
M1 Computers Science Parallelism

Université Toulouse III – Paul Sabatier
118 route de Narbonne

31062 Toulouse cedex 9

Lab work – n°3
Processus and monitor synchronization

Documentation

The concept of "monitor" can be used to synchronize processes using conditions (in the
multiprocessing module). See the documentation available in Moodle.

Exercice 1 – Reader-Writers – FIFO version

We consider parallel activities (processes) that simulate readers and writers having read or write
access to a common file. Reads can be done in parallel but writes can only be done in mutual
exclusion.

The behaviors of the processes are as follows:

A Reader A Writer

Loop on {

...

start_read()
Read the shared file;

end_read()
...

}

Loop on {

...

start_write()
Modify the shared file;

end_write()
...

}

Ensuring monitor synchronization, write the start_* and end_* operations so that processes
run in order of arrival, and readers arriving before the first waiting writer run in parallel.

To do this, implement an ExtendedCondition class (using classic Conditions internally) that
offers the following capabilities:

• Ability to handle high priority (i.e. wait(0)) in addition to normal priority (i.e. wait(1)
or wait()). We limit ourselves here to the case of conditions with 2 priority levels.

• Possibility to check if the waiting list is empty (i.e. .empty())

Remark : Start from the code skeleton provided in the file tp2_lectred_base.py

Remember that in Python a function can take a default value for its arguments:

def wait(priority = 1):
If wait is called with no argument then priority will be 1, otherwise priority will take the
value of the argument.

[Code to upload on moodle]

1/2

M1 Computers Science Parallelism

Exercice 2 – Management of access to voting booths

We want to simulate the behavior of NBV voters sharing access to NBP polling booths (with NBV
much higher than NBP). The behavior of a voter consists in arriving at the polling station, entering a
polling booth, preparing his envelope and coming out of the booth to place it in the ballot box.

The constraints are as follows:

• A voting booth can only be used by one voter at a time.

• Some voters have priority access to these voting booths (for example, disabled access). This
allows them, in the event of a surge, to move ahead of "non-priority" voters.

1. Propose a specification for a monitor that manages competing accesses of NBV voters to
these NBP booths.

2. Propose blocking and unblocking conditions as well as shared variables and conditions
associated with the monitor.

3. Implement this monitor using the ExtendedCondition class defined in the previous
exercise.

4. Write an application in which NBE voter processes use the operations of this monitor to
synchronize their accesses to existing NBI booths. We will consider that 1/ratio voters have
priority (for example by considering that voters for which id_voter % ratio == 0
have priority)

[Code to upload on moodle]

Reminder: If the displays are too fast, it is possible to delay the execution of a process for a few
microseconds or nanoseconds using the primitives:

time.sleep(secondes)

See the online manual for their use:

https://docs.python.org/fr/3/library/time.html#time.sleep

We can use a randomly generated value (see the functions random.rand and random.seed) to vary
the waiting times from one process to another.

https://docs.python.org/3/library/random.html

But, be careful, the timeout is not there to solve the problems of concurrent access to shared
variables. In other words: any execution of a parallel application must give a consistent result
without timeout!

2/2

https://docs.python.org/3/library/random.html
https://docs.python.org/fr/3/library/time.html#time.sleep

