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Didier Dubois, Sébastien Konieczny and Henri Prade
Institut de Recherche en Informatique de Toulouse
31062 Toulouse - France

Abstract. Possibilistic logic and quasi-classical logic are two logics that were developed in artificial
intelligence for coping with inconsistency in different ways, yet preserving the main features of
classical logic. This paper presents a new logic, called quasi-possibilistic logic, that encompasses
possibilistic logic and quasi-classical logic, and preserves the merits of both logics. Indeed, it can
handle plain conflicts taking place at the same level of certainty (as in quasi-classical logic), and take
advantage of the stratification of the knowledge base into certainty layers for introducing gradedness
in conflict analysis (as in possibilistic logic). When querying knowledge bases, it may be of interest
to evaluate the extent to which the relevant available information is precise and consistent. The
paper review measures of (im)precision and inconsistency/conflict existing in possibilistic logic and
quasi-classical logic, and proposes generalized measures in the unified framework.

Keywords: possibilistic logic, paraconsistent logic, measures of information, inconsistency, un-
certainty.

1. Introduction

Information is often pervaded with uncertainty or inconsistency. This state of affairs has led to the
development of important research trends in artificial intelligence in the last thirty years in order to design
inference tools capable of coping with uncertainty and/or inconsistency. In the presence of inconsistency,
two general approaches can be conceived, namely either to restore consistency by “getting rid” of a part
of the information in one way or another (see e.g. [24, 25, 11, 19, 21]), or to “live” with it by still being
able to draw inferences of interest (see e.g. [31, 6, 2, 3, 14, 15]).
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In this paper, we are interested in the second type of approach. There is indeed a need for handling
contradictory information in a safe way in inference processes. Inconsistency situations may be due to
information coming from different sources, or to the cohabitation of recent information with older one,
as suggested by the following toy example. Let us suppose we have some pieces of information about
Peter, maybe coming from different sources. Peter works in Grenoble ; Peter lives in Marseilles ; Peter
is in his forties. Moreover we have the general knowledge that if somebody works in some place, (s)he
cannot live in another place if the two places are distant. Besides, Grenoble and Marseilles are distant
places. In such a case, inconsistency-free information such as Peter is in his forties should not be lost
in the inference process. Moreover, it would be useful to state that the available information enables
us to conclude that both Peter works in Grenoble and Peter works in Marseilles, as well as Peter lives
in Grenoble and Peter lives in Marseilles. Note that having contradictory information is not the same
as having no information (e. g., the available information does not enable us to conclude if Peter has
blue eyes is true or not). Lastly, it may be desirable in such an example to stratify the information in
layers corresponding to different level of certainty. For instance, the piece of information Peter lives in
Marseilles may be rather old and as such would be not regarded as completely certain, then this should
lead to a preference for the conclusions Peter works in Grenoble and Peter lives in Grenoble. In this
paper, we develop a logical framework rich enough for handling these different issues in a rigorous and
efficient way.

Possibilistic logic and quasi-classical logic are two logics that have been developed in artificial intel-
ligence for coping with inconsistency in different ways. Possibilistic logic ( ) extends classical logic
by considering classical formulas associated with certainty levels. These levels are at the core of the
inference mechanism. They allow us to compute global inconsistency levels for such knowledge bases.
Paraconsistent logics aim to handle inconsistent pieces of information by isolating them, avoiding the
trivialization of the inference for the whole base. Quasi-classical logic ( ) is one of those logics. It
has the nice feature of possessing a semantics close to the one of classical logic. These two logics share
a valuable feature, since both of them remain as close as possible to classical logic, which is clearly
advantageous, both from modeling and computational complexity points of view.

This paper presents a new logic, called quasi-possibilistic logic, which encompasses possibilistic
logic and quasi-classical logic as particular cases, and preserves the merits of each logic. Indeed, we
can handle local conflicts taking place at a given level of certainty (as in quasi-classical logic), and take
advantage of the stratification of the knowledge base into certainty layers for introducing gradedness in
conflict analysis (as in possibilistic logic).

Section 2 provides a refresher on and . Section 3 introduces quasi-possibilistic logic ( )
which provides a joint framework for dealing with uncertain and paraconsistent information. Information
measures pertaining to uncertainty or to inconsistency are also briefly discussed in , and .

2. Background

We consider a propositional language based on a finite set of propositional symbols and the
connectives . We will denote the formulas in by lower Greek letters We will
denote the atoms (propositional symbols) of the language by For each atom , is a
literal and is a literal. We will denote literals by We will denote the inference relation
of classical logic.
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Let be a totally ordered set, we will denote the elements of by . A possi-
bilistic formula is a pair where is a propositional formula and is the “weight” of the formula
(i.e. an element of ). In the following will be often taken as the interval for the sake of simplic-
ity, however a bounded integer interval would be enough for the results to hold.

A knowledge base will be a finite set of formulas. Depending on the framework those formulas
will be classical formulas (in Section 2.2) or possibilistic formulas, but it will never be ambiguous.

Let be a knowledge base, we note the set of models of and we note the set of
propositional symbols of appearing in . Let be a set, will denote the cardinality of this set.

