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ABSTRACT

Image classification often relies on texture characterization.

Yet texture characterization has so far rarely been based on a

true 2D multifractal analysis. Recently, a 2D wavelet Leader

based multifractal formalism has been proposed. It allows

to perform an accurate, complete and low computational

and memory costs multifractal characterization of textures

in images. This contribution describes the first application

of such a formalism to a real large size (publicly available)

image database, consisting of 25 classes of non traditional

textures, with 40 high resolution images in each class. Mul-

tifractal attributes are estimated from each image and used

as classification features within a standard k nearest neighbor

classification procedure. The results reported here show that

this Leader based multifractal analysis enables the effective

discrimination of different textures, as performances in both

classification scores and computational costs compare favor-

ably against those of procedures previously proposed in the

literature on the same database.

Index Terms— Image Multifractal Analysis, Wavelet

Leader, Texture Characterization, Image Classification.

1. INTRODUCTION

In Image processing, classification constitutes a standard task

that can be based on image texture analysis. In an important

number of research articles, e.g., [1, 2, 3, 4, 5], it is argued

that texture characterization can be obtained by measuring the

fluctuations of image amplitude regularity in space, and hence

achieved by means of a multifractal analysis. In [4], Xu et al.

proposed a texture descriptor, termed the multifractal spec-

trum vector (MFS) that aims at providing a viewpoint and il-

lumination invariant characterization of image textures. How-

ever, so far multifractal analysis of images has rarely been

conducted in a satisfactory manner: Either it remains incom-

plete (failing to explore entirely the multifractal spectrum, cf.

Section 2), or images are analyzed as a set of independent 1D

slices (or signals). This is mostly because until a recent past,

∗work conducted while in position at ENS Lyon.
†P. Abry and S. Jaffard acknowledge the support of IMS/NUS.

there existed only one multifractal formalism for images (i.e.,

a practical procedure enabling to actually measure the multi-

fractal properties of 2D data), based on the skeleton of a 2D

Continuous Wavelet Transform (CWT): the Modulus Maxima

Wavelet Transform (MMWT) [6]. This approach suffers from

high computational costs, severe implementation difficulties,

and still lacks theoretical foundations. Recently, a new mul-

tifractal formalism based on wavelet Leaders (WLMF) has

been proposed [7, 8]: It is constructed from the coefficients of

a 2D Discrete Wavelet Transform (DWT) and hence benefits

from low computational costs and a simple implementation;

It is backed up by a strong mathematical framework which

shows that it enables accurate measurements of the multifrac-

tal properties of 2D fields, hence of images. This has been

detailed in [7, 8]. The goal of this contribution is to illustrate

the potential of this WLMF by showing it, for the first time,

at work in a classification task conducted over a large size

database of high resolution images. Estimates of multifractal

attributes are used as features for a standard nearest neighbor

classification procedure. The results reported here indicate

that the WLMF enables the effective discrimination of intra-

class textures, with robust invariance to inter-class textures,

and compares favorably against those of previous attempts de-

scribed in the literature, with much lower computational and

memory costs.

2. MULTIFRACTAL ANALYSIS

The analysis of the texture of the image X(k1, k2) is con-

ducted using the following multifractal formalism.

Wavelet Leaders are constructed from the wavelet coef-

ficients, D
(m)
X (j, k1, k2), m = 1, 2, 3, of a 2D orthonor-

mal and separable DWT with finite response decomposition

filters. The chosen mother wavelet possesses Nψ vanish-

ing moments. Readers are referred to, e.g., [9] for defi-

nitions and details. Wavelet coefficients are renormalized

to a L1-norm: d
(m)
X (j, k1, k2) = 2−jd/2D(m)

X (j, k1, k2).
Wavelet Leaders are defined as [7, 8]: LX(j, k1, k2) =
supm=1,2,3, λ′⊂32λj,k1,k2

|d(m)
X (λ′)|, where

λj,k1,k2 =
{
[k12j , (k1 + 1)2j), [k22j , (k2 + 1)2j)

}
, and

32λj,k1,k2 =
⋃
m,n={−1,0,1} λj,k1+m,k2+n. They hence con-

3829978-1-4244-5654-3/09/$26.00 ©2009 IEEE ICIP 2009



sist of the supremum of wavelet coefficients taken within a

certain spatial neighborhood, and over all finer scales.

