of data. The theoretical power tail is also plotted
and it is seen from Fig. 6 that the theoretical tail is not yet in the asymptotic
range in Eq. 1.8.
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Fig. 5 Explicit example of Section 2.2 with a1 = a2 = 1 and b = 9. True exponent α = 9.

The fact that the asymptotic range Eq. 1.8 is not observed here with data,
can be explained in theory because the corresponding distribution has a closed
form. Using Eq. 2.10 and comparing the ratio of distribution tail and the power
law x−b , suppose that

∣∣∣∣
P(X > x)

x−b/bB(a1, b)
− 1

∣∣∣∣ =
∣∣∣∣

P(Z < 1/(1 + x))

x−b/bB(a1, b)
− 1

∣∣∣∣ ≤ ε, (2.11)

where Z =d B(b , a1) from the relation in Eq. 2.6. For example, with a1 =1, b =
9 and ε = .5, numerical computations show that Eq. 2.11 holds for x > 12.49.
The probability of having observation greater than 12.49 is 6.76 × 10−11.

Fig. 6 Explicit example of
Section 2.2 with a1 = a2 = 1
and b = 9. Empirical tail
distribution stays far below
the asymptotic tail behavior.

10-5 10-4 10-3 10-2 10-1 100

10-5

10-4

10-3

10-2

10-1

lo
g(

β a
,b

 ta
il 

pr
ob

ab
ili

ty
)

log(Data)

Tail Probability plot a=1 b =9

DATA
Theory
Tail



C. Baek et al.

2.3 Multiplicative cascades

Let T = [0, 1). For ki ∈ {0, 1}, i ≥ 1, denote

Ik1,...,kn =
[

l
2n

,
l + 1

2n

)
, l = k120 + . . . + kn2n−1, (2.12)

subintervals of T obtained by splitting in a dyadic fashion. Let also
{Wk1,...,ki , ki ∈ {0, 1}, i ≥ 1} be a family of i.i.d., nonnegative, mean 1 random
variables, called multipliers. Define a random measure λn on B(T) by

λn(E) =
∫

E
fn(t)dt, with fn(t) =

∑

ki∈{0,1}

(
n∏

i=1

Wk1,...,ki

)
1Ik1,...,kn

(t). (2.13)

Note, in particular, that

λn(Ik1,...,kn) = 2−n
n∏

i=1

Wk1,...,ki . (2.14)

(For example, λ1[0, 1/2) = 2−1W0, λ3([1/8, 2/8)) = 2−3W0W0,0W0,0,1 and so
on.) Provided E(W log2 W) < 1, one can show that the sequence λn converges
weakly to a random measure λ∞ on B(T) almost surely, that is,

λn ⇒ λ, on B(T) a.s. (2.15)

where ⇒ indicates weak convergence. The limiting random measure
λ∞ is known as a multiplicative cascade (MC, in short). See, for example,
Mandelbort (1974), Ossiander and Waymire (2000). The following theorem
is a well-known fact about the existence of moments of λ∞ and related results.
Let

χ2(h) = log2 E(Wh1{W>0}) − (h − 1) (2.16)

be the so-called structure function associated with a multiplier W.

Theorem 2.1 (Kahane and Peyrière 1976, Guivarc’h 1990) The following state-
ments hold:

i) Eλ∞(T) = 1 iff χ ′
2(1−) < 0.

ii) E(λ∞(T))h < ∞ for 0 ≤ h ≤ 1 and if

α := sup{h ≥ 1 : χ2(h) ≤ 0} > 1, (2.17)

then Eλh∞(T) < ∞ for 1 < h < α.
iii) Furthermore, if the cascade (multiplier) is non-lattice, then

P(λ∞(T) > x) ∼ cx−α, as x → ∞. (2.18)

The tail behavior in Eq. 2.18 of interest here can be proved by using
Theorem 1.1 in the following way. Denote

Mn = λn[0, 1), M = λ∞[0, 1). (2.19)
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By “separating” the multipliers W1 and W2 at the first generation, one can see
that

Mn
d= W1

2
M(1)

n−1 + W2

2
M(2)

n−1, n ≥ 1, (2.20)

where W1, W2, M(1)
n−1, M(2)

n−1 are all independent, M(1)
n−1 =d M(2)

n−1 =d Mn−1,
W1 =d W2 =d W (the general multipliers in Eq. 2.14), and by convention,
M0 ≡ 1. Similarly, the limiting measure satisfies the equation

M d= W1

2
M(1) + W2

2
M(2). (2.21)

Equation 2.20 resembles the RDE in Eq. 1.1 when considered in distribution
by setting An = W1/2, Bn = W2 M(2)

(n−1)/2. The key difference is that in Eq. 1.1,
it is supposed that (An, Bn) are i.i.d. vectors which is not the case for MC
because the distribution of Bn = W2 M(2)

n−1/2 depends on n. Equation 2.21, on
the other hand, can be thought as a special case of RDE in Eq. 1.2.

Though Eq. 2.21 is RDE, Theorem 1.1 cannot be applied directly to it.
Indeed, in view of Eqs. 2.21 and 1.2, supposing A =d W1/2, B =d MW2/2, the
assumption in Eq. 1.5 requires that

E|B|α = E

∣∣∣∣
W
2

∣∣∣∣
α

E|M|α < ∞. (2.22)

But one expects M to have the tail exponent α and hence one cannot expect
that Eq. 2.22 is satisfied. Despite this, however, there is still a way that Theorem
1.1 can be applied to obtain the tail behavior of M. The trick can be found in
Guivarc’h (1990), Liu (2000) and others (though, seems to be originally due to
Guivarc’h 1990).

The basic idea is as follows. Let M̃ be a random variable with distribution
PM̃(dx) = xPM(dx). Note that EM = 1, so xPM(dx) is a probability measure.
Equation 2.21 can be rewritten in terms of characteristic functions as

φ(t) = E(eitM) = E
(

eit(A1 M(1)+A2 M(2))
)

= (
E (φ(A1t))

)2 (2.23)

(for the shortness of notation, we denote Ai = Wi/2, i = 1, 2). Consider the
random vector (Ã, B̃), independent of M̃, with the distribution given by

Eh(Ã, B̃) = E
(

A1h(A1, A2 M(2)) + A2h(A2, A1 M(1))
)

= 2E (A1h(A1, A2 M)) . (2.24)

Note also that the characteristic function of M̃ is

φ̃(t) = E(eitM̃) =
∫

eitxxPM(dx) = E(MeitM) = −iφ′(t), (2.25)

where φ′(t) is the derivative of φ(t).
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Observe that

E
(

eit(ÃM̃+B̃)
)

= E
(

eitB̃eit ÃM̃
)

= E
(

eitB̃φ̃(Ãt)
)

.

By applying Eq. 2.24 with h(a, b) = eitb φ̃(at) and Eq. 2.25, it becomes

2E
(

A1eitA2 Mφ̃(A1t)
) = 2E

(
A1φ̃(A1t)

)
E

(
eitA2 M)

= −2iE
(

A1φ
′(A1t)

)
E (φ(A2t)) . (2.26)

Note that differentiating the right-hand side of Eq. 2.23 gives

φ′(t) = 2E
(
φ′(A1t)A1

)
E (φ(A1t)) .