2.1. Possibilistic logic

We now recall the main features of possibilistic logic before introducing measures of (im)precision for
possibilistic knowledge bases and discussing some paraconsistent extensions of possibilistic logic.

Possibilistic logic is a weighted logic of incomplete knowledge. It partitions a classical knowledge
base into subsets of formulas according to their levels of certainty. Since some formulas are more certain
than others, it is possible to isolate a consistent subset of sufficiently certain formulas from an inconsistent
knowledge base, and inference becomes non-trivial in the presence of inconsistency.

A possibilistic logic [8, 7] formula is a classical logic formula weighted in terms of a lower bound
of a necessity measure, i.e., the possibilistic logic formula is understood as ,

where is a necessity measure.
Basically, possibilistic logic inference aims at deducing formulas with their certainty levels, or for-

mulas having a certainty level greater than some threshold.

2.1.1. Necessity and possibility measures

A necessity measure is a function from the set of logical formulas to a totally ordered bounded scale,
which is characterized by the axioms

i) ,

ii)

where and stand for tautology and contradiction respectively, and and are the bottom and the
top element of the scale ,

iii) .

We use the real interval as the range of necessity measures in the following, but this is not
compulsory. A (finite or not) totally ordered scale bounded by a bottom and a top element is enough. A
possibility measure is associated by duality with , namely

where is the order-reversing map of the scale. It expresses that the absence of certainty in favor of
leaves possible. satisfies the characteristic property .
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2.1.2. Syntactic aspects

The min-decomposability of necessity measures allows us to work with weighted clauses without lack of
generality, since , i.e., . So we
will call (weighted) CNF of a possibilistic knowledge base a set of weighted clauses that is equivalent
to , i.e. that corresponds to the same necessity measure1 .

Let denote the syntactic inference in possibilistic logic. The basic inference rule in possibilistic
logic is the following one:

(resolution rule)

This rule is enough to make proofs using refutation. It implements an old principle claiming that the
validity of a chain of inferences is the validity of its weakest link. Let be a knowledge base made of
possibilistic logic formulas. Proving from amounts to adding , put in clausal form, to
, and using the above rule repeatedly to show that .
The natural following inference rules are also easily retrieved:

for (weight weakening)

if , then (formula weakening)

(weight fusion)

Classical resolution is retrieved when all the weights are equal to . Moreover

if and only if (1)

where is the so-called -cut of the possibilistic base and is defined as
with , and is called the classical projection of and is defined as the set of classical

formulas obtained from a possibilistic knowledge base by forgetting the weights :
. Note that formulas of the form which do not contain any information

always holds) are never written.

2.1.3. Semantic aspects

From a semantic point of view, a possibilistic knowledge base is associated with
the possibility distribution representing the fuzzy set of models of :

(2)

where denotes the sets of models of and its characteristic function. It can be shown that
is the largest possibility distribution such that , i.e., the possibility dis-

tribution which allocates the greatest possible possibility degree to each interpretation in agreement
with the constraints induced by (where is the necessity measure associated with , namely

and thus .

1Such a weighted CNF form always exists and gives the same inferences that the original knowledge base [8].



D. Dubois et al. / Quasi-possibilistic logic and its measures of information and conflict 5

Thus, a possibilistic logic base is associated with a fuzzy set of models. This represents the set of
more or less plausible states of the world (according to the available information), when dealing with
uncertainty. A possibility distribution which rank-orders possible states is thus semantically equivalent
to a possibilistic logic base. The semantic entailment is then defined by

if and only if

2.1.4. Inconsistency level

An important feature of possibilistic logic is its ability to deal with inconsistency. The level of incon-
sistency of a possibilistic logic base is defined as (by convention

). We can explain this inconsistency level with the -cuts: the inconsistency level of a base
is the greatest such that the corresponding -cut is classically inconsistent. Clearly, any entailment

with can be rewritten as , where
with and with is the set of formulas whose

weights are above the level of inconsistency and which are thus not involved in the inconsistency. In-
deed, . More generally, if and only if is consistent in the usual sense.
Moreover, it can be shown that

(3)

The syntactic inference machinery of possibilistic logic, using resolution and refutation, has been
proved to be sound and complete with respect to the semantics [8, 7]. Soundness and completeness are
expressed by

for

It is important to observe that formulas in whose certainty level is strictly smaller than are
“drowned” in the sense that they cannot be inferred nor be used in a valid proof. A way to escape the
drowning effect is presented in Section 2.1.6.

2.1.5. Measure of imprecision

Information measures have been introduced for a long time in probability theory. They also exist in
the propositional logic setting, where Lozinskii [26, 27] has proposed as a measure
of precision (information) of a consistent knowledge base . Information measures have been also
introduced in other uncertainty frameworks such as possibility theory and belief function theory [9]. In
particular, a possibility distribution can be associated with a measure of imprecision which generalizes
Hartley measure of information [12] (which is itself a particular case of Shannon entropy), as recalled in
the following.

