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Abstract

Default rules express concise pieces of knowledge having im-
plicit exceptions, which is appropriate for reasoning under
incomplete information. Specific rules that explicitly refer
to exceptions of more general rules can then be handled in
this non-monotonic setting. However, there is no assessment
of the certainty with which the conclusion of a default rule
holds when it applies. We propose a formalism in which un-
certain default rules can be expressed, but still preserving the
distinction between the defeasibility and uncertainty seman-
tics in a two steps processing. Possibility theory is used for
representing both uncertainty and defeasibility. The approach
is illustrated in persistence modeling and in fuzzy default rea-
soning problems.

Introduction
Reasoning under incomplete information by means of rules
having exceptions, and reasoning under uncertainty are two
important types of reasoning that artificial intelligence has
studied at length and formalized in different ways in order
to design inference systems able to draw conclusions from
available information as it is. However, the joint handling of
exceptions and uncertainty has received little attention. This
is the topic of this paper.

Default rules are useful in order to express general behav-
iors concisely, without referring to exceptional cases. More-
over they only require general information to be fired, which
agrees with the situations of incomplete information. In
practice, reasoning from a set of exception-tolerant default
rules in presence of incomplete knowledge first amounts to
select default rules. The selected set of rules should focus
on the current context describing the particular incomplete
information situation that is considered, and then this set
of rules can be applied to this information situation in or-
der to draw plausible conclusions. When new information
is available on the current situation, these conclusions may
be revised at the light of more appropriate default rules. The
selection problem is solved in practice by rank-ordering the
default rules in such a way that the most specific rules whose
conclusion may conflict with the conclusion of more general
defaults, receive a higher level of priority (Pearl 1990), fol-
lowing the idea first proposed by (Touretzky 1984). Clearly,
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the level of (relative) priority of a particular rule depends on
the whole set of default rules which are considered.

However, conclusions that we want to privilege in a given
context may themselves be pervaded with uncertainty. In-
deed, when a rule of the form “if p then q generally” is
stated, no estimate of the certainty of having q true in con-
text p is provided, even roughly. The status of being a default
rule, is just a proviso for possible exceptional situations to
which other rules in the knowledge base may refer. The pri-
ority level of a default rule in a set of such rules cannot be re-
garded as a kind of qualitative certainty level. In fact, it may
happen that a specific rule provides default conclusions that
are less certain than more general rules, or on the contrary
strengthens the certainty of its conclusion. For instance, the
rule “birds with large wings fly” is more certain than “birds
fly”, while one may consider that the rule “Antarctic birds
fly” is less certain than “birds fly”, assuming that there are
many penguins (that do not fly) together with some more
flying sea birds in Antarctic. But, even if it is less certain,
the specific rule that fits the particular context of incomplete
information at hand, is the right one to use. More generally,
the uncertainty attached to a rule is not necessarily related to
its specificity level.

As already said, reasoning with default rules and un-
der uncertainty are two important research trends that have
been developed quite independently from each other in AI.
They indeed address two distinct problems, respectively us-
ing symbolic and numerical approaches in general. Default
rules are concise pieces of knowledge (by omitting some
propositional variables only appropriate for describing ex-
ceptional situations), which are especially useful in case of
incomplete information. Reasoning under uncertainty nor-
mally requires the complete specification of all relevant vari-
ables. However, handling uncertainty, at least qualitatively,
in a given incomplete information context is a need in var-
ious situations. For example, high level descriptions of dy-
namical systems often requires both the use of default rules
expressing persistence for the sake of concise representation
and the processing of uncertainty due to the limitation of the
available information.

This paper outlines a joint handling of defaults and uncer-
tainty in qualitative possibility theory, where there already
exists separate treatments for them (although other uncer-
tainty representation settings could be considered). Sepa-



rate refreshers on the possibilistic handling of uncertainty
and defaults are given in Annex A and B while the problem
raised by their joint processing is first discussed. Then three
methods for default reasoning are presented before integrat-
ing uncertainty in these methods. The approach is illustrated
on two different problems: persistence handling in dynam-
ical environments (persistence rules are by nature default
rules), and reasoning with fuzzy defaults such as “young
birds cannot fly” understood as “the younger the bird, the
more certain it cannot fly”. Lastly links with related works
are discussed.

Uncertain default rules
We assume a representation language L built on a set of
propositional variables V . The set of interpretations associ-
ated with this language is denoted by Ω. An interpretation
ω ∈ Ω represents a state of the system under study. In order
to have a more expressive representation formalism, we now
introduce the notion of uncertain default rule.

Definition 1 An uncertain default rule is a pair (a �

b, α) where a and b are propositional formulas of L ,
and α is the certainty level of the rule, the symbol � is a
non classical connective encoding a non-monotonic conse-
quence relation between a and b.

In the following, for simplicity, we use for certainty lev-
els the real interval scale [0, 1]. However a qualitative scale
could be used, since only the complete preorder between the
levels is meaningful. The intuitive meaning of (a � b, α)
is “by default” if a is true then b has a certainty level at
least equal to α. For instance, let b, f , y stand for “bird”,
“fly”, “young”. Then (b � f, α1) means that “a bird gen-
erally flies” with certainty α1. It is a default rule since it
admits exceptions mentioned in other rules: for instance,
(b ∧ y � ¬f, α2) : “young birds generally do not fly”. But
it is also an uncertain rule since when all we know is that we
are in presence of a bird, the certainty level α1 is attached to
the provisional conclusion that it flies. Thus, the α’s provide
an additional information with respect to the default rule.
Moreover, the more specific rule about young birds is again
an uncertain default rule since some ones may fly. Note that,
in general, as suggested by the above example where there
is no clear inequality constraint between α1 and α2, there
is no relation between the certainty level associated with a
default rule and the certainty level associated with a more
specific rule. In particular, it would be wrong to assume that
the more specific rule always provides a more certain con-
clusion.