Therefore, one can conclude that

E(eitM̃) = E
(
eit(ÃM̃+B̃)

)

or

M̃ d= ÃM̃ + B̃, (2.27)

where (Ã, B̃) is independent of M̃.
Now, consider the solution M̃ of Eq. 2.27 instead of M of Eq. 2.21. The

conditions in Theorem 1.1 become

E|Ã|p−1 = 2E|A1|p = 2χ2(p),

E|B̃|p−1 = 2EA1|A2 M|p−1 = 2EA1 E|A2|p−1 E|M|p−1.

Since χ2(α) = 0 by Eq. 2.17 and E|M|α−1 < ∞ is expected, RDE in Eq. 2.27
should now have a stationary solution with the tail exponent (α − 1).

Establishing the tail behavior of M̃ leads naturally to that of M. Observe
that

P(M > x) =
∫ ∞

x
PM(dy) =

∫ ∞

x

1

y
yPM(dy) =

∫ ∞

x

1

y
PM̃(dy).

Integration by part gives,

P(M > x) = −1

x
PM̃(x) +

∫ ∞

x
y−2 PM̃(y)dy,

where PM̃(y) = P(M̃ ≤ y), or

xP(M > x) = P(M̃ > x) − x
∫ ∞

x
y−2 P(M̃ > y)dy. (2.28)
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Rewriting Eq. 2.28 gives

xα P(M > x)

xα−1 P(M̃ > x)
= 1 − xα

∫ ∞
x y−2 P(M̃ > y)dy

xα−1 P(M̃ > x)
. (2.29)

Since the tail of random variable M̃ is expected as

P(M̃ > x) ∼ c̃x−(α−1),

for some positive constant c̃, the right-hand side of Eq. 2.29 converges to
1 − 1/α, as x → ∞. This yields

P(M > x) ∼ cxα,

where c = c̃(α − 1)/α.
To illustrate our problem through simulations, consider the case of multi-

plicative cascade with log-normal multipliers LN(−σ 2/2, σ 2) where the latter
choice of parameters ensures mean 1. Simulations are based on i.i.d. copies
of Mr

N , r = 1, . . . , R, where N = 13 and R = 1, 000. The parameter is taken
as σ 2 = .2 log 2. According to a small calculation found in Appendix B, the
corresponding tail exponent is given by

α = 2 log 2

σ 2
= 2 log 2

.2 log 2
= 10. (2.30)

Figure 7 shows the corresponding tail distribution plot with Pareto distrib-
ution fit (left) and Hill plot (right). The tail appears power-law from the tail
plot. However, as seen from the Hill plot, theoretical tail exponent in Eq. 2.30
is far from any reasonable estimate of the tail.
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Fig. 7 Multiplicative cascade with log-normal multipliers. Theoretical tail exponent 10 is far from
the estimated tail exponent.
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3 Second order properties of distribution tails of RDEs

In this section, we show that weaker form in Eq. 1.16 of second order regular
variation holds for RDEs, that is,

∫ ∞

x
(P(X > u) − P(AX > u)) du ∼ cx−α, (3.1)

as x → ∞. We first illustrate Eq. 3.1 in a simple example, and then extend our
proof to more general RDEs.

Example 3.1 Consider RDE defined as

X d= AX + 1.

Then,
∫ ∞

x
(P(X > u) − P(AX > u)) du =

∫ ∞

x
(P(X > u) − P(X > u + 1)) du

=
∫ ∞

x
P(X > u)du −

∫ ∞

x+1
P(X > u)du

=
∫ x+1

x
P(X > u)du.

Since P(X > u) is monotone decreasing, we have

P(X > x + 1) ≤
∫ x+1

x
P(X > u)du ≤ P(X > x). (3.2)

By Theorem 1.1, both sides of Eq. 3.2 behave as c+x−α . Therefore, as x → ∞,
∫ ∞

x
(P(X > u) − P(AX > u)) du ∼ c+x−α.

As the following theorem shows, the relation in Eq. 3.1 holds for a large
class of RDEs. We first consider the case when A, B and X in Eq. 1.2 are all
nonnegative. The general case is considered later in the section.

Theorem 3.1 Let A ≥ 0, B ≥ 0 and X ≥ 0 a.s. and (A, B) be independent of
X. Suppose that the assumptions of Theorem 1.1 hold. In addition, if

EX < ∞, EAα B < ∞, (3.3)

xα EA1{B>Cx} → 0, for any C > 0, as x → ∞, (3.4)

xα EA1{A>Cx} → 0, for any C > 0, as x → ∞, (3.5)

xα

∫ ∞

x
P(B > z)dz → C+, as x → ∞, (3.6)
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where C+ ≥ 0, then RDE X in Eq. 1.2 satisfies

∫ ∞

x
(P(X > u) − P(AX > u)) du ∼ x−α (C+ + c+E(Aα B)) , (3.7)

with positive constant c+ defined in Eq. 1.8.

Proof Observe that

∫ ∞

x
(P(X > u) − P(AX > u)) du

=
∫ ∞

x

∫ ∞

0

∫ ∞

0
(P (aX > u − b) − P (aX > u)) FA,B(da, db)du

=
∫ ∞

0

∫ ∞

0

∫ x

x−b
P(aX > u)duFA,B(da, db). (3.8)

For fixed c < 1, we can further rewrite Eq. 3.8 by splitting the range of b into
(0, cx) and (cx, ∞)

∫ ∞

cx

∫ ∞

0

∫ x

x−b
P(aX > u)duFA,B(da, db)

+
∫ cx

0

∫ ∞

0

∫ x

x−b
P(aX > u)duFA,B(da, db) =: I + L. (3.9)

For the integral I, write I = I1 + I2, where

I1 =
∫ x

cx

∫ ∞

0

∫ x

x−b
P(aX > u)duFA,B(da, db),

I2 =
∫ ∞

x

∫ ∞

0

∫ x

x−b
P(aX > u)duFA,B(da, db).

The integral I1 can be bounded as

I1 ≤
∫ ∞

cx

∫ ∞

0
E(aX)FA,B(da, db) = EX EA1{B>cx},

and by the assumptions in Eqs. 3.3 and 3.4, we have

xα I1 → 0. (3.10)
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Observe for I2 that

I2 =
∫ ∞

x

∫ ∞

0

(∫ 0

x−b
P(aX > u)du +

∫ x

0
P(aX > u)du

)
FA,B(da, db)

=
∫ ∞

x

∫ ∞

0

(
(b − x) +

∫ x

0
P(aX > u)du

)
FA,B(da, db)

=
∫ ∞

x

∫ ∞

0
(b − x)FA,B(da, db)

+
∫ ∞

x

∫ ∞

0

∫ x

0
P(aX > u)duFA,B(da, db) =: I2,1 + I2,2.

Note that, by Eq. 3.6,

xα I2,1 =xα E(B − x)+ =xα

∫ ∞

0
P((B − x)+ > y)dy=xα

∫ ∞

x
P(B > z)dz → C+.