A possibility distribution can be associated with an information measure which evaluates
its imprecision (e.g., [13, 9]). It is defined by
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(4)

where is a normalized possibility distribution (i.e. ), defined on a set of interpretations
with elements which are assumed to be ranked in such a way that the form

a non-increasing sequence . Note that is the
set of interpretations whose possibility degree is greater or equal to and has cardinality . Introducing
the set , is still equal to

(5)

where . Observe that and more generally that
. It can be shown that if (i.e. ) then , which agrees

with the idea that (semantic) entailment favors imprecision. Clearly, interpretations with high possibility
degrees contribute more to imprecision than interpretations with low possibility degrees. Axiomatic jus-
tifications for (4) have been provided by Higashi and Klir [13] and by Ramer [30]. Note that if is the
characteristic function of a subset with elements, i.e. and ,

, which is known as the Hartley [12] entropy of a subset. When , there is one
interpretation and , which indeed means that there is no imprecision.

Thus, a measure of imprecision can be associated with a fully consistent possibilistic logic
base , where is defined by (2) (the consistency of , i.e. ensures the normalization of
). Let be the different certainty levels associated with formulas in . Then, it can be

checked that

(6)

where is the number of interpretations induced by the language. Note that
. So, if we introduce further propositional symbols in the language, then

is changed into , i.e. imprecision is increased as expected, but by a fixed amount. In
particular, when all the formulas in are fully certain, since and

. When all the formulas in are fully certain, this measure of imprecision reduces to Lozinskii’s
measure of information (precision), up to a reversing of the scale. There exist other noticeable measures,
such that Yager’s specificity index [32], which rather estimates precision, and is defined by

.
Lastly, observe that the measure of imprecision is defined only when is consistent

(i.e. when is normalized). It could be extended to the inconsistent case, by noticing that in gen-
eral and , which leads to change given by (5) into

. In such a case, both the inconsistency level and the imprecision mea-
sure should be provided to the user.

But we may think of other ways to renormalize , and the problem of defining the imprecision
(information) of a possibilistic base in the presence of hard conflicts (i.e. when is not normalized)
has not been studied yet. The coherence functions introduced in Section 3.2 can be seen as candidate
definitions for taking into account imprecision and conflicts together.



D. Dubois et al. / Quasi-possibilistic logic and its measures of information and conflict 7

2.1.6. Handling paraconsistent information

An extension of the possibilistic inference was proposed for handling paraconsistent information [3]. It
is defined as follows. First, for each formula such that is in , compute where
(resp. ) is the highest degree with which (resp. ) is supported in . More precisely is said to be
supported in at least at degree if there is a consistent sub-base of which entails . Let be the
set of bi-weighted formulas which is thus obtained.

Example 2.1. For instance, take
. Then

.

A formula is said to have a paraconsistency degree equal to . For defining an
inference relation from , we introduce two measures:

the undefeasibility degree of a consistent set of formulas:

and

the unsafeness degree of a consistent set of formulas:

and

We say that is a reason for if is a minimal (for set inclusion) consistent subset of that
implies , i.e. :

Let is a reason for , and
. Then is said to be a DS-consequence of (or ),

denoted by , if and only if , where is maximizing
in and in case of several such , the one which minimizes . It can be checked

that extends the entailment in possibilistic logic [3].

Example 2.1. (continued) In the above example, with
and . Then, .

If we first minimize and then maximize , the entailment would not extend the pos-
sibilistic entailment. Indeed in the above example, we would select but does
not hold, while since . Note that is more productive than the
possibilistic entailment, as seen on the example, e.g., , while does
not hold since .
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An entailment denoted , named safely supported-consequence relation, less demanding than
, is defined by if and only if such that . It can be shown

that the set is classically consistent [3].

2.2. Quasi-classical logic

In [4, 15] Besnard and Hunter define a new paraconsistent logic. This logic has several very nice features,
in particular the connectives behave classically, and when the knowledge base is classically consistent,
then quasi-classical logic gives almost the same conclusions as classical logic2. Moreover it has been
proved in [28] that inference in quasi-classical logic has a very low computational complexity. It is only
coNP-complete. That is much less than most approaches to reasoning under inconsistency, which are
typically at the second level of the polynomial hierarchy [29], as all methods based on maximal (for set
inclusion) consistent subsets of formulas for example. In [28] a linear time translation from inference in
quasi-classical logic to inference in classical logic is also provided. It allows us to use existing automated
reasoning techniques developed for classical entailment. Finally, one of the major features of this logic
is that it has a nice and intuitive semantics, that is not the case of most paraconsistent logics.

The basic ideas behind this logic is to use all rules of classical logic proof theory, but to forbid the use
of resolution after the introduction of a disjunction (it allows to get rid of the ex falso quodlibet sequitur).
So the rules of quasi-classical logic are split into two classes: composition and decomposition rules, and
the proofs cannot use decomposition rules once a composition rule has been used. Intuitively speaking,
this means that we may have resolution-based proofs both for and . We also have as additional valid
consequences the disjunctions build from the previous consequences (e.g. ). But it is forbidden to
reuse such additional consequences for building further proofs. For details on quasi-classical logic proof
theory see [15]. We will present only the semantic side of this logic in the following.

For the sake of simplicity we will restrict ourselves to the class of CNF formulas in this section.
Generalization for the class of all formulas can be found in [15], but it requires more conditions for the
satisfaction relations (de Morgan laws, double negation elimination, etc). So choosing CNF formulas
does not lose generality but ease the definitions.