The core of the treatment of uncertain default rules pro-
posed in this paper is based on the idea of translating them
into a set of uncertain (non defeasible) rules. This can be
done in different ways, depending on how default rules are
handled and what kind of uncertainty representation frame-
work is used. In the following, uncertainty is modeled in
the qualitative setting of possibility theory (Dubois & Prade
1988; 1998) and possibilistic logic (see Annex A). Indeed,
this agrees with the qualitative nature of default rules. We
present several approaches for dealing with default rules.

Roughly speaking, default reasoning amounts to apply a
set of default rules ∆ to a factual propositional base FC
describing a context at hand.

• A first idea is then to select the subset of the rules of ∆ that
is appropriate for the factual context FC under consider-
ation and remove the other rules, and to turn the selected
rules into classical propositional rules. As we shall see,
this idea is not entirely satisfactory, because many infor-
mation are lost (due to a drowning effect that leads to a
problem of inheritance blocking).

• A method that copes with this difficulty, still relying on
the context, named contextual entailment, has been pro-
posed in (Benferhat & Dupin de Saint-Cyr 1996). This
method may be too cautious and has no known efficient
algorithmic counterpart. Based on this idea, we propose
a contextual rational entailment that is less cautious. The
problem is that the context should be given at once before
each deduction so for each change of context a compila-
tion of the default base must be done.

• Another approach that we also explore further in the fol-
lowing is to rewrite each default rule into a propositional
rule by making its condition part more precise (by ex-
plicitly naming the exceptions mentioned in the default
base). This approach is more satisfactory with respect to
the problems encountered by the previous methods. How-
ever, to be able to deal with incomplete information, this
set of rewritten rules should be augmented with an addi-
tional set of rules that depends on the context and states in
what respect this context is not exceptional. These addi-
tional rules aim at completing the factual context in order
to be able to apply the rewritten rules.

In the next section, we discuss in detail the three above
alternatives for handling default rules before presenting the
treatment of uncertain default rules in a new section.

Handling default rules
A normative approach to default reasoning is provided by
System P (Kraus, Lehmann, & Magidor 1990) that defines a
“preferential” inference relation obeying one axiom:

Reflexivity: a |∼ a

and five inference postulates:

Left logical equivalence if � a ↔ b and a |∼ c then b |∼ c
Right weakening: if a � b and c |∼ a then c |∼ b
Cut: if a ∧ b |∼ c and a |∼ b then a |∼ c
Cautious monotony: if a |∼ b and a |∼ c then a ∧ b |∼ c
Or: if a |∼ c and b |∼ c then a ∨ b |∼ c

The set of conclusions that one can obtain by using a
“preferential” entailment is usually regarded as the minimal
set of conclusions that any reasonable non-monotonic con-
sequence relation for default reasoning should generate.

Lehmann and Magidor (Lehmann & Magidor 1992) have
defined a more adventurous consequence relation (which
allows to draw more conclusions), named “rational closure
entailment”, which is a “preferential” relation that also



obeys a Rational Monotony rule.

Rational monotony: if a |∼ b and a |�∼ ¬c then a ∧ c |∼ b

Another landmark work in the treatment of default rules
is the system Z (Pearl 1990) for stratifying a set of default
rules according to their specificity (see Annex B). Given a
set of default rules ∆, System Z stratification partitions it
into subsets ∆0, . . . ,∆n, where rules in ∆i have priority
over the ones in ∆j if i > j. These priorities reflect speci-
ficity levels since specific rules get higher priority. System
Z is a rational closure entailment. Besides rational closure
entailment and System Z entailment have been shown to be
equivalent to a possibilistic treatment of default rules briefly
recalled in Annex B (Benferhat, Dubois, & Prade 1997).

In the following, we consider a set ∆ of default rules, to-
gether with a propositional factual base FC describing all
the available information about the context. Threw meth-
ods for drawing plausible conclusions from FC using ∆ are
presented below.

The factual base FC is supposed to be consistent. More-
over, we also assume that the set ∆ is consistent. This means
that we cannot encounter a situation where it is not possible
to compute the specificity levels of ∆. This consistency con-
dition is equivalent to the existence of a possibility measure
Π satisfying the set of constraints Π(a ∧ b) > Π(a ∧ ¬b)
associated with each default in the base ∆, leading to a pos-
sibilistic logic handling of the specificity levels (see Annex
B and A). This is the basis of the first method presented now.

Method 1: Possibilistic selection of the rules in a
given context

Given a set ∆ of default rules and a factual base FC, the
possibilistic approach proceeds in two main steps:
• Associate to each default rule r = a � b ∈ ∆ its

specificity level d(r) = Z(r)+1
n+2 , where Z(r) is the rank of

the stratum of the rule r once the system Z procedure has
been applied (see Annex B).

Let Dπ be the possibilistic knowledge base s.t. Dπ =
{(ai → bi, d(ai � bi))|ai � bi ∈ ∆} where → is the
classical material implication.

Besides, each proposition ϕ in FC is encoded in a possi-
bilistic format: (ϕ, 1), which amounts to consider the factual
information as totally certain.

Then compute the inconsistency level Inc(Dπ∪FC) (see
Annex B).
• Applying default rules in ∆ to FC amounts to reason

with the formulas inDπ∪FC that are above Inc(Dπ∪FC).
Hence, remove each formula (ai → bi, σi) from Dπ such
that σi ≤ Inc(Dπ ∪ FC).

The remaining rule base is: D = {ai → bi|ai � bi ∈ ∆
and d(ai � bi) > Inc(Dπ ∪ FC)}.