(3.11)

By the assumptions in Eqs. 3.3 and 3.4 with C = 1, we have

xα I2,2 ≤ xα EX EA1{B≥x} → 0. (3.12)

Combining Eqs. 3.10, 3.11 and 3.12 yields

xα I → C+. (3.13)

We now turn to the integral L in Eq. 3.9. By Theorem 1.1, we can select x0

such that, for any given ε > 0,

|xα P(X > x) − c+| ≤ ε, for all x ≥ x0, (3.14)

where c+ is a constant described in Eq. 1.8. For such x0, write the integral L as

L =
∫ cx

0

∫ ∞

(x−b)/x0

∫ x

x−b
P(aX > u)duFA,B(da, db)

+
∫ cx

0

∫ (x−b)/x0

0

∫ x

x−b
P(aX > u)duFA,B(da, db) =: J + K. (3.15)

For fixed x0, the integral J can be bounded as

J ≤ EX E
(

A1{0<B<cx}1{A>(x−B)/x0}
) ≤ EX E

(
A1{A>(1−c)x/x0}

)
,

since B ∈ (0, cx) implies (x − B)/x0 ≥ (1 − c)x/x0. Hence, Eq. 3.5 implies that

xα J → 0. (3.16)
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Consider now the integral K in Eq. 3.15. Since P(aX > u) is monotone
decreasing, the integral K satisfies,

xα K1 := xα

∫ cx

0

∫ (x−b)/x0

0
bP (aX > x) FA,B(da, db) ≤ xα K

≤ xα

∫ cx

0

∫ (x−b)/x0

0
bP (aX > x − b) FA,B(da, db) =: xα K2.

(3.17)

Write the integral xα K2 as

c+
∫ cx

0

∫ (x−b)/x0

0
baα

(
1 − b

x

)−α P
(
X > x−b

a

)

c+
( x−b

a

)−α
FA,B(da, db).

Since b ∈ (0, cx) and a ∈ (0, (x − b)/x0),
(

1 − b
x

)−α P
(
X > x−b

a

)

c+
( x−b

a

)−α
≤ (1 − c)−α D1,

where D1 is some constant determined by Eq. 3.14. The assumption in Eq. 3.3
and the dominated convergence theorem yield

xα

∫ cx

0

∫ (x−b)/x0

0
bP (aX > x − b) FA,B(da, db) → c+E(Aα B). (3.18)

Similarly, xα K1 becomes

c+
∫ cx

0

∫ (x−b)/x0

0
baα

P
(
X > x

a

)

c+
( x

a

)−α
FA,B(da, db)

and a ≤ (x − b)/x0 implies

P
(
X > x

a

)

c+
( x

a

)−α
≤ D2,

for some constant D2. Again, by the assumption in Eq. 3.3 and the dominated
convergence theorem,

∫ cx

0

∫ (x−b)/x0

0
bP (aX > x) FA,B(da, db) → c+E(Aα B). (3.19)

Hence, Eqs. 3.18 and 3.19 imply

xα K → c+E(Aα B). (3.20)

Finally, combining Eqs. 3.13, 3.16 and 3.20 yields Eq. 3.7. ��

Remarks

1. Equation 1.16 implies Eq. 1.17, for example, when P(X > u) −
P(AX > u) is ultimately monotone (see, for example, Bingham et al.



C. Baek et al.

1989, p. 39). Whether the latter monotonicity holds is still an open
question.

2. Note that, for δ > 0,

EA1{B>Cx} ≤ x−α−δC−α−δ EABα+δ.

Hence, if

EABα+δ < ∞ (3.21)

for some δ > 0, then Eq. 3.4 is satisfied. Similarly, the conditions in Eqs. 3.5
and 3.6 hold if

EAα+1+δ < ∞ and EBα+1+δ < ∞, (3.22)

for some δ > 0, respectively. In particular, EBα+1+δ < ∞ implies C+ = 0.

Example 3.2 (ARCH(1) model) Recall the discussion on ARCH(1) model
found in Section 2.1. The model satisfies the assumptions of Theorem 3.1
for κ = α/2 > 1. Indeed, for such κ , Eξ 2

t < ∞ and obviously EAκ
t Bt =

E(λε2
t )

κ(βε2
t ) < ∞ so that Eq. 3.3 holds. The conditions in Eqs. 3.21–3.22 hold

(with C+ = 0) in the second remark above because At = λε2
t , Bt = βε2

t have
all their moments finite for normal error terms εt. Hence, by Theorem 3.1, if
κ = α/2 > 1,

∫ ∞

x

(
P(ξ 2 > u) − P(λε2ξ 2 > u)

)
du ∼ c+λ2αβE

(
ε2α+2

)
x−α/2

or, by symmetry and a change of variables,
∫ ∞

x

(
P(ξ > v) − P(

√
λεξ > v)

)
vdv ∼ c+

4
λ2αβE(ε2α+2)x−α.

Example 3.3 (Multiplicative cascades with lognormal multipliers) Consider
RDE in Eq. 2.27 with tail exponent α − 1 and log-normal multipliers. If α > 2
or α − 1 > 1, then the condition in Eq. 3.3 in Theorem 3.1 is satisfied because

EM̃ = EM2 < ∞, EÃα−1 B̃ = 2EAα
1 EA2 EM = 1

2
< ∞

since EM = 1 by Theorem 2.1. Condition in Eq. 3.4 can be easily checked by
observing that

xα−1 EÃ1{B̃>Cx} = xα−12E
(

A2
11{A2 M>Cx}

) = xα−12EA2
1 P(A2 M > Cx) → 0,

since Breiman’s theorem (Breiman 1965) implies P(A2 M>Cx)∼1/2c+(Cx)−α .
The condition in Eq. 3.5 can be verified through the first condition in Eq. 3.22
with δ = 1,

EÃα+1 = 2EAα+2
1 < ∞,
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since log-normal distribution has all its moments finite. Note next that the
condition in Eq. 3.6 becomes

xα−1
∫ ∞

x
P
(
B̃ > z

)
dz = xα−1

∫ ∞

x
P (A2 M > z) dz. (3.23)

Applying Breiman’s theorem again, we have

P (A2 M > z) ∼ 1

2
c+z−α,

and for sufficiently large x, Eq. 3.23 leads to

xα−1
∫ ∞

x
P (A2 M > z) dz ∼ xα−1

∫ ∞

x

1

2
c+z−αdz = c+

2(α − 1)
.