2.2.1. Quasi-classical consequence

Definition 2.1. Let be the set defined as follows:

We call any a QC interpretation.

In such an interpretation , means that provides a reason for and a reason against .
Similarly states that provides a reason for and a reason against .

This definition is close to a form of Herbrand interpretation. It allows to localize the conflicts to
propositional symbols. For example if , then the interpretation
means that we have a reason for , we have a conflict on and we have no information about and .

In the same way, it can also be considered as a four-valued semantics à la Belnap [1]. Let
be four truth values whose intuitive meaning is respectively True, False, Both, Neither. Then we can
translate a QC interpretation to a four truth values interpretation as follows : for each symbol of PS
2In fact only tautologies or formulas containing tautologies cannot be recovered.
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is if and

is if and

is if and

is if and

For a detailed comparison between quasi-classical entailment and Belnap entailment see [17].

Definition 2.2. Let be a clause, then is the set of literals
that are in the clause. Let be a clause and let be a literal such that ,
then is the clause without the disjunct , i.e.

. Let .

Definition 2.3. Let be a propositional symbol, is the complementation operation defined as is
and is . This operation is not in the object language but will be used to make definitions

clearer.

Let us now define the notion of strong satisfaction:

Definition 2.4. For a model , we define the strong satisfaction relation as follows. Let be a
propositional symbol, let be literals, and let and be two formulas:

iff

iff

iff and

iff ( or or ) and
(if , then )

So the quasi-classical disjunction semantics (for strong satisfaction) is more demanding than the
classical one, since it has to cope with conflicting pieces of information. One can note that it is this
semantics for disjunction that captures the resolution principle on which QC proof theory relies.

A characteristic property of disjunction is the following one, let be a subset of [15]:

Proposition 2.1. iff there exists such that and , or

for all , and .

Let us note also that reduced to binary clauses the previous definition gives :

iff ( or ) and
if , then and
if , then
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The notion of strong model is easily extended to knowledge bases (sets of formulas) by stating that a
model is a strong model of if is a strong model of all the formulas of .

So let us now introduce an example that we will use through this paper to illustrate the definitions.

Example 2.2. . ,
and are three strong models of .

Note that the model is a strong model of all formulas of . So every formula of
always has at least one strong model.

Similarly, a notion of weak satisfaction is defined :

Definition 2.5. For a model , we define the weak satisfaction relation as follows :

iff

iff

iff and

iff ( or or )

Example 2.2. (continued) . and
are two weak models of (which are not strong models).

Note that straightforwardly all strong models of a formula are also weak models, and that weak
satisfaction is close to the satisfaction relation in classical logic.

Now we can define the consequence relation as :

Definition 2.6. We say that a formula is a (quasi-classical) consequence of if and only if all the
strong models of are weak models of :

iff

Strong satisfaction is used for the assumptions. It allows to capture semantically the resolution pro-
cess, since it forces the resolvent of a clause to hold if holds, whereas weak satisfaction is
used for the conclusions and allows for the introduction of disjunctions. Note that this kind of defini-
tion, using a more restrictive satisfaction relation for assumptions than for conclusions is usual in other
logics for AI. For example nonmonotonic inference relations use a preferential entailment relation for
assumptions, while the satisfaction relation for conclusions remains classical [22].

The extension of the definition to a consequence of a knowledge base (set of formulas) is straightfor-
wardly done by considering the set conjunctively, that is a formula is a consequence of a knowledge
base if each interpretation that is a strong model of each formula of the knowledge base is a weak model
of .

Example 2.2. (continued) . Examples of consequences of are
, , , .
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The following result illustrates the link with the syntactical intuition we gave at the beginning of
this section, i.e. that the idea behind QCL (on the proof-theoretic side) is to forbid the use of resolution
after introduction of a disjunction : notice that , and (by disjunction introduction) are
consequences of , but that is not.

Note that if is in CNF and is consistent, then Definition 2.6 yields classical entailment. Formally,
we have the following proposition, where denotes a CNF formula, the formula after deletion of
tautological clauses.

Proposition 2.2. If and are in CNF and if is classically consistent, then iff .

This proposition is a direct consequence of results of [28]. Note also that the strong QC models of
are in this case (a rewriting of) terms of a DNF of the knowledge base .

2.2.2. Minimal QC models - Coherence function

Let us denote by QC the set of strong models of . In the following we will mainly work with
strong QC models, so the term QC model will mean strong QC models, and we will explicitly use the
term weak when requested.

Let us now define the notion of minimal QC model.

Definition 2.7. The set of minimal (strong) models of is defined as :
MQC QC if then QC

For example if , then the QCmodels of are QC
. Whereas the mininal QC models of are MQC

. They can be viewed as a concise representation of classical models of when is
classically consistent.

We will now define a measure of consistency, called coherence defined in [16]. Let us first define the
notions of ConflictbaseQC and of OpinionbaseQC.

Definition 2.8. Let be a QC interpretation,
ConflictbaseQC and
OpinionbaseQC or

Intuitively the conflict base is the set of propositional symbols on which there is conflictual informa-
tion, and the opinion base is the set of propositional symbols on which the interpretation provides some
information.