Definition 2 (rational closure entailment and possibilistic
consequence)
A formula ψ is said to be a rational closure consequence of
∆ given a factual context FC, denoted by FC |∼ RC,∆ψ, if
and only if ψ is a classical consequence of FC ∪D, where

D = {ai → bi|ai � bi ∈ ∆ and d(ai � bi) > Inc(Dπ ∪
FC)}:

FC |∼RC,∆ψ iff FC ∪D � ψ
Example 1 We consider the following default base, describ-
ing the fact that birds generally fly and young birds generally
do not fly:
ϕ1 : b � f
ϕ2 : b ∧ y � ¬f
System Z gives: ∆0 = {ϕ1}, ∆1 = {ϕ2}. The specificity

levels associated to the rules of ∆0 and ∆1 are 1/3 and 2/3
respectively. Let Dπ be the possibilistic knowledge base as-
sociated to ∆ :
ϕ1: b→ f , 1/3
ϕ2: b ∧ y → ¬f , 2/3
Let FC = {(b∧y, 1)}, meaning that we are considering a

young bird. Then Inc(Dπ ∪FC) = 1/3 sinceDπ ∪FC �π

(F, 1/3) from rule ϕ1, we have alsoDπ ∪FC �π (¬f, 2/3)
from rule ϕ2, hence Dπ ∪ FC �π (⊥, 1/3) (applying the
resolution rule of possibilistic logic, where �π denotes the
possibilistic entailment, see Annex A). So, the final base D
only contains the formula (b ∧ y → ¬f).

So FC ∪Dπ �π (¬f, 2/3). One concludes that a young
bird is unable to fly.

However, this method suffers from the “drowning effect”.
For instance, if we had the rule “birds generally have legs
(l)” then it will not be possible to conclude that “young birds
generally have legs” since the rule b � l will have 1/3 as
specificity level.

Method 2: Contextual rational entailment
The previous approach is not entirely satisfactory, since it
faces the “blocking property inheritance” problem. A new
approach, based on an idea presented in (Benferhat & Dupin
de Saint-Cyr 1996), may remedy this drawback. In this
work, the authors studied under which conditions they can
infer b from a∧c, given a rule ”generally, a’s are b’s”. Classi-
cal logic always answers that a∧ c infers b (monotony prop-
erty). Default reasoning should answer like classical logic
except when the c’s are exceptions of the rule. Hence, it is
important to check if a ∧ c is an exception of the rule “gen-
erally, a’s are b’s”.

Benferhat et al. used System P in order to answer this
latter question since System P never draws undesirable con-
clusions. Here, Benferhat et al. approach is extended by
using “rational closure” inference relations instead of “pref-
erential” inference relations. It is based on the identification
of rules having exceptions in a given context (the definition
is similar to the one given by Benferhat et al., but uses ratio-
nal closure instead of preferential closure):

Definition 3 Let FC ∈ L be a classical propositional for-
mula considered as the current context and ∆ be a set of
default rules. A default rule ai � bi of ∆ has an exception
in FC if and only if one of the two following conditions is
satisfied:

1. ai ∧ FC ∧ bi is inconsistent, or

2. ai ∧ FC |∼RC,∆¬bi



where |∼RC,∆ is an inference relation based on the rational
closure of the set obtained by interpreting each default a i �

bi of ∆ as ai |∼ bi.

For each rule ai � bi of ∆ we can check if it is excep-
tional or not in the given context. If not, we change it into
a strict rule ai → bi, else we delete it. Let ΣFC = {ai →
bi|ai � bi ∈ ∆ has no exception in FC}.

Definition 4 (contextual rational entailment) A formula
ψ is said to be a CRE-consequence (C for context and R
for rational) of ∆ given a factual context FC, denoted by
FC |∼ CRE,∆ψ, if and only if ψ is a classical consequence
of ΣFC ∪ {FC}:

FC |∼ CRE,∆ψ iff ΣFC ∪ {FC} � ψ
Using the same reasoning as Benferhat et al., we can ar-

gue that |∼ CRE,∆ is non-monotonic, since increasing the
context reduces the set of rules that have no exception.

Proposition 1 If FC � FC ′ then ΣFC ⊆ ΣFC′ .

It can be established that |∼ CRE,∆ is “rational”. It means
that the conclusions obtained by the first method of this
paper can be obtained by contextual rational entailment as
well.

Proposition 2 ∀∆, |∼ RC,∆ ⊆ |∼ CRE,∆.

Proof : Indeed, if a rule ai � bi has exceptions in a given
context FC, then it means that {ai} ∪ FC |∼RC,∆¬bi. So
this rule has a specificity level smaller or equal to the level
of inconsistency of Dπ ∪ FC (whereDπ is the possibilistic
knowledge base associated to ∆, Dπ = {(ai → bi, d(ai �

bi))|ai � bi ∈ ∆} ). Hence, a rule having exception in a
given context cannot be used by |∼ RC,∆. Since we translate
every default rule that has no exception into a material impli-
cation, and use classical entailment on the set obtained, we
use at least all rules that are kept by |∼ RC,∆. So, this system
can at least draw every conclusion obtained by |∼ RC,∆. �
Corollary 2.1 |∼ CRE,∆ verifies Reflexivity, Left logical
equivalence, Right weakening,Or, Cautious monotony, Cut
and Rational monotony.

Proof : This property is a direct consequence of the previ-
ous property. Since |∼ RC,∆ is a rational entailment relation,
so does |∼ CRE . �

Moreover, contextual rational entailment can obtain more
conclusions than rational entailment, namely it does not suf-
fer from the drowning effect:

Example 2 Let us consider the following default base ∆:
ϕ1 : b � f
ϕ2 : b ∧ y � ¬f
ϕ3 : b � l

We have Σb∧y = {b ∧ y → ¬f, b→ l}, so b ∧ y |∼CRE,∆l.