Hence, if α > 2, by Theorem 3.1, MC with log-normal multiplier satisfies the
relation

xα−1
∫ ∞

x

(
P(M̃ > u) − P(ÃM̃ > u)

)
du ∼ c+(α + 1)

2(α − 1)
. (3.24)

By using the relationship between M̃, Ã and M, A found in Section 2.3, the
relation in Eq. 3.24 can be rewritten as

xα−1
∫ ∞

x

(∫ ∞

u
yPM(dy) − E

∫ ∞

u/Ã
yPM(dy)

)
du ∼ c+(α + 1)

2(α − 1)
. (3.25)

Furthermore, if Eq. 3.24 implies

xα
(
P(M̃ > x) − P(ÃM̃ > x)

) ∼ c+(α + 1)

2
, (3.26)

then this could be translated back to M, A as follows. Similarly to Eq. 2.28
one has

xP(AM > x) = 1

2
P
(

ÃM̃ > x
) − x

2

∫ ∞

x
y−2 P(ÃM̃ > y)dy. (3.27)

By Eqs. 2.28 and 3.27,

x (P(M > x) − 2P(AM > x))

P(M̃ > x) − P(ÃM̃ > x)
=1 − x

∫ ∞
x y−2

(
P(M̃ > y) − P(ÃM̃ > y)

)
dy

P(M̃ > x) − P(ÃM̃ > x)
.

(3.28)

The right-hand side of Eq. 3.28 converges to 1 − 1/(α + 1) = α/(α + 1), as
x → ∞. Therefore, using Eq. 3.26,

xα+1 (P(M > x) − 2P(AM > x)) ∼ c+α

2
. (3.29)

Theorem 3.2 below generalizes second order properties to real-valued X, A
and B satisfying RDE in Eq. 1.2.
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Theorem 3.2 Suppose that the assumptions of Theorem 1.1 hold. If

E|X| < ∞, E|A|α|B| < ∞, (3.30)

xα E|A|1{|A|>Cx} → 0, for any C > 0, as x → ∞, (3.31)

xα E|A|1{|B|>Cx} → 0, for any C > 0, as x → ∞, (3.32)

xα E(B − x)+1{A>0} → C1+, xα E(B − x)+1{A<0} → C2+, as x → ∞,

(3.33)

where C1+ and C2+ are nonnegative constants. Then, RDE X in Eq. 1.2 satisfies

xα

∫ ∞

x
(P(X > u) − P(AX > u)) du ∼ C1

+ + C2
+ + c+E(Aα

+ B) + c−E(Aα
− B),

(3.34)
where constants c+ and c− are defined in Eq. 1.8.

Proof We sketch the proof as it is similar to that of Theorem 3.1. Split the
integral in Eq. 3.34 according to the sign of random variables A and B as

∫ ∞

x
(P(X > u) − P(AX > u)) du

=
(∫ ∞

0

∫ ∞

0

∫ ∞

x
+

∫ ∞

0

∫ 0

−∞

∫ ∞

x

+
∫ 0

−∞

∫ ∞

0

∫ ∞

x
+

∫ 0

−∞

∫ 0

−∞

∫ ∞

x

)
(P(aX + b > u)

− P(aX > u))duFA,B(da, db) =: J1 + J2 + J3 + J4.

Applying the proof of Theorem 3.1 with A+ and B+ gives

xα J1 → C1
+ + c+E(Aα

+ B+).

Note that J2 can be related to J1 by rewriting it as

J2 =
∫ ∞

0

∫ ∞

0

∫ ∞

x
(P (aX < −(u − b)) − P (aX < −u)) duF−A,B(da, db).

Hence,

xα J2 → C2
+ + c−EAα

− B+.

From the Kesten’s result, there is x0 such that, for all x > x0 and given ε > 0,

|xα P(X > x) − c+| ≤ ε. (3.35)
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For such x0, J3 can be rewritten as

J3 =
∫ 0

−∞

∫ ∞

0

∫ x

x−b
P(aX > u)duFA,B(da, db)

=
∫ 0

−∞

∫ x/x0

0

∫ x

x−b
P(aX > u)duFA,B(da, db)

+
∫ 0

−∞

∫ ∞

x/x0

∫ x

x−b
P(aX > u)duFA,B(da, db) =: J3,1 + J3,2.

Second term J3,2 does not contribute to the asymptotics because Eqs. 3.30 and
3.31 imply

xα|J3,2| ≤ xα

∫ 0

−∞

∫ ∞

x/x0

∫ ∞

0
P(aX > u)duFA,B(da, db)

= xα EX+EA1{A>x/x0}1{B<0} → 0.

First term J3,1 satisfies

xα

∫ 0

−∞

∫ x/x0

0
bP (aX > x) FA,B(da, db) ≤ xα J3,1

≤ xα

∫ 0

−∞

∫ x/x0

0
bP (aX > x − b) FA,B(da, db). (3.36)

The right-hand side of Eq. 3.36 can be rewritten as

c+
∫ 0

−∞

∫ x/x0

0
baα

(
1 − b

x

)−α P
(
X > x−b

a

)

c+
( x−b

a

)−α
FA,B(da, db).

Relation in Eq. 3.35 and 1 − b/x > 1 imply further that
(

1 − b
x

)−α P
(
X > x−b

a

)

c+
( x−b

a

)−α
≤ D1,

for some constant D1. Arguing similarly for the left-hand side of Eq. 3.36 and
applying the dominated convergence theorem lead to

xα J3,1 → −c+EAα
+ B−.

Observe for J4 that

J4 =
∫ ∞

0

∫ ∞

0

∫ ∞

x
(P (aX < −(u + b)) − P (aX < −u)) duF−A,−B(da, db).

As for J3, this leads to

xα J4 → −c−E(Aα
− B−).

Gathering the results for J1, J2, J3 and J4 leads to the desired result. ��
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Finally, we show that if distribution tail behaves as in Eq. 1.13 and satisfies
weaker form of 2RV in Eq. 1.16, then ρ = −1. For simplicity, we only consider
the case of nonnegative A, B and X. We need the following lemma relating
distribution tails P(X > x) and P(AX > x).

Lemma 3.1 Suppose A ≥ 0 a.s., EAα−ρ < ∞ for ρ < 0 and

P(X > x) − c1x−α ∼ c2x−α+ρ. (3.37)

Then

P(AX > x) − c1x−α ∼ c2 EAα−ρx−α+ρ. (3.38)

Proof Observe that

P(AX > x) − c1x−α =
∫ ∞

0

(
P

(
X >

x
a

)
− c1

( x
a

)−α
)

FA(da), (3.39)

since EAα = 1. Relation in Eq. 3.37 implies that for any ε > 0, there is x0 such
that

|xα−ρ(P(X > x) − c1x−α) − c2| ≤ ε, for all x > x0. (3.40)

For such chosen x0, we have

P(AX > x) − c1x−α

c1 EAα−ρx−α+ρ
=

∫ x/x0

0

(
P

(
X > x

a

) − c1
( x

a

)−α
)

FA(da)

c1 EAα−ρx−α+ρ

+
∫ ∞

x/x0

(
P

(
X > x

a

) − c1
( x

a

)−α
)

FA(da)

c1 EAα−ρx−α+ρ
=: I + J.

(3.41)

Note first that the second term J in Eq. 3.41 does not contribute to the
asymptotics. Indeed,

∣∣∣∣
∫ ∞

x/x0

(
P

(
X >

x
a

)
−c1

( x
a

)−α
)

FA(da)

∣∣∣∣≤
∫ ∞

x/x0

(
P

(
X >

x
a

)
+ c1

( x
a

)−α
)

FA(da).