Now the degree of coherence of an interpretation is defined as

Definition 2.9. CoherenceQC is a function from the sets of interpretations to defined as:
CoherenceQC and

CoherenceQC
ConflictbaseQC
OpinionbaseQC
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If CoherenceQC , then is totally coherent, and if CoherenceQC , then is totally
incoherent.

Example 2.2. (continued) For example, let , and
, then CoherenceQC and CoherenceQC .

Now we can define the degree of coherence of a knowledge base :

Definition 2.10. Let be a knowledge base, then CoherenceQC is defined as :

CoherenceQC
MQC

CoherenceQC

Note that taking the or the instead of the (or some refinement of those ones) may
also lead to other meaningful measures. This “optimistic” choice of the seems to be meaningful
when one wants to compare several knowledge bases in order to decide which one is the least prob-
lematic. Using instead can be seen as its “pessimistic” counterpart. It makes sense when we are
interested in the worst case, for example when we want to know how much effort is needed to be sure to
recover consistency. This point of view is closer to the one adopted in [20]. Taking the is usually
meaningful when one allows for compensations between alternatives, so in this case it means that a lot
of models with a high coherence could compensate a model with a very low one.

Example 2.2. (continued) . Then CoherenceQC .

2.2.3. Significance function

In [18], Hunter also defines a degree of Significance for a contradiction. This degree of significance
requires an additional meta-information that gives the relative importance of conflicts that affects sets of
propositional atoms (that can be seen as a “topic” of the base), and it computes the significance of the
contradiction embedded in a given QC model. This degree is defined as follows:

Definition 2.11. A mass assignment is a function from into such that :

If CoherenceQC , then

To illustrate what this mass assignment and this significance function mean, consider the following
example [18]: suppose that we have some information about a soccer match coming from different news
reports. If those pieces of information are conflicting about the nationality of the referee, it will be hardly
noticed because it is not very important. It is not the same story if the conflicting information is about
the outcome of the match. If one report says that team A won the match, whereas another says that it is
team B, then it will be a more significant conflict. An example of mass assignment in this case could be
to give a very small mass to the conflict on the nationality of the referee, and a big mass to the conflict
on the outcome of the game (the remaining mass will be used to weight other possible conflicts on the
information about the match).
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Definition 2.12. A significance function (induced by a mass assignment ), denoted QC is a function
from into defined as :

QC

The explanation for performing the sum of all masses of subsets of relies on the intuition that the
significance of conflicts in an interpretation can come from different independent sources of conflicts,
and that some conflicts can be more problematic when we have more information. For example, usually
a conflict on the weather for the day is not very important for me (as I work in my office), but if I know
also that today I would like to go out (it is a non-working day), then the significance of a conflict on the
weather is much more important.

Then the mass-based significance function is extended to knowledge base as follows:

Definition 2.13. Let be a knowledge base, then the significance is defined as:

QC QC MQC

Example 2.2. (continued) Let . And let ,
, , be the corresponding mass assign-

ment. Then we have QC , and QC ,
so finally QC .

3. Quasi-possibilistic logic

In the semantics of possibilistic logic, classical interpretations receive possibility weights. In quasi-
classical logic the semantics is based in terms of reasons for or against propositional symbols. Unsur-
prisingly, in quasi-possibilistic logic reasons for or against propositional symbols become weighted.

In this section we will suppose that all the formulas are (weighted) CNF. As in the quasi-classical
logic case, it does not lead to a lost of generality and ease the definitions.

3.1. Quasi-possibilistic consequence

Let us define the following notion of models:

Definition 3.1. Let be the set defined as follows:

We call any a Q interpretation.

Notice that from the definition an interpretation can contain both and for some
atom . Similarly, note that the definition allows for several in an interpretation.
But we will see that only the occurrence with the greatest needs to be taken into consideration (the
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others are in some sense subsumed by this one), so we will suppose that only one such occurrence can
occur in an interpretation.

The meaning of such an interpretation is that means that provides a reason for
with confidence and a reason against with confidence . Similarly states that

provides a reason for with confidence and a reason against with confidence .
Let us now define the notion of strong satisfaction:

Definition 3.2. For a model , we define the strong satisfaction relation as follows. Let be a
propositional symbol, let be literals, and let and be two formulas: :

iff with

iff with

iff and

iff
( or or ) and

(if , then )

The notion of a strong model is easily extended to knowledge bases (sets of formulas) by stating that
a model is a strong model of if is a strong model of all the formulas of .

Example 3.1. .
,

and are three strong models
of .

Note that the model is a strong model of all formulas of . So
every formula of always has at least one strong model.

We also define the following notion of weak satisfaction:

Definition 3.3. For a model , we define the weak satisfaction relation as follows :

iff with

iff with

iff and

iff ( or or )

Example 3.1. (continued) .
and

are two weak models of .

Note that straighforwardly all strong models of a formula are also weak models thereof.
Now we can define the consequence relation as follows :
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Definition 3.4. A formula is a (quasi-possibilistic) consequence of if and only if all the
strong models of are weak models of :

iff

The extension of the definition of a consequence to a knowledge base is straightforwardly done by
considering it conjunctively, that is a formula is a consequence of a knowledge base if all models
that are strong models of each formula of the knowledge base are weak models of .

Example 3.1. (continued) . Con-
sequences of are for example , , , etc.