Note that some scholars have criticized “rational closure”
as allowing to deduce undesirable results concerning exam-
ples where ambiguity should be preserved. Namely, let us
consider the following variant of “Nixon Diamond” exam-
ple:

Example 3 Let ∆ be a default base representing that
“Quakers normally are pacifists”, “Quakers are generally
Americans”, “Americans normally like base-ball”, “Quak-
ers generally do not like base-ball” and “Republicans are
generally not pacificists”:
ϕ1 : Q � p
ϕ2 : Q � A
ϕ3 : A � b
ϕ4 : Q � ¬b
ϕ5 : R � ¬p

ThenQ ∧R |∼ CRE,∆p ∧A ∧ ¬b,
since ΣQ∧R = {Q→ p,Q→ A,Q→ ¬b}.

The result “pacifist” can be debatable (note that the two
other conclusions are desirable). One can argue that it would
be better to not conclude anything about the plausibility of
having p true or false. In our opinion, it is not the fault of
“rational closure” but, it is rather due to the ambiguity of
the example. In this example, there is only one piece of
information about “Republicans”. Indeed, here, “Republi-
can” can be considered as a general property, as general as
“American”. So its specificity level is as low as the Amer-
ican property. Meanwhile, if we learn that Republicans are
Americans that have a given particularity (if they were only
Americans, then the two words would be synonymous) then
the conclusions would change. Hence as discussed in (Ben-
ferhat, Dubois, & Prade 1998), it is not rational monotony
that leads to undesirable conclusions, but it is rather a lack of
information in the knowledge base. A too adventurous con-
clusion is only caused by missing pieces of knowledge that
the system cannot guess on its own, and these pieces can be
always added to the default base (without leading to incon-
sistency) in order to get the desirable conclusion as prooved
in (Benferhat, Dubois, & Prade 1998).

To conclude on this approach, it gives better results than
the first one, but it has a drawback: the computation depends
on the context, it means that a computation of the set of rules
having no exception should be done before any new contex-
tual deduction.

Method 3: Rewriting the rules by expliciting their
exceptions
The first method handles default reasoning by deleting all
the rules under a level of inconsistency in a given context.
It has the “drowning effect” as a drawback: rules that are
not directly involved in the inconsistency may be deleted,
while the second method correctly addresses this problem.
The problem of the second method is that the computation
depends on the context: before each deduction a computa-
tion of the rules that are kept must be done. Indeed, this
computation may be heavy since the whole set of default
rules ∆ should be examined with respect to any new context.
Hence, we propose another method that somewhat handles
these drawbacks. The idea is to transform the default rules
independently of any context into a set of non-defeasible
rules. The idea is to generate automatically from ∆ a set of
non-defeasible rules D in which the condition parts explic-
itly state that we are not in an exceptional context to which
other default rules refer. In the same time, strict rules called



“completion rules” stating that we are not in an exceptional
situation are added to a new set CR. The use of these com-
pletion rules is motivated by the need of reasoning in pres-
ence of incomplete information: the completion allows us to
still be able to apply the modified rules which now have a
more precise condition part.

Note that the rules in CR will only be used if they are
consistent with the context described in FC (takind D into
account). Hence, it only requires to do a consistency test
each time the context FC is changed.

Definition 5 (Explicit Rule and Completion Rule)
Let ∆ = {ai � bi}i=1..k be a set of default rules, and let us
consider D its associated set of strict rules:
D = {ai → bi|ai � bi ∈ ∆}.
For any given default rule r = a � b, we define:

The set of exceptions in ∆ to the rule r:

E(a � b,∆) = {ai

∣∣∣∣∣
ai � bi ∈ ∆ and
{ai ∧ a} ∪D consistent and
{bi ∧ b} ∪D inconsistent

}

The explicit rule associated with r is

a ∧
∧

x∈E(r,∆)

¬x→ b

A completion rule associated with r is of the form

a→ ¬x where x ∈ E(r,∆)

We consider a set of default rules ∆ which has been strat-
ified by System Z into subsets ∆0, . . . ,∆n, where rules of
∆i are more specific than rules of ∆j if i > j.
Rewriting Algorithm
{ Let i be the rank of the current stratum. Let ∆ ′ and ∆′

i be
the set of all rules already rewritten from ∆ and ∆ i respec-
tively. Let CR be the set of completion rules.}
i := n− 1; CR := ∅

while i ≥ 0 do repeat
∆′

i := ∅;
while ∆i �= ∅ do repeat

for each rule r = a � b ∈ ∆i do:
remove r from ∆i {r is being considered }
E(r,∆′) := ∅;
while ∃a′ � b′ ∈ ∆′

such that

{ {a ∧ a′} ∪D consistent
and {b′ ∧ b} ∪D inconsistent

where D = {ai → bi|ai � bi ∈ ∆′}.
do add a′ to E(r,∆′);

add a→ ¬a′ to CR
{r has no more exception}
add a ∧ ∧

x∈E(r,∆′) ¬x→ b to ∆′
i

add ∆′
i to ∆′;

i := i− 1 {examine the previous stratum }
Note that the rules of the last stratum n do not admit ex-

ceptions with respect to the knowledge base ∆ since they are
the most specific ones. This is why they are directly trans-
formed into strict classical rules. Then the algorithm begins
with the rules of the stratum n− 1. The stratum n− 1 con-
tains rules that admit exceptions only because of rules in the

last stratum. More generally, a stratum i contains rules that
admit exceptions only because of rules in strata with rank
greater or equal to i + 1. More precisely for each rule in
a given strata, all its exceptions (coming from strata with a
greater rank) are computed in order to rewrite this rule by
explicitly stating that the exceptional situations are excluded
in its condition part. Moreover, completion rules are added
for each exceptional case found; as already said, completion
rules are useful to state in what respect the current context is
not exceptional. For instance, if b is the only exception to the
rule a � c, then the rule is modified into a ∧ ¬b → c, and
the completion rule, associated with it, has the form a→ ¬b.
This completion rule will only be used if it is consistent with
the current context and the set of rewritten strict rules.