The wavelet Leader Multifractal Formalism is based on

the structure functions S(j, q) = 1
nj

∑
k1,k2

LX(j, k1, k2)q.
From these S(j, q), the scaling function is defined as ζ(q) =
lim inf2j→0 lnS(2j , q)/ln 2j . Then, the Legendre transform

of ζ(q) is taken, which defines the multifractal spectrum

L(h) = infq∈R(d + qh − ζ(q)). This L(h) is deeply related

to the multifractal spectrum D(h) of X , which characterizes

image texture in terms of local regularity fluctuations and

Hölder exponents h (cf. [7, 8] for details).

Log-cumulants consist of the coefficients cp of the polyno-

mial expansion ζ(q) =
∑∞
p=1 cp

qp

p! . The first order c1, c2, . . .

constitute valuable approximate summaries for both ζ(q) and

L(h), satisfactory for most practical purposes.

Positive minimum regularity of X is a sufficient condi-

tion for the WLMF to yield a correct measure of L(h) from

a given image. Minimum regularity can be measured as:

hmin = lim inf2j→0 ln supm,k1,k2 |d(m)
X (j, k1, k2)|/ln 2j .

If hmin < 0, X needs to be fractionally integrated (of

an order η > −hmin) prior to applying the WLMF. This

equivalently amounts to replacing its d
(m)
X (j, k1, k2) with

d
(m),η
X (j, k1, k2) = 2ηjd(m)

X (j, k1, k2) (cf. [8]).

Estimations of ζ(q), L(h) and cp can be performed by

linear regressions in log-log plots, since the definition of ζ(q)
above essentially implies S(2j , q) ∼ λq2jζ(q), 2j → 0. The

computation of the Legendre transform yielding L(h) is often

conducted in a parametric form L(q) and h(q), with estimates

also based on linear regressions in log-log plots. This is de-

tailed in [8] and not recalled here for space reason.

Practical multifractal analysis aims at obtaining estimates

of the multifractal attributes ζ(q), L(q), h(q) and cp from

the image X: First, the power law behaviors of the structure

functions S(j, q) w.r.t. scales, hence straight lines in log-

log plots, are validated. Then, the estimates are obtained by

linear regressions in log-log coordinates. A key issue lies

in the selection of the range of scales, 2j ∈ [2j1 , 2j2 ], over

which to perform the regressions. To obtain estimates of the

complete function L(h), structure functions have to be calcu-

lated for both positive and negative orders q. This is one of

the major reasons why the WLMF must be used in place of

previous formalisms based directly on wavelet coefficients,

for which structure functions would be numerically unstable

for negative q (cf. [8] for details).

3. IMAGE DATABASE AND MULTIFRACTAL

The image database analyzed here is publicly available at

www.cfar.umd.edu/users/fer/website-texture/texture.htm (and re-

ferred to as the UMD dataset). It consists of 1000 digital

1280 × 960 pixel gray level images split into 25 different

non-traditional natural texture classes, such as fruits, plants,

floor textures or fabric (cf. Fig. 1 for samples). Each class

Fig. 1. High resolution texture image database. One ex-

ample image out of the 40 samples per class for 8 out of the

25 classes of the UMD dataset: Cork, fabric, farfalle, apples,

shrubbery, grass, fallen leaves, gravel.
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Fig. 2. Multifractal estimation. Wavelet Leader based es-

timates of structure functions S(j, q) (left), scaling functions

ζ(q) (center) and spectra L(h) (right) for example images in

Fig. 1: ”shrubbery” (top), ”cork” (bottom).

contains 40 un-calibrated images, taken from different view-

points and distances, and under varying illuminations.