Let us stress now that the entailment so defined is a true generalization of quasi-classical entailment
and possibilistic entailment:

Proposition 3.1. If , then if and only if

We have also the following consequence :

Corollary 3.1. If , then

This relation between quasi-possibilistic logic and quasi-classical logic can be illustrated also directly
on the corresponding satisfaction relation :

Let us note the “classical” QC model derived from , that is where we “forget” the weights,
i.e. . Let us denote also the -cut of the
QC-model , i.e .

Lemma 3.1. If , then
If , then

This is straightforwardly obtained from the definitions of the satisfaction relations. Note that in this
lemma we use the satisfaction relation of quasi-classical logic and of quasi-possibilistic, for the sake of
simplicity we do not put a subscript for making the distinction between the two. It cannot be ambiguous
since they do not work on the same formulas, quasi-classical satisfaction relation are used with
interpretations and classical formulas, whereas quasi-possibilistic satisfaction relation are used with Q
interpretations and possibilistic formulas.

So quasi-possibilistic entailment is a generalization of quasi-classical entailment, when we allow a
finer scale than . In the same way, quasi-possibilistic entailment can be seen as a generalization of
possibilistic entailment as shown in the following proposition.

First we can state a useful lemma.

Lemma 3.2. iff

Proof:
We will prove this by induction on the -cuts. Let us note the -cuts, with the
biggest -cut and the lowest one.
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We first show that iff , then we will use the induction assumption
iff . Then finally we will be able to conclude iff

, but as is the lowest cut, means , that gives the
conclusion.

So let us begin with iff . This is obtained directly by noticing that
the only weight in and is , so by using the scale , this is a consequence of
proposition 3.1.

Now suppose that iff . We want to prove that
iff holds. The only if part is given directly by lemma 3.1. For the if part we

want to show . We know from the hypothesis that all formulas in are satisfied by
, so by . It remains to show that all formulas in are satisfied by . Note that

all those formulas are of the form . Let us prove it by induction on the length of the formulas.
Assume , i.e. or , with . Suppose w.l.g that . Then from
definition of strong satisfaction holds iff , with . But it means
that it holds iff , i.e. iff , that is the case by hypothesis. Now suppose that we have
for that if . Let us show that this property holds also
for . So if , then or , with or
s.t. and (w.l.o.g. we will suppose in the following that ). So if

, then holds iff and . We have already
shown that if and by induction hypothesis we now that if

. So that gives that holds if and , that is by definition
, that holds by hypothesis. The proof is similar for .

We can also prove the same result for weak models in the same way :

Lemma 3.3. iff

Proposition 3.2. If is consistent (i.e. has a classical model), then if and only if
, where is with tautologies deleted.

Proof:
iff

(definition 3.4)
iff

(lemma 3.2 and 3.3)

iff

iff
(definition 2.6)

iff
(equation 1)

iff
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So quasi-possibilistic entailment coincides with possibilistic entailment when the possibility dis-
tribution is normalized, but still provides meaningful results in the case of conflicts (non-normalized
possibility distribution).

Concerning computational complexity, one can note that the good computational complexity proper-
ties of both quasi-classical logic and possibilistic logic are preserved for quasi-possibilistic logic.

Proposition 3.3. The complexity of the inference problem for quasi-possibilistic logic stated as follows

Input : A CNF knowledge base and a CNF formula

Output : Does hold ?

is coNP-complete.

Proof:
This proof is a direct generalization of the proof that inference for quasi-classical logic is coNP-complete
(proposition 3 of [28]). The proof goes exactly the same way, by increasing the size of the language and
translating the QC interpretations into classical ones. In our case Q interpretations can be translated
into possibilistic ones.

The membership proof holds since the translation transforms quasi-possibilistic inference into pos-
sibilistic inference, that is coNP-complete [8, 23].

The hardness proof is straightforward since inference in quasi-classical logic is a particular case of
inference in quasi-possibilistic logic (cf proposition 3.1).

Note finally that the entailment relation so defined is different from the and the entailment
relations of Section 2.1.6.

This is easily shown for , since the set of the consequences obtained from this
relation is a classically consistent set [3]. This is not the case with our paraconsistent inference relation
given by the quasi-possibilistic logic, since for example with the base we can
deduce both and . We can also note that quasi-possibilistic entailment is less syntax
sensitive than . For example from and
quasi-possibilistic entailment lead to the same conclusions, for example that holds. Whereas
with we can deduce from but not from .

In order to show the difference between the quasi-possibilistic inference relation and , it is
enough to note that on example 2.1 does not allow us to infer anything on , whereas with the
quasi-possibilistic inference relation we can infer .

Example 3.2. Let us restate the example of the introduction in propositional logic (we will use a pseudo
first-order logic for conciseness, but we still in the propositional logic framework). Peter works in Greno-
ble ; Peter lives in Marseilles ; Peter is in his forties. Grenoble and Marseilles are distant places. More-
over we have the general knowledge that if somebody works in a place, (s)he cannot live in another place
if the two places are distant. This situation can be logically encoded in the following way ( ):
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If we use quasi-classical logic for finding consequences of this knowledge base, we cannot take
the weight into account (so we work with ), and the consequences are for example

, illustrating the conflict in the knowledge base. But
it does not allow us to take into account the fact that is more reliable than .