Proposition 3 This algorithm terminates.

Proof : The algorithm examines each rule of each stra-
tum. For a rule of a stratum ∆i, the algorithm executes at
most two consistency tests with each rule of strata of rank
greater or equal to i + 1. Since each stratum is finite, the
algorithm terminates. �
Proposition 4 The set D = {ai → bi|ai � bi ∈ ∆′} of
strict rules associated to the set ∆′ of modified rules ob-
tained by this algorithm is consistent.

Proof : At the beginningD is consistent since it is built on
the set ∆n of rules tolerated by the set ∆\(∆0∪. . .∆n−1) =
∆n. It means that it exists ω0 |= an1∧bn1 where an1 � bn1

is the first rule of ∆n and satisfying every other rules of ∆n.
Hence ω0 |= an1 ∧ bn1 ∧{(¬ani ∨ bni) | ani � bni ∈ ∆n}.

At each step, a rule is added to D only if its conclusion is
consistent with every conclusion of a rule of D. For a rule
r = a � b from a stratum ∆i, if it exists a rule a′ → b′ inD
such that b′ ∧ b∧D � ⊥, then r is replaced by a∧¬a′ � b.
Note that a ∧ ¬a′ is consistent since, by construction, every
rule of ∆i+1 is tolerated by r, it means that it exists ω |=
a ∧ b ∧D ∧ (¬a′ ∨ b′), i.e, ω |= a ∧ ¬a′ ∧ b. r modified by
specifying all its exceptions is added toD only when there is
no more rule in ∆i+1 whose conclusion is inconsistent with
b. So D remains consistent. �

Note that each rule of the initial default knowledge base
is present, modified or not, in the resulting rule base. So,
there is no loss of information as with the previous method.
Moreover the addition of rules a � ¬a ′ and a ∧ ¬a′ � b
in situations such that a � b and a ∧ a′ � ¬b hold, is in
full agreement with postulates of rational closure (Lehmann
& Magidor 1992). Indeed, from a ∧ c |∼¬b, we have by
consistency, a ∧ c |�∼ b. Then from a |∼ b and a ∧ c |�∼ b, we
get a |∼¬c by rational monotony. Moreover from this result
and a |∼ b we obtain a ∧ ¬c |∼ b by cautious monotony.

Definition 6 (Rewriting entailment) A formula ψ is said
to be aRW −consequence (RW for rewriting) of ∆ given a
factual context FC, denoted by FC |∼ RW,∆ψ, if and only if
ψ is a classical consequence ofD andCR which are respec-
tively the sets of strict rules and completion rules obtained
after the rewriting algorithm:

FC |∼RW,∆ψ iff FC ∪D ∪ CR′ � ψ
where CR′ is a subset of CR consistent with FC ∪D.



Proposition 5 ∀∆, |∼ RC,∆ ⊆ |∼RW,∆

Proof :As previously noticed, the addition of rules a ∧
¬a′ � b in situations such that a � b and a ∧ a′ � ¬b
hold, is in full agreement with postulates of rational closure.
Moreover the consistency of D computed from ∆ (prop 4)
allows us to transform � into →. More formally, it gives:
FC |∼RC,∆D.

The same reasoning can be done for the comple-
tion rules: a � ¬a′. It leads to FC |∼ RC,∆CR.
Hence, FC |∼ RC,∆D ∪ CR, by right weakening, we get
FC |∼RC,∆D ∪ CR′ where CR′ ⊆ CR.

So, if FC |∼RC,∆ψ then, by cautious monotony, FC ∪
D ∪ CR′ |∼RC,∆ψ, i.e., FC |∼ RW,∆ψ. �
Corollary 5.1 |∼ RW,∆ verifies Reflexivity, Left logical
equivalence, Right weakening,Or, Cautious monotony, Cut
and Rational monotony.

Example 4 Now we can rewrite the rule of example 2 by
describing explicitly their exceptions starting from the last
stratum. It gives the following knowledge baseD:
ϕ2 : b ∧ y → ¬f
ϕ1 : b ∧ ¬y → f
ϕ3 : b→ l
There is only one completion rule: CR = {b → ¬y},

hence, in the context FC = {b}, the completion rule is
consistent, so it allows us to deduce f ∧ l. In the context
FC = {b∧ y} we cannot add the completion rule since it is
inconsistent with FC so we can conclude ¬f ∧ l.

It is now interesting to check if method 3 retrieves all the
conclusions of method 2. We can establish that it is the case.

Proposition 6 ∀∆, |∼ CRE,∆ ⊆ |∼RW,∆.

Proof : |∼ CRE,∆ is based on the use of classical en-
tailment from the set ΣFC ∪ FC in a given context FC,
meanwhile |∼ RW,∆ uses classical entailment from the set
D ∪ CR′ where D is the set of rewritten rules from ∆ and
CR′ is a subset of completion rules that is consistent with
FC ∪D. Hence, in order to compare the two entailments it
is enough to compare the two sets ΣFC andD ∪ CR′.

Let us consider a given rule ai � bi of the initial default
base ∆. Let E(ai � bi,∆) its set of exceptions in ∆.

• if {ai ∧ bi} ∪ FC is consistent then

– if {ai} ∪ FC |�∼RC,∆¬bi then ai → bi will be present
in ΣFC . Moreover it means that for any exception a ′
of the initial rule, FC ∪ {ai} �� a′. Indeed assume that
FC ∪ {ai} � a′ and a′ being an exception, we have
{a′∧ai}∪D � ¬bi. That would imply thatFC∪{ai}∪
D � ¬bi, which is in contradiction with our starting
hypothesis. Hence, finally,FC∪{ai} is consistent with
every completion rule associated to ai � bi, so also
consistent with the rewritten condition part of this rule.
Hence, the conclusion bi can also be drawn by method
3.