≤ E1{A≥x/x0} + c1x−α E(Aα1{A>x/x0})

≤ E

((
A

x/x0

)α−ρ

1{A≥x/x0}

)
+ c1x−α E

(
Aα

(
A

x/x0

)−ρ

1{A>x/x0}

)
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yields

|J| ≤ x−α+ρxα−ρ

0 E
(

Aα−ρ1{A>x/x0}
) + c1x−α+ρx−ρ

0 E(Aα−ρ1{A>x/x0})
c1 EAα−ρx−α+ρ

→ 0,

as x → ∞ since EAα−ρ < ∞.
The first term I, on the other hand, can be bounded using relation in Eq. 3.40

as
∫ x/x0

0 (c2 − ε)(x/a)−α+ρ FA(da)

c2 EAα−ρx−α+ρ
≤ I ≤

∫ x/x0

0 (c2 + ε)(x/a)−α+ρ FA(da)

c2 EAα−ρx−α+ρ
.

By taking limit x → ∞ and ε ↓ 0, dominated convergence theorem implies

I → 1,

since EAα−ρ < ∞. ��

Proposition 3.1 If A ≥ 0 a.s., EAα−ρ < ∞ for some ρ < 0, and

P(X > x) − c1x−α ∼ c2x−α+ρ, (3.42)
∫ ∞

x
(P(X > u) − P(AX > u)) du ∼ cx−α, (3.43)

then ρ = −1 and c = c2(1 − EAα−ρ)/α.

Proof Lemma 3.1 implies that

P(AX > x) − c1x−α ∼ c2 EAα−ρx−α+ρ. (3.44)

Therefore, we have

∫ ∞

x
(P(X >u) − P(AX >u)) du=

∫ ∞

x

(
c2(1 − EAα−ρ)u−α+ρ + o(u−α+ρ)

)
du

= −c2(1 − EAα−ρ)

−α + ρ + 1
x−α+ρ+1+

∫ ∞

x
o(u−α+ρ)du.

= −c2(1 − EAα−ρ)

−α + ρ + 1
x−α+ρ+1 + o(x−α+ρ+1).

Finally, assumption in Eq. 3.43 gives ρ = −1 and c = c2(1 − EAα−ρ)/α . ��

Remark Our results suggest for RDE that

P(X > x) = c1x−α + c2x−α−1 + o(x−α−1). (3.45)
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This imposes conditions on c1 and c2 in the following sense. One expects that

P(X > x) = P(AX + B > x) =
∫ ∞

0

∫ ∞

0
P

(
X >

x − b
a

)
FA,B(da, db)

=
∫ ∞

0

∫ ∞

0

{
c1

(
x−b

a

)−α

+ c2

(
x−b

a

)−α−1

+o

((
x − b

a

)−α−1
)}

FA,B(da, db)

=
∫ ∞

0

∫ ∞

0

(
c1aαx−α + c1aα

(
(x − b)−α − x−α

) + c2aα+1x−α−1

+o
(
x−α−1

))
FA,B(da, db)

= c1x−α + (
c1αE(Aα B) + c2 EAα+1

)
x−α−1 + o

(
x−α−1

)
, (3.46)

by using the relation

(x − b)−α − x−α = x−α

((
1 − b

x

)−α

− 1

)
= bαx−α−1 + o

(
x−α−1

)
.

Therefore, Eqs. 3.45 and 3.46 are consistent only when

c2 = c1αE(Aα B)

1 − EAα+1
. (3.47)

4 Estimating tail exponent under second order regular variation

Theorem 3.1 and explicit example considered in Section 2.2 suggest to intro-
duce the second order term when estimating tail exponent in RDE. In this
section, we propose a simple tail exponent estimator of regression type and
compare its performance to that of Feuerverger and Hall (1999) estimator
through a small simulation study. More comprehensive discussion including
theoretical properties of proposed estimator can be found in Baek and Pipiras
(2009).

4.1 Several estimation methods

Suppose that the distribution tail behaves as

F(x)= P(X > x)=c1x−α+c2x−α−1+o
(
x−1

)=c1x−α

(
1 + c2

c1
x−1

)
+o

(
x−1

)
,

(4.1)
as x → ∞. By taking the log-transformation, we have, as x → ∞,

log
(

F(x)
)

≈ log c1 − α log x + log

(
1 + c2

c1
x−1

)
≈ log c1 − α log x + c2

c1
x−1.

(4.2)
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Estimator based on linear regression According to Eq. 4.2, tail exponent
α could be estimated by a linear regression of the logarithm of empirical
distribution tail of X on (1, log x, 1/x). This approach generalizes the least
squares tail estimator based on the first order asymptotics, namely,

log
(

F(x)
)

≈ log c1 − α log x

(see, for example, Resnick 1997). More precisely, let X(1) ≥ X(2) ≥ . . . ≥ X(r)

be the order statistics from R ≥ r i.i.d. copies of X. Minimizing the sum of
squared errors

S(β0, α, β1) =
r∑

i=1

(
log(i/R) − β0 + α log X(i) − β1/X(i))2

gives the least squares estimator of α as

α̂LSE2 = e′(W′
W)−1

W
′
F, (4.3)

where e′ = (0, −1, 0), W = (1 log X 1/X), X = (X(1) X(2) . . . X(r))′, 1/X =
(1/X(1)1/X(2) . . . 1/X(r))′ and F = (log 1/R log 2/R . . . log r/R)′. The para-
meter r plays the role of a threshold. We refer to the corresponding estimator
of α as LSE2 estimator.

Feuerverger and Hall (1999) estimator Another estimator of tail exponent
under second order regular variation was suggested by Feuerverger and Hall
(1999). These authors use normalized log-spacings of order statistics and
approximate them by a normalized Exponential distribution. Under the same
setting as above, denote

Ui = i(log X(i) − log X(i+1))

and set δ(x) = −α−1c−(α−1+1)
1 c2x1/α =: Dx1/α . Then, one expects that

Ui ≈ Ziα
−1(1 + δ(i/R)) ≈ Ziα

−1 exp (δ(i/R)) ,

where Zi’s are independent Exponential random variables. This suggests the
maximum likelihood estimator of α based on minimizing

L(D, α) = Dr−1
r∑

i=1

(i/R)α
−1 + log

(
r−1

r∑

i=1

Ui exp
{
−D(i/R)α

−1
})

.

We refer to the corresponding estimator of α as FH estimator.

4.2 Simulation study

In this section, we present a simulation study based on the discussion above. In
all cases considered, selecting threshold r is quite essential. We adopt here the
same approach as in Hill plot. The tail exponent estimator should remain stable
for a range of small choices of thresholds r. We replicated the simulations 100
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Fig. 8 Multiplicative cascade with log-normal multipliers, α = 10 and R = 1,000. LSE2 estimator
performs well.

times to produce a boxplot. Also, we have used N = 100 iterations in RDE in
Eq. 1.1.