With possibilistic logic, degrees of certainty are taken into account and we can deduce for example
, but it does not allow us to derive the conclusion

that has nothing to do with the conflict but is drown below the inconsistency level. Moreover it does not
distinguish between formulas on which we have no conflicting pieces of information and formulas that
are challenged by (less reliable) pieces of information.

Taking quasi-possibilistic logic we can obtain
. So there is no more any drowning effect, and we can see that even

if is one of the most reliable conclusions, there is some piece of information against it. We
think that making a distinction between unchallenged conclusions and plausible but conflicting ones is
an important feature of quasi-possibilistic logic.

3.2. Coherence function

Let us define as a notation for or .
Now define the set of models that subsume a model (that is the set of models that strongly satisfy

at least as many formulas as model ):

and with and
with

Let us denote by Q the set of strong models of . Let us now define the notion of minimal Q
model.

Definition 3.5. The set of minimal (strong) models of is defined as :
MQ Q if then Q

We will now define a measure of consistency, called coherence, extending the one defined in [16]. It
is a natural extension where fuzzy scalar cardinality replaces cardinality.

Let us first define the notions of ConflictbaseQ and of OpinionbaseQ . As we need to define a
measure here, we will from now on consider that the set of weights will be the interval.

Definition 3.6. Let be a model,
ConflictbaseQ and and
OpinionbaseQ and with

Let us define now the amount of conflict and opinion corresponding to those two sets, that is a fuzzy
scalar cardinality of those sets :

Definition 3.7. Let be a set of pairs , where and , then
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Now the degree of coherence of a model is defined as

Definition 3.8. CoherenceQ is a function from the sets of interpretations to defined as:

CoherenceQ
ConflictbaseQ
OpinionbaseQ

If CoherenceQ , then is totally coherent, and if CoherenceQ , then is
totally incoherent.

Example 3.1. (continued) If , and
. Then CoherenceQ and

CoherenceQ .

Now we can define the degree of coherence of a knowledge base :

Definition 3.9. Let be a knowledge base, then CoherenceQ is defined as :

CoherenceQ
MQ

CoherenceQ

Example 3.1. (continued) .
CoherenceQ

3.3. Coherence distribution

The Coherence function of the previous section allows us to concisely reflect the amount of conflict of
a possibilistic knowledge base. But the drawback is that it slightly departs from the purely qualitative
framework, since now conflicts are matter of degree, and several small conflicts can be as important as a
big one.

We can figure out another generalization of the coherence function, based on -cuts, that allows us
to draw a more precise picture of the amount of conflicts in the knowledge base. More formally, the
coherence distribution of a possibilistic knowledge base is defined as the set :

DistCoherence CoherenceQC

Example 3.1. (continued) .
CoherenceQC , CoherenceQC , CoherenceQC ,
CoherenceQC , CoherenceQC .
This example illustrates the interest of a more precise picture than the measure given byCoherenceQ ,

since the coherence measure is not monotonic with respect to the level-cutting of the knowledge base.
Figure 1 shows that in our example it is the layer that is responsible for most of the conflicts in
the base. Non-monotonicity of the coherence function is quite natural since adding new formulas in a
knowledge base can bring more information (in this case Coherence increase), or bring more conflict (in
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this case Coherence descrease). When the new formulas bring both, it depends of their relative amount.
See [15] for more explanations.

From this coherence distribution we can compute a Coherence degree that is derived from the distri-
bution by using the certainty gaps between the -cuts normalized as weights. This is the same kind of
idea as in Section 2.1.5, and it is, technically speaking, a Choquet integral.

Definition 3.10.

CoherenceQ D CoherenceQC

where is the -cut of and .

Example 3.1. (continued) CoherenceQ D

We can see on this example that CoherenceQ D is greater than CoherenceQ , but it is not
always the case. For example if we take , then CoherenceQ
whereas CoherenceQ D .

But one can note that the two functions are true generalizations of the significance function in the
quasi-classical case, so if all the formulas of the knowledge bases have the same weight, the two functions
give the same result, and if this weight is , then they give the same result as quasi-classical significance.
It is also interesting to note that the extreme cases are the same for the two functions, they both give iff
there is no conflict in the base (i.e. is classically consistent), and they both gives iff the weights of
all the formulas of the base are and CoherenceQC .

3.4. Significance function

We can also define counterparts of Hunter’s significance function [18] in this quasi-possibilistic frame-
work.

In this framework, the significance function must take into account the strength of the conflicts
on literals. For example if then for the two bases and

1

Figure 1. Coherence distribution of
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, we notice that there is a big conflict in about , whereas in one of the
two literals has a very weak support, so the conflict is a very mild one. So we will define significance
functions that take this strength of conflicts into account for handling the meta-information given by the
mass assignment. To explain this we can go back to the soccer match example of Section 2.2.3. Suppose
that our news reports come from three different newspaper. The first news report says that the winner of
the match is the A team. This newspaper is a sport newspaper, so we have a high confidence in its news
report. The second newspaper is a main national one, says that the referee was Belgian and that team A
won. The last newspaper is a little regional newspaper with a quickly written news report. It says that
the referee was Italian and that team B won. So we can write it as :

, where denotes a win of team A and the Belgian nationality of the referee. With the
mass assignment and (the remaining mass is devoted to other
potential conflicts not detailed here), it is then necessary to be able to define what is the significance
of the conflicts, accounting for both the confidence in the information and the relative importance of
the conflicts. The mass assignment is defined as in the classical framework, but as the models here are
weighted, we will need to use the weight-forgetting function.