Multifractal analysis is illustrated in Fig. 2 for two example

images from the database. It shows wavelet Leader based

structure functions and estimates of ζ(q), L(q) and h(q)
(obtained using a Daubechies mother wavelet with Nψ = 3
vanishing moments, [j1, j2] = [3, 6], and η = 1 as all im-

ages have ĥmin > −1). Confidences intervals, existing on

all plots but mostly visible on D(h), are obtained for each

image using a time-scale block bootstrap procedure applied

to the wavelet Leaders (cf. [8] for details). The (log-log

plots of the) structure functions (Fig. 2, left column) indicate

that image textures exhibit power law behavior with scale 2j

over a large range of scales and hence do satisfy the mul-

tifractal paradigm. Also, the estimates of ζ(q), L(q) (Fig.

2, center and right column, respectively) possess concave

shapes, which are classical for multifractal processes: The

functions ζ(q) are clearly non-linear in q, and the estimated

spectrum has support on a large range of values of h. These

results clearly indicate that a multifractal description is rele-

vant and fruitful for the characterization of texture images in

this database. This motivates the use of WLMF attributes for

texture image classification.
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Fig. 3. Classification results. Mean estimated probabilities

of correct classification for worst class (left) all classes (cen-

ter) and best class (right) as a function of the number of train-

ing images T per class. Top row: Wavelet Leaders (’×’),

MFS (’�’), HSLR (’♦’). Bottom row: Wavelet Leaders, 25

class (’×’), and 50 class (’◦’) database.

4. ANALYSES

The multifractal attribute feature vectors chosen here con-

sist of the estimates of c1, c2 and ζ(q)/q, D(q), h(q), for

q ∈ {−4,−3,−2,−1, 1, 2, 3, 4}, plus the intercepts of the re-

gression lines, obtained with Daubechies mother wavelet with

Nψ = 3. η = 1. As no method is available for the auto-

matic selection of the scale regression range, various ranges

of scales are used: [j1, j2] ∈ {[1, 3], [2, 4], [3, 5], [4, 6]}. This

yields feature vectors of dimension 208.

A nearest neighbor classification procedure (k-NN) is used

[10]. It is chosen for simplicity reasons as the focus of the

present contribution is on the wavelet leader multifractal for-

malism potentials rather than on the derivation of original

classification schemes. Following [4] against which we want

to compare results, each class is split into a subset of T ran-

domly chosen training images. All other images, called test

images, remain to be classified.

5. RESULTS

Classification performances are evaluated after averaging

results obtained from R = 50 randomly selected training

samples (so as to avoid bias induced by the choice of a

specific training sample). Various values of k have been ex-

perimented. Results are reported for k = 1 as it yields the

best performances. Hence, the estimated class is that con-

taining the training image whose feature vector has smallest

distance to the feature vector of the test image. The mean

estimated probabilities of correct classification are reported

in Fig. 3 (top), as a function of T . It displays the mean

estimated probabilities of correct classification for the best

class, i.e., the class with largest mean estimated probability

of correct classification amongst all classes (left), for mean

estimated probability of correct classification for all classes

(center) and for the worst class (right).

Performance comparisons can be obtained using the results

reported in [4], on the same database: A box-agregation based

multifractal formalism (MFS), combined with a support vec-

tor machine (SVM) based feature selection (MFS+SVM) is

proposed and compared against two other state-of-art texture

analysis procedures: HLSR (histogram orientation based on

Harris and Laplacian operators, [11]) and the VZ (texton his-

togram based on pixel local joint distributions, [12]). The

same k-NN classifier is used to evaluate the classification

performances of the three texture features. The VZ approach

is ruled out because of both its weak performances and high

computational costs, [4, 11]. Comparing the results of the

present contribution to those in [4] (cf. Fig. 3) shows that

the WLMF, MFS+SVM and HLSR approaches show similar

performances: They almost superimpose for the mean clas-

sification property (center); They are significantly in favor

of MFS+SVM for the worst class; For the best class, though

all approaches are doing well, interestingly, the WLMF score

remains remarkably high and constant at small T . Also, it is

essential to mention that these comparable performances are

obtained with the WLMF having computational and memory

costs of the order of those of a DWT (O(n log n), n being the

number of pixels of the image), hence orders of magnitude

lower than the two other approaches: The calculation of the

high-dimensional multifractal attribute feature vectors takes

roughly 10 seconds only per image. The processing (includ-

ing classification) of the 1000 high-resolution images takes

approximately a couple of hours on a standard PC (against

a couple of days MFS+SVM and HLSR). These results con-

stitute clear indications in favor of the use of wavelet Leader

based multifractal analysis for texture classifications.