– else {ai} ∪ FC |∼RC,∆¬bi so ai → bi �∈ ΣFC .
Note that it implies that ∃a′ ∈ E(ai � bi,∆) such

that FC ∪ {ai} � a′ (by a reasoning similar to the
above one). Hence there is a completion rule, namely,
ai → ¬a′, belonging to the set of completion rules as-
sociated to ai � bi that is not consistent with FC.
Hence the initial rule ai � bi whose condition part has
been rewritten will neither fired in method 3.

• else {ai∧bi}∪FC is inconsistent. In this case, for method
2, ai → bi will not be present in ΣFC . For method 3,
there are two cases

– either {∧x∈E(ai�bi,∆) ¬x} ∪ FC is inconsistent. It
means that the explicit rule ai ∧

∧
x∈E(ai�bi,∆) ¬x→

bi could not be used, leading to the same result as in
method 2.

– or
∧

x∈E(ai�bi,∆) ¬x is consistent with FC, it means
that the rule ai ∧

∧
x∈E(ai�bi,∆) ¬x → bi is incon-

sistent with FC. Then the third method will face an
inconsistency in FC ∪D, hence, every proposition and
its negation will belong to the set of possible conclu-
sions.

�
The last part of the proof has also pointed out that the

method 3 based on the rewriting of the default rules is only
protected against existing exceptions that can be discovered
by compiling the default base. In case the contextFC corre-
sponds to a new exception to which ∆ does not refer, method
3 cannot conclude anything meaningful (as it is the case of
method 1), while method 2 would lead to non trivial conclu-
sions. However, we may assume that the default rule base
refers to any exception that can be encountered in practice.
Otherwise, it would mean that there is some missing infor-
mation in ∆.

Handling uncertain default rules
Let U∆ be a set of uncertain default rules of the form
(a � b, α). In this paper, two types of levels are involved:
namely levels encoding specificity and levels of certainty.
Although in the first approach specificity levels are handled
by possibilistic logic in the same manner as the certainty
levels will be processed in this section, the two types of lev-
els should not be confused and the inference process uses
the two scales separately. In fact in each of the three above
methods for handling default rules, specificity is used to de-
termine which rules are appropriate in the current context.
Then in the resulting base containing strict rules only (ex-
cept for the second method), the certainty levels should be
taken into account in agreement with possibility theory in
order to draw plausible conclusions with their certainty lev-
els.

Using the first method, an uncertain default rule (a �

b, α) is considered under the form (a � b) and on the basis
of its specificity level is selected or not with respect to the
current context. If the rule is selected, it is then rewritten
into the form (a→ b, α).

Using the second method, an uncertain default rule (a �

b, α) is also considered under the form (a � b). If it is
not exceptional in the given context according to rational
closure then it is changed into a strict rule as in the previous



method. Otherwise it is deleted. If the rule is selected, it is
then rewritten into the form (a → b, α).

For the third method, an uncertain default rule (a � b, α)
is considered under the form (a � b) and on the basis of
its specificity, its set of exceptions is computed, say a′1,. . .,
a′k. Then this rule is rewritten into the form (a ∧ ¬a ′

1 ∧
. . .∧¬a′k → b, γ). Moreover, k completion rules are created
and added to the set of completion rules CR, namely, (a →
¬a′1, δ1), . . . (a → ¬a′k, δk). Remind that each rule in CR
is used only if it is consistent with the context and the set of
rewritten rules.

This can be justified in the following way. On the one
hand, as already said, the addition of a rules a � ¬a ′ and
a ∧ ¬a′ � b in situations such that a � b and a ∧ a′ � ¬b
hold, is in full agreement with postulates of rational closure
(Lehmann & Magidor 1992). On the other hand, we have to
assess the certainty levels γ and δ1, . . ., δk associated with
the added default rules. This can be done easily by interpret-
ing the certainty levels of the default rules we start with, as
lower bounds of conditional necessity, namely N(b|a) > α
andN(¬b|a∧ a′i) > βi, and noticing1 that when the bounds
are strictly positive, they coincide with the necessity of the
corresponding material implication. Then fromN(¬a∨b) >
α andN(¬a∨¬a′i∨¬b) > βi, applying possibilistic resolu-
tion rule (see Annex A), we getN(¬a∨¬a′i) > min(α, βi).
Then we can take δi = min(α, βi). Moreover, the rule
a ∧ ¬a′ → b is at least as certain as a → b by monotonicity
of necessity measure (see Annex A), so we can take γ = α.

Example 5 If we consider the following uncertain default
base U∆, describing the fact that birds generally fly with
certainty α1 and young birds generally do not fly with cer-
tainty α2:
ϕ1 : b � f, α1

ϕ2 : b ∧ y � ¬f, α2

ϕ3 : b � l, α3

Then the possibilistic knowledge base associated with
U∆ by the first method is the following (at this step, the
ignored certainty levels are kept between parentheses) :
ϕ1: b→ f , 1/3 (α1)
ϕ2: b ∧ y → ¬f , 2/3 (α2)
ϕ3: b→ l, 1/3 (α3)
Let FC = {(b ∧ y, 1)}, meaning that we are considering

a young bird. As previously computed, Inc(Dπ ∪ FC) =
1/3. Hence the final uncertain base UDπ contains only the
uncertain formula (b ∧ y → ¬f, α2). So FC ∪ UDπ �π

(¬f, α2). It means that it is certain at level α2 that a young
bird is unable to fly, but we cannot conclude anything about
its legs.

The second method rejects the rule ϕ1 since it admits
exceptions in the given context b∧y, leading to the resulting

1Π(b|a) is defined as the largest solution of the equation Π(a∧
b) = min(Π(b|a), Π(a)) applying the minimal specificity princi-
ple.