Figure 8 shows tail exponent estimator based on LSE2 and FH for multi-
plicative cascade model. LSE2 estimator performs quite well, especially for the
thresholds between 50 to 150, while FH estimator overestimates parameter and
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Fig. 9 Explicit example in Section 2.2 with a1 = 9, b = 5 and R = 2,000.
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Fig. 10 ARCH(1) series with α = 4.73 and R = 5,000.

is relatively unstable. Figure 9 shows estimation based on the explicit example
of Section 2.2 with a1 = 9 and b = 5. LSE2 estimator works quite well for the
threshold greater than 40, while FH method overestimates the parameter and
inter-quartile range is wider than for LSE2 method.

For ARCH(1) model, we have chosen parameters closer to those found in
practice. For many economic time series representing volatility, one typically
observes tail exponents between 3 and 4. Taking σ 2 = 1, λ = .5 and β = 1,
we have tail exponent α = 4.73. Figure 10 shows three estimators, FH, LSE2
and Hill estimators. All three estimators seem to work in some sense. Hill
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Fig. 11 ARCH(1) series with α = 2.6, R = 1,000 (top) and α = 20, R = 100,000 (bottom).
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estimator works for few order statistics from the tail. Variants of Hill plot such
as altHill, smooth Hill plot may be used to improve the estimation, but we
will not pursue these approaches here. FH estimator is closer to the true value
for the thresholds between 100 to 200, but IQR is rather wide. LSE2 method
works well especially for large number of order statistics used (between 250 to
500) and accordingly it provides smaller variability.

It is also of interest to examine the performance of LSE2 estimator with
respect to sample size R and tail exponent α. Simulation study shows that
LSE2 estimator works fine even for moderate sample size when α is small.
However, when tail exponent is really large, LSE2 method does not work
for reasonable sample size. Figure 11 illustrates LSE2 method for ARCH(1)
model with α = 2.6, R = 1000 (top) and α = 20, R = 100,000 (bottom). As
seen form the figure, LSE2 method works poorly even for 100,000 independent
samples when α = 20.

5 Other issues

In this section, we discuss generalized Pareto distribution and the effect of
temporal dependence on the tail exponent estimation of RDEs. We also
extend our results to multidimensional RDEs.

5.1 Generalized Pareto distribution

One other popular family of distributions for power-law tail behavior consists
of Generalized Pareto distributions (GPDs). Parametrized by the parameters
α > 0, μ ∈ R, σ > 0, GPD(α, μ, σ ) has distribution tail given by

F(x) =
(

1 + x − μ

ασ

)−α

, x > μ. (5.1)

It has the tail exponent α. In view of our results for RDEs, it is interesting to
ask whether GPD shares the same problems for larger values of α. If this is the
case, then fitted values of large α should be interpreted with care. For example,
if data were generated by exact GPD, the values of α fitted by MLE and that
from the Hill plot would be quite different.

Similar to Section 2.2, consider deviations from the true Pareto tail as
∣∣∣∣∣

F(x)

((x − μ)/ασ)−α
− 1

∣∣∣∣∣ =
∣∣∣∣

(
1 − ασ

x − μ + ασ

)α

− 1

∣∣∣∣ ≤ ε. (5.2)

For example, taking α = 10, σ = 2, μ = 1 and ε = .5 gives numerical solution
to Eq. 5.2 as x > 279.05. The probability of having GPD observations in this
range is approximately 1.85 × 10−12. If we increase σ to σ = 3, then x > 418.92
and the corresponding probability is approximately 3.95 × 10−14. This shows
that, for larger values of α, GPD has the Pareto-like region too far in the tail
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Fig. 12 GPD (5, 1, 2) tail exponent estimation with R = 200,000 observations.

for practical purposes as well. Note also that, as in the case of RDEs, GPD has
similar second order term, namely,

log F(x) = −α log

(
1 + x − μ

ασ

)

= −α log

(
x − μ

ασ

)
− α2σ

x − μ
+ o

(
x−1

)

= α log(ασ) − α log x − α2σ − αμ

x
+ o

(
x−1

)
. (5.3)

Figure 12 presents a Hill plot for R = 200,000 independent observations
from GPD(5, 1, 2), and a similar, superimposed plot based on least squares
(LSE2) taking the second term in Eq. 5.3 into account. Note that, even for
such large sample size, Hill estimate is very biased. The LSE2 performs much
better.

5.2 Temporal dependence

In this subsection, we study the effect of temporal dependence in estimating
tail exponent. In brief, with temporal dependence, estimation is worse than
that for independent observations. Figure 13 shows tail exponent estimation
in ARCH(1) model with α = 8. We generated 20,000 and 50,000 dependent
ARCH(1) observations from Eq. 2.2 with first 200 observations disregarded
for convergence. For comparison, we also generated 20,000 independent
observations. Note from the figure that LSE2 estimator works well in the
independent case, and its performance is worse for dependent observations.
Increasing the sample size to 50,000, the dependent case resembles that with
20,000 independent observations. Note also that the simple Hill estimation
is poor in both independent and dependent cases, the dependent case being
worse.



C. Baek et al.

100 200 300 400 500 600 700 800 900 1000
5

6

7

8

9

10
LSE2-ARCH median plot

 

 

Ind 2*104 - LSE2

Dep 5*104 - LSE2

Dep 2*104- LSE2

Ind 2*104- Hill

Dep 2*104- Hill
True

Fig. 13 Tail exponent estimations for dependent and independent ARCH(1) series.

5.3 Multidimensional extension

In this subsection, we extend our results to multidimensional RDEs,

Xn = AnXn−1 + Bn, n ∈ Z, (5.4)

where (An, Bn) is an i.i.d. sequence of d × d random matrices An and
d-dimensional random vectors Bn. We consider only the case when the entries
of An, Bn are nonnegative. Under mild conditions, multidimensional RDE has
a stationary solution,

X d= AX + B, (5.5)

where (A, B) =d (A1, B1) is independent of X. We recall next the result of
Kesten (1973) for multidimensional RDEs. (Generalizations of Kesten’s result
can be found in Basrak et al. 2002a, de Saporta et al. 2004, Klüppelberg and
Pergamenchtchikov 2004, Guivarc’h 2006 to name but a few.) Denote the
Euclidean norm as ‖ · ‖ and the operator norm as ‖ · ‖op, namely,

‖A‖op = sup
‖y‖=1

‖Ay‖.

Let also S+ = {z ∈ R
d : ‖z‖ = 1, z > 0} and, for w ∈ R

d,

w# = w
‖w‖ .

In particular, for w ∈ R
d with nonnegative entries, note that w# ∈ S+.

Theorem 5.1 (Kesten 1973, Theorems 3 and 4) Let (An, Bn) be a sequence of
i.i.d. d × d matrices An and d × 1 vectors Bn with nonnegative entries. Assume
that the following conditions hold:

(A1) For some ε > 0, E‖A1‖ε
op < 1.