The feature vector for the WLMF is high-dimensional, and

results are obtained without any specific feature selection

or fine tuning, such as principal components analysis or

SVM-based learning techniques. Hence, it potentially con-

tains highly redundant attributes. Decreasing the intrinsic

redundancy of the feature vector will further reduce the com-

putational cost for classification. Also, some features may

be numerically dominated by others and hence practically

ineffective, though potentially theoretically discriminative.

For example, the log-cumulants cp of order p ≥ 2 usually

take on values that are relatively close to zero, as compared

to other attributes, such as D(q ≈ 0) � 2. Exploring such

normalization issues demands for further investigations and

represents a large potential for future improvements of texture

classifications based on multifractal analysis. This is beyond

the scope of the present contribution, which concentrates on

proposing the first quantifications of the WLMF texture clas-

sification performances obtained from a large size real world

image database. Finally, the use of estimates obtained from

other mother-wavelets (different Nψ) does not significantly

modify the classification results. This is a very satisfactory

empirical conclusion, since it is theoretically proven that the

3831



Leader based multifractal analysis does not depend on the

choice of the mother wavelet, as soon as Nψ is large enough

(larger than the largest Hölder exponent that exists in the

image) [7, 8]. Along the same line, combining multifractal

attributes computed from different mother wavelets does not

improve classification performance.

An extended dataset, with 50 classes of 40 images each,

augmented from the first UMD dataset has also been eas-

ily processed. The results, reported in Fig. 3, second row,

show that classification performances remain satisfactory. No

comparisons against other methods is so far available.

6. CONCLUSIONS AND PERSPECTIVES

The results reported above lead to conclude that multifrac-

tal attribute estimates, as obtained by the WLMF, are highly

relevant for the characterization of texture images. Used as

features for classification, they give rise to effective image

classification schemes whose performance compare favorably

against those of schemes previously proposed in the literature.

Future analyses are required to lower feature vector dimen-

sions and to select the most discriminant and relevant mul-

tifractal attributes. Moreover, the inclusion of the bootstrap

based confidence intervals into the classification scheme is

envisaged. Also, modern classification procedures such as

support vector machines or other non linear machine learning

concepts can be refined to further select optimal subsets of

attributes or propose more advanced classification schemes.

WLMF attributes can also be associated to more classical fea-

tures. Such issues are under current investigations.

The WLMF (together with bootstrap confidences intervals)

have been implemented by ourselves in MATLAB routines and

documented. They are available upon request. Their low

memory and time costs together with their satisfactory esti-

mation performances pave the way toward a systematic appli-

cation of multifractal analysis to possibly large size images

of large databases, and therefore toward its use for image re-

trieval, computer vision or robotic purposes.

At a more conceptual level, it is worth noting that the mul-

tifractal attributes (scaling exponents, log-cumulants or Leg-

endre spectrum) can be fruitfully used as relevant quantities

for texture characterization, with no explicit interpretation in

terms of Hölder exponents or multifractal spectrum. Yet, the

theoretical and mathematical the multifractal framework re-

mains the founding layer of the associated classification pro-

cedure.

At a higher semantic level, commonly referred to as scene

recognition (i.e., discrimination of images of e.g., houses,

landscapes, etc.), it could be interesting to validate whether

multifractal analysis enables to perform scene classification.

This is of importance in a large number of applications, such

as automatized image retrieval and computer vision. Such a

procedure may be considered by combining the feature vec-

tors proposed here with the image function space and uniform

regularity estimates calculated from wavelet coefficients [8].
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