It yields: Π(b|a) =


1 if Π(a ∧ b) > Π(a ∧ ¬b)
Π(a ∧ b) otherwise .

Then N(b|a) = 1 − Π(¬a|b)
=


0 if N(a → ¬b) > N(a → b)
N(a → b) otherwise

.

base:
ϕ2 : (b ∧ y → ¬f, α2)
ϕ3 : (b→ l, α3)

It means that it is certain at level α2 that a young bird is
unable to fly, and at α3 that it has legs.

The third method gives the following knowledge base D:
ϕ2 : (b ∧ y → ¬f, α2)
ϕ1 : (b ∧ ¬y → f, α1)
ϕ3 : (b→ l, α3)
together with the uncertain completion rule base {(b →

¬y,min(α1, α2)}, hence, in the context FC = {(b, 1)}, the
completion rule is consistent with FC andD, so it allows us
to deduce f with certaintymin(α1, α2) and l with certainty
α3. However using method 1 or 2 would have permitted
to get a better lower bound of the necessity measure of f ,
namely α1. This is the price paid for the computational sim-
plicity of the method. In the context FC = {(b ∧ y, 1) we
cannot add the completion rule since it is inconsistent with
FC so we can conclude ¬f with certainty α2 and l with
certainty α3.

Note that the possibilistic setting also allows to process
uncertain factual context, namely formulas in FC may have
certainty levels less than 1.

Application to persistence modeling
The ability of handling uncertain default rules is useful for
representing dynamical systems. Indeed, default reasoning
can help solving the “frame” and “qualification” problems.
The “frame problem” expresses the impossibility to enumer-
ate every fluent which is not changed by an action. The
“qualification problem” refers to the difficulty to exactly de-
fine all the preconditions of an action. An idea common to
many proposals for solving the frame problem is to use de-
fault comportment descriptions for expressing persistence.
Stating default transitions may be also useful for coping with
the qualification problem. Besides, the available knowledge
about the way a real system under study can evolve may be
incomplete. This is why uncertainty should also be repre-
sented, at least in a qualitative way.

In this section, the variables set V , on which the repre-
sentation language L is built, may contain occurrences of
action. More formally, let A be the set of action symbols.
We consider that the variables set V contains in addition to
the symbol representing facts all the symbols do(a) where
a ∈ A , representing action occurrences. When there is am-
biguity, variables may be indexed by a number representing
the time point in which it is considered. We denote by f t the
formula f in which all variables are indexed by time point t.
The evolution of the world is described by uncertain default
rules of the form (at � bt+1, α) meaning that if a is true at
time t then b is generally true at time t + 1 with a certainty
level of α.

In order to handle the frame problem, we choose to de-
fine a frame axiom. Among all kinds of fluents we can dis-
tinguish persistent fluents (for which a change of value is
surprising) from non persistent ones (which are also called
dynamic (Sandewall 1995)). Alternative fluents represent
another type of fluents (which should change their value at



each time point); alternative fluents are non persistent flu-
ents, their behavior can easily be described by transition
rules of the form ft � ¬ft+1 and ¬ft � ft+1. Here, we
consider that a set of non persistent literals NP is defined.
Note that occurrences of actions are clearly non persistent
fluents: {do(a)|a ∈ A } ⊆ NP .

Definition 7 (frame axiom) ∀f ∈ V , if f �∈ NP then
(ft � ft+1, p(f)) and if ¬f �∈ NP then (¬ft �

¬ft+1, p(¬f)) where p(f) is the persistence degree of the
fluent f .

The persistence degree depends on the nature of the flu-
ent, for instance, the fluent asleep is persistent but it is less
persistent than deaf . We will see in the following section
that our formalism can also encode decreasing persistence.

Given the description of an evolving system composed of
a set of uncertain default transition rules ∆ describing its
behavior (∆ contains pure dynamic laws and default persis-
tence rules (coming from the frame axiom)) and a possibilis-
tic knowledge base FCt that describes the initial state of the
world, we can study the problem of predicting the next state
FCt+1 of the world. The following example inspired from
(Mailhé & Prade 2004) shows how to describe a coffee ma-
chine behavior with uncertain default transition rules.

Example 6 Let us consider a coffee machine that may be
working (w), have enough money in it (m), have a goblet
under the tap (g). Its normal behavior is roughly described
by:

ϕ1 : mt � gt+1 ∧ ¬mt+1 0.9
ϕ2 : mt ∧ ¬wt � ¬gt+1 0.9

where ϕ1 means that if the machine has money in it then
in the next step a goblet is under the tap and the money is
spent. This first rule describes the intended coffee machine
behavior supposing that it is working correctly. But it admits
an exception described by ϕ2. The agent is able to perform
only one action on this machine: “give money” (gm). This
action has an uncertain effect since giving money may fail if
the coin is faked money (f).

ϕ3 : do(gm)t � mt+1 0.8
ϕ4 : do(gm)t ∧ ft � ¬mt+1 0.7

We consider m as the only non persistent fluent (as soon
as it is true, it becomes false because of the rule ϕ1): NP =
{m}. Hence, persistence is encoded as follows (persistence
degrees are put at a high value, but strictly less than 1):
ϕ5 : gt � gt+1 0.9 ϕ9 : ¬gt � ¬gt+1 0.9
ϕ6 : wt � wt+1 0.9 ϕ10 : ¬wt � ¬wt+1 0.9
ϕ7 : ft � ft+1 0.9 ϕ11 : ¬ft � ¬ft+1 0.9
ϕ8 : ¬mt � ¬mt+1 0.9
In the initial state the agent is not absolutely sure that the

coffee machine is working but he puts money in it; he thinks
that is coin is not faked. FCt = {(do(gm)0, 1), (¬m0, 1),
(¬g0, 1), (¬f0, 0.9)}. there is no money in the machine and
no goblet.