(A2) A1 has no zeros rows a.s.
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(A3) The group generated by

{log ρ(π) : π = an . . . a1 > 0, n ≥ 1, an . . . a1 ∈ support of A1}
is dense in R, where ρ(π) denotes the largest positive eigenvalue, known
as Frobenius eigenvalue and π > 0 means that all entries of this matrix
are positive.

(A4) There exists κ0 > 0 such that

E

⎛

⎝ min
i=1,...,d

d∑

j=1

A1(i, j )

⎞

⎠
κ0

≥ dκ0/2,

where A1(i, j) is a (i, j) entry of matrix A1 and

E
(
‖A1‖κ0

op log+ ‖A1‖op

)
< ∞.

Then the following statements hold:

(R1) There exists a unique solution α ∈ (0, κ0] to the equation

0 = lim
n→∞

1

n
E log ‖An . . . A1‖α

op.

(R2) There exists a unique solution X to the RDE in Eq. 5.5.
(R3) If E‖B1‖α < ∞, then, for all z ∈ S+,

P(z′X > x) ∼ x−αc+r(z), as x → ∞, (5.6)

where c+ is a positive constant and r(z) is a continuous and strictly
positive function on S+ satisfying

r(z) = E‖z′A‖αr(z′A#). (5.7)

The following result extends Theorem 3.1 to the multidimensional case. The
proof is similar to that of Theorem 3.1 (with an additional technical difficulty
reflected by assumptions in Eqs. 5.12 and 5.13 below). We denote by μ a Haar
measure on S+.

Theorem 5.2 Suppose that the assumptions of Theorem 5.1 hold and let
(A, B) =d (A1, B1). In addition, suppose that for z ∈ S+,

EX < ∞, E‖z′A‖αz′B < ∞, (5.8)

xα E(z′A1{z′B>Cx}) → 0, for any C > 0, as x → ∞, (5.9)

xα E(z′A1{‖z′A‖>Cx}) → 0, for any C > 0, as x → ∞, (5.10)

xα

∫ ∞

x
P(z′B > u)du → C+(z), (5.11)
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for some function C+(z) ≥ 0. Assume also that either

z′A is a discrete, finite random vector, or (5.12)

P
(
(z′A#) ∈ E

) → 0, as μ(E) → 0. (5.13)

Then, the stationary solution X of Eq. 5.5 satisfies
∫ ∞

x

(
P(z′X > u)−P(z′AX > u)

)
du ∼ x−α

(
C+(z) + c+E

(
r(z′A#)‖z′A‖αz′B

))
.

(5.14)

Proof Observe that
∫ ∞

x

(
P(z′X > u) − P(z′AX > u)

)
du

=
∫ ∞

x

∫

a,b

(
P
((

z′a
)
X + z′b > u

) − P
((

z′a
)
X > u

))
FA,B

(
da, db

)

=
∫

a,b

∫ x

x−z′b
P
((

z′a
)
X > u

)
duFA,B

(
da, db

)

=
∫

a,b

∫ x

x−b
P
((

z′a
)
X > u

)
duFA,B

(
da, db

)
,

where b = z′b is a scalar and B = z′B. By splitting the range of b with fixed
c < 1, this can further be written as

∫ ∞

cx

∫

a

∫ x

x−b
P
((

z′a
)
X > u

)
duFA,B

(
da, db

)

+
∫ cx

0

∫

a

∫ x

x−b
P
(
(z′a)X > u

)
duFA,B

(
da, db

) =: I + L.

For the integral I, write it as I = I1 + I2, where

I1 =
∫ x

cx

∫

a

∫ x

x−b
P
((

z′a
)
X > u

)
duFA,B

(
da, db

)
,

I2 =
∫ ∞

x

∫

a

∫ x

x−b
P
((

z′a
)
X > u

)
duFA,B

(
da, db

)
.

For the integral I1, we have

xα I1 ≤ xα

∫ x

cx

∫

a
E

(
z′aX

)
FA,B

(
da, db

) ≤ xα E
(

z′A1{B>cx}
)

EX → 0, (5.15)

by Eq. 5.9.
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Observe for I2 that

I2 =
∫ ∞

x

∫

a

{∫ 0

x−b
P
((

z′a
)
X > u

)
du +

∫ x

0
P
((

z′a
)
X > u)du

}
FA,B

(
da, db

)

=
∫ ∞

x

∫

a

{(
b − x

) +
∫ x

0
P
((

z′a
)
X > u

)
du

}
FA,B

(
da, db

) =: I2,1 + I2,2.

Note that, by Eq. 5.11,

xα I2,1 = xα E(z′B − x)+ = xα

∫ ∞

x
P(z′B > u)du → C+(z). (5.16)

Also note from Eq. 5.9 with C = 1 that

xα I2,2 ≤ xα E
(
z′A1{z′B>x}

)
EX → 0. (5.17)

Combining Eqs. 5.15, 5.16 and 5.17 yields

xα I → C+(z). (5.18)

For the integral L, for some x0 to be determined later, write it as

L =
∫ cx

0

∫

a

∫ x

x−b
P
(‖z′a‖(z′a#

)
X > u

)
duFA,B

(
da, db

)

=
∫ cx

0

∫

‖z′a‖>
(

x−b
)
/x0

∫ x

x−b
P
(‖z′a‖(z′a#

)
X > u

)
duFA,B

(
da, db

)

+
∫ cx

0

∫

‖z′a‖≤
(

x−b
)
/x0

∫ x

x−b
P
(‖z′a‖(z′a#

)
X > u

)
duFA,B

(
da, db

) =: J + K.

For fixed x0, observe that

xα J ≤ xα E
(
z′A1{‖z′A‖>(1−c)x/x0}

)
EX → 0, (5.19)

using Eq. 5.10, since b ∈ (0, cx) implies (x − b)/x0 > (1 − c)x/x0.
We now show how one can deal with the integral K. We consider only the

case in Eq. 5.13. (The case in Eq. 5.12 is easier and can be proved as below.)
Let μ denote a Haar measure on S+ as in the statement of the theorem. Since
μ(S+) < ∞, Theorem 5.1 and Egoroff’s theorem imply that, for any ε > 0,
there is Eε ⊂ S+ such that μ(Eε) < ε and

sup
w∈S+\Eε

∣∣xα P(w′X > x) − c+r(w)
∣∣ → 0, (5.20)

as x → ∞. Now write the integral K as

K =
∫ cx

0

∫

‖z′a‖≤(x−b)/x0

∫ x

x−b
P
(‖z′a‖(z′a#

)
X > u

)
duFA,B

(
da, db

)

·
(

1{(z′A#)∈Eε} + 1{(z′A#)∈S+\Eε}
)

=: K1 + K2. (5.21)
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For K2, observe that

xα K2,1 := xα

∫ cx

0

∫

F
bP

(‖z′a‖(z′a#
)
X > x

)
FA,B

(
da, db

) ≤ xα K2

≤ xα

∫ cx

0

∫

F
bP

(‖z′a‖(z′a#
)
X > x − b

)
FA,B

(
da, db

) =: xα K2,2,

where F = {a : ‖z′a‖ ≤ (x − b)/x0, (z′a#) ∈ S+\Eε}. Write the integral xα K2,2

as

xα K2,2 =
∫ cx

0

∫

F
bc+r(z′a#)‖z′a‖α

(
1 − b

x

)−α P
(
(z′a#)X ≥ x−b

‖z′a‖
)

c+r(z′a#)
(

x−b
‖z′a‖

)−α
FA,B(da, db).