Let us state now some of the expected properties of a significance function . After that we will try
to generalize significance functions in the framework of quasi-possibilistic logic while satisfying those
properties.

(S1) If Coherence , then

(S2) If Coherence , then s.t.

(S3)

(S4) If , then

The first property is the minimality, it states that if there is no conflict in a knowledge base, then
the significance of the (non-existing) conflict is . The second property is maximality, it states that
the greatest significance of a knowledge base is reached when it is fully conflictual. This property,
along with the definition of the mass assignment, allows us to deduce that a knowledge base with
Coherence and has a significance of . The third property states that when
joining two knowledge bases, the significance of the conflict is at least as important as the one of each of
the knowledge bases. This means that having more information can not decrease the significance of the
existing conflicts. So significance is monotonic, which contrats with coherence (see Section 3.3). The
last property is a kind of separability property. If two knowledge bases are independent in the sense that
they do not share any propositional symbol, then the significance of the union is greater than the sum of
the significance of the two bases. This is easily explained : when taking two bases together we get all the
conflicts (so all the significance) that are in only one base, but we also get new conflicts (so potentially
more significance).

One can check that those properties are satisfied by the significance function in the quasi-classical
case. So one could expect them to hold also for its generalizations in the quasi-possibilistic framework. It
is the case for the ones we define in the following, except for the qualitative significance function. Since
its definition is no more based on a sum, but on a purely qualitative one, property (S4) is not satisfied as
such. We have to change the “ ” symbol by a as usual, but in this case property (S4) is subsumed
by property (S3).
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3.4.1. Cardinal Significance

This first definition of significance function is a naive generalization of Hunter’s definition, based on a
fuzzy scalar cardinality :

Definition 3.11. Let be a set of pairs , where and , then

Definition 3.12. A possibilistic cardinal significance function (induced by a mass assignment ), de-
noted Q is a function from into defined as :

Q ConflictbaseQ

Example 3.1. (continued) Let . And
let , , , be the corre-
sponding mass assignment. Then we have Q

, and Q

, and Q .

This definition, based on a fuzzy scalar cardinality suffers from the fact that several small conflicts
can be as important as a big one. So if one wants to avoid this situation, one has to seek for other indices.

3.4.2. Choquet Significance

This generalization of the significance function allows us to take into account the certainty gap between
conflicts. It is based on a Choquet integral.

Definition 3.13. A possibilistic Choquet significance function (induced by a mass assignment ), de-
noted Q is a function from into defined as :

Q QC

Example 3.1. (continued) Let . And
let , , , be the corre-
sponding mass assignment. Then we have Q

and Q

, and Q .

We can define a distribution of significance for a base, as done for the coherence function in Section
3.3. This allows us to have a more precise representation of this measure. But, conversely, computing
directly Q gives a concise view of this distribution.

This definition is still quantitative since we use the certainty gaps between -cuts. In the following
section we will define a purely qualitative significance function.
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3.4.3. Qualitative Significance

We need to redefine the mass assignment in order to get a more qualitative definition.

Definition 3.14. A qualitative mass assignment is a function from to such that

If CoherenceQ , then

Definition 3.15. Let be a set of pairs , where and , then
.

Definition 3.16. A qualitative possibilistic significance function (induced by a qualitative mass assign-
ment ), denoted Q is a function from into defined as :

Q ConflictbaseQ

Example 3.1. (continued) Let . And let
, , , ,

be the corresponding mass assignment. Then we have Q

, and Q

, and Q .

Whereas cardinal significance and Choquet significance are true generalization of Hunter’s signifi-
cance in the sense that if all the weights are or , then Hunter’s significance is recovered, it is not the
case with this qualitative significance function, that gives in the case (i.e. in the quasi-classical
framework) a significance of if there is no conflict, and if there is one in the interpretation.

4. Concluding remarks

This paper has provided a first introduction of quasi-possibilistic logic, a logic aiming at handling both
plain contradictions and priority (or certainty) levels of the pieces of information in a unified way. Quasi-
possibilistic logic has still to be developed, in particular its syntactic counterpart (with its associated in-
ference algorithms). The development of the syntactic machinery of may be discussed in the more
general setting of the definition of possibility and necessity measures on non-classical logic structures, a
question which has been already considered in [5]. However, in [5], only one particular logic, da Costa’s
C , which substentially differs from , is taken as an example of paraconsitent logic associated with
necessity measures. Moreover a more systematic comparison of this inference with other inconsistency-
tolerant inference relations which go beyond standard possibilistic inference has to be carried on.

The paper has discussed several types of generalized measures of information and conflict, similar
ideas could be thought of for another type of weighted logic, named penalty logic [10]. Indeed in penalty
logic, the cost of interpretations can be related to the contour function of a belief structure. Information
measures also exist in the latter framework and could be adapted to penalty logic.
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