By condition in Eq. 5.20, the term

(
1 − b

x

)−α P
(
(z′a#)X ≥ x−b

‖z′a‖
)

c+r(z′a#)
(

x−b
‖z′a‖

)−α

is bounded on F for large enough x0, and converges to 1 as x → ∞. The
dominated convergence theorem implies that

xα K2,2 → c+Er(z′A#)‖z′A‖α1{(z′A#)∈S+\Eε}z
′B.

The same asymptotics holds for xα K2,1, and we can conclude that

xα K2 → c+Er(z′A#)‖z′A‖α1{(z′A#)∈S+\Eε}z
′B. (5.22)

For K1, observe that

xα K1 ≤ xα

∫ cx

0

∫

‖z′A‖≤(x−b)/x0,(z′a#)∈Eε

bP
(
‖z′a‖√dz′

0X > x − b
)

FA,B

(
da, db

)

=: xα K1,1, (5.23)

where z0 = (1, . . . , 1)/
√

d ∈ S+. The argument as above yields in the same
way that

xα K1,1 → r(z0)dα/2 E‖z′A‖α1{(z′A#)∈Eε }z
′B. (5.24)

Using assumption in Eq. 5.13, since ε is arbitrarily small, we conclude from
Eqs. 5.22, 5.23 and 5.24 that

xα K → c+Er(z′A#)‖z′A‖αz′B. (5.25)

The conclusion follows from Eqs. 5.18, 5.19 and 5.25. ��
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Example 5.1 Generalized autoregressive conditionally heteroscedastic pro-
cess {ξt}t∈Z of order (p, q) with p, q ≥ 0 (GARCH(p, q)) is given as

ξt = σtεt, (5.26)

σ 2
t = β +

p∑

i=1

λiξ
2
t−i +

q∑

j=1

φ jσ
2
t− j, (5.27)

where {εt} are i.i.d. normal random variables, and β > 0, λi ≥ 0, φi ≥ 0, with
the convention that λp > 0 if p ≥ 1 and φq > 0 if q ≥ 1. (See, for example,
Bollerslev 1986 and Embrechts et al. 1997). The squares of the GARCH
model can be expressed as a multidimensional RDE

Xt = AtXt−1 + Bt, (5.28)

where

Xt =
(
ξ 2

t , ξ 2
t−1, . . . , ξ

2
t−p+2, ξ

2
t−p+1, σ

2
t , σ 2

t−1, . . . , σ
2
t−q+2, σ

2
t−q+1

)′
,

At =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ1ε
2
t λ2ε

2
t . . . λp−1ε

2
t λpε

2
t φ1ε

2
t φ2ε

2
t . . . φq−1ε

2
t φqε

2
t

1 0 . . . 0 0 0 0 . . . 0 0

0 1 . . . 0 0 0 0 . . . 0 0
...

...
. . .

...
...

...
...

. . .
... 0

0 0 . . . 1 0 0 0 . . . 0 0

λ1 λ2 . . . λp−1 λp φ1 φ2 . . . φq−1 φq

0 0 . . . 0 0 1 0 . . . 0 0

0 0 . . . 0 0 0 1 . . . 0 0
...

...
. . .

...
...

...
...

. . .
... 0

0 0 . . . 0 0 0 0 . . . 1 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Bt = (
βε2

t , 0, . . . , 0, 0, β, 0, . . . , 0, 0
)′

.

(The matrix At has to be interpreted with care when either p or q is zero. In
this case, one should take p = 1 and λ1 = 0 or q = 1 and φ1 = 0 respectively.)
It can be seen that assumption in Eq. 5.12 or 5.13 holds for the squares of a
GARCH process with continuous innovations εt.
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Appendix

A Geometric ergodicity of RDE

Let {Xn} be given by RDE in Eq. 1.1 where (An, Bn) are i.i.d. vectors. Then
{Xn} is a Markov chain and we recall here that it is geometrically ergodic. The
following definitions will be used.

Markov chain {Yn} in a general state space S equipped with σ -field S is
called μ−irreducible for some non-degenerate measure μ on (S,S), if μ(A) >

0 implies

∞∑

N=1

pN(y, A) > 0 for all y ∈ S,

where pN(y, A) is the N−step transition probability of Markov chain starting
from y to A. The Markov chain {Yn} is said to be geometrically ergodic if there
is ρ ∈ (0, 1) and constant Cy for each y ∈ S such that,

‖pN(y, ·) − π(·)‖ := sup
A∈S

{|pN(x, A) − π(A)|} ≤ Cyρ
n, (5.29)

where π(·) denotes the invariant measure of the Markov chain.

Theorem 5.3 (Basrak et al. 2002b, Stelzer 2009) Suppose there exists an
ε > 0 such that E|A1|ε < 1 and E|B1|ε < ∞. If the Markov chain {Xn} is
μ-irreducible, then it is geometrically ergodic.

The condition of μ−irreducibility is satisfied for most models of practical
interest. For example, for the squares of ARCH(1) series Xt = ξ 2

t = λε2
t ξ

2
t−1 +

βε2
t , with S = (0, ∞), μ = Lebesgue measure and y > 0, one obviously already

has p1(y, A) = P((λy + β)ε2
t ∈ A) whenever μ(A) > 0 and ε2

t has a density
on (0, ∞). For the existence of ε such that E|A1|ε < 1, consider h(p) =
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Hill plot for ARCH(1) for various N
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N=103
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Fig. 14 Hill plot for ARCH(1) series with α = 10 and R = 5,000 for various N.
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E|A1|p. Note that h(0) = 1 and h′(0) = E log |A1| < 0 assuming conditions of
Theorem 1.1. Hence, there is ε such that E|A1|ε < 1. Observe that, for ε < α,

E|B1|ε ≤ (E|B1|α)
ε/α

< ∞,

from the assumption of Theorem 1.1. Therefore, as a result of Theorem 5.3, PN

converges to P∞ at an exponentially fast rate. Figure 14 shows Hill plot based
on 5,000 independent observations of ARCH(1) model with various choices
of N. There is no difference in Hill plot, which supports the claim that the
convergence is quite fast.

B Tail exponent for multiplicative cascades with log-normal multipliers

For a log-normal multiplier W = LN(−σ 2/2, σ 2),

χ2(h) = log2 EWh − (h − 1) = log2 exp

(
−hσ 2

2
+ h2σ 2

2

)
− (h − 1)

= 1

log 2

(
−hσ 2

2
+ h2σ 2

2

)
− (h − 1).

To find the tail exponent, we need to set

χ2(h) = 0

and look for solution h > 1. This yields

(σ 2h − 2 log 2)(h − 1) = 0

or

α = 2 log 2/σ 2 > 1. (5.30)
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