¿From a set of uncertain default transition rules of the form
(at � bt+1, α), we can apply the methods presented in
the previous section in order to obtain a set D of uncer-
tain transition rules of the form (at → bt+1, α). ¿From
D and a knowledge base FCt describing the initial state,

the next state can be computed syntactically as follows:
FCt+1 = {(bt+1, α)|∃(at, γ) s.t. (at → bt+1, β) ∈ D

and FCt �π (at, γ) and α = min(β, γ)}
More generally, the resulting state can be computed by

considering the extended set of rules D ′ corresponding to
all the possible states of knowledge about the initial state of
the system (Mailhé & Prade 2004):

D′ = {(∨I(∧Jai) → ∨I(∧Jbi), min
i∈I∪J

αi)|∀(ai → bi, αi) ∈ D}

where I and J are any independent sets of indices of rules
in D.

Example 7 System Z gives three strata for example 6:
∆0 = {ϕ1, ϕ5, . . . , ϕ11}, ∆1 = {ϕ2, ϕ3} and ∆2 = {ϕ4}.
Applying the first method leads to compute Inc(FCt ∪Dπ)
where Dπ is the possibilistic knowledge base associated
with ∆. Then delete all the rules of Dπ that have a smaller
specificity level. Only three rules are kept:
ϕ2 : mt ∧ ¬wt → ¬gt+1 0.9
ϕ3 : do(gm)t → mt+1 0.8
ϕ4 : do(gm)t ∧ ft → ¬mt+1 0.7

Hence, we can deduce (mt+1, 0.8) meaning that the ma-
chine has money in it in the next state.

The above example shows a drawback of the first method:
all the persistence rules are drowned. Hence we are not able
to determine the value of the fluents that are not concerned
by transitions. The third method has not this drawback and
preserves the following larger rule base where the modified
parts of rules are in bold:

Example 8
ϕ4 : do(gm)t ∧ ft → ¬mt+1 0.7
ϕ2 : mt ∧ ¬wt → ¬gt+1 0.9
ϕ3 : do(gm)t∧¬ft → mt+1 0.8
ϕ1 : mt∧wt ∧ ¬(do(gm)t ∧ ¬ft) → gt+1 ∧ ¬mt+1 0.9
ϕ5 : gt∧¬(mt ∧ ¬wt) → gt+1 0.9
ϕ6 : wt → wt+1 0.9
ϕ7 : ft → ft+1 0.9
ϕ8 : ¬mt∧¬(do(gm)t ∧ ¬ft) → ¬mt+1 0.9
ϕ9 : ¬gt → ¬gt+1 0.9
ϕ10 : ¬wt → ¬wt+1 0.9
ϕ11 : ¬ft → ¬ft+1 0.9
Note that exceptions to persistence laws correspond to oc-

currences of actions, as expected. If the initial knowledge
base FCt is {(do(gm)t, 1), (¬mt, 1), (¬gt, 1)}, comple-
tion rules are: {(do(gm)t → ¬ft,min(0.8, 0.7) = 0.7),
(mt → wt, 0.9), (mt → ¬(do(gm)t ∧ ¬ft), 0.8), (gt →
¬(mt∧¬wt), 0.9) }. So at time point t+1, FCt+1 contains
(mt+1, 0.7), (¬gt+1, 0.9), (¬ft+1, 0.9), meaning that there
is money (with a certainty degree of 0.7) in the machine, no
goblet and the coin is not faked (with a certainty degree of
0.9).

An interest of the third method is that the deduction can be
iterated without recompilation of the default base (whereas
it would be necessary with the second method).



Fuzzy default rules
Let us outline another application of the handling of uncer-
tain default rules. In contrast with the previous sections,
the certainty levels associated with rules are no longer fixed
once for all but will be variable weights.

This setting enables us to handle fuzzy default rules of
the form ‘the more b, the more it is certain that a implies c
is true” (Benferhat, Dubois, & Prade 1999). For instance,
“the younger a bird is, the more certain it cannot fly”. This
kind of rule can be encoded by (b � ¬f, µy) where µy is
a certainty level depending on how young is the bird. For
instance, if tweety is a bird of known age then the plausi-
ble consequence (¬fly(tweety), µy(age(tweety))) can be
obtained.

Again, note that this certainty level µy should not be con-
fused with the specificity level of the rule. In example 6,
we can imagine a rule of this kind: “the more strongly you
hit the coffee machine, the more it is certain that it will
not work in the next state” encoded by (do(hm)t ∧ wt �

¬wt+1, µstrongly). Indeed, such a rule describes an excep-
tional situation with respect to the more general rule saying
that by default if the coffee machine is working in t it still
works in t+ 1 (wt � wt+1, α).

However, since the levels may be variable weights, this
indicates that in some sense they then depend on some con-
textual information (e.g., the age of the bird in the above
example). As referring to a context, this should play a role
not only in the evaluation of a certainty level, but also in
the preliminary step of our approach that analyses the speci-
ficity level of the default rules. This point is illustrated by
the following example:

Example 9 Consider the two defaults:
ϕ1 (b � ¬f, µy)
ϕ2 (b � f, α) stating that the younger a bird, the

more certain it cannot fly, and that birds generally fly.

The above default knowledge base cannot be stratified. In-
deed, the youngness feature of the context cannot be identi-
fied in the condition part of the defaultϕ1, although it should
be recognized as more specific.

This problem can be solved by the following trick. The
general idea is to introduce an uninstanciated literal to cap-
ture this context feature. Namely, the default ϕ1 could be
rewritten into:

(b ∧ (age = x) � ¬f, µy(x))

which is a first order universally quantified uncertain de-
fault rule. System Z stratification method extends to this
generalized type of default, as well as possibilistic logic in-
ference to the associated type of uncertain logic formula.

The possibility to affect variable levels to a rule may be
also useful in order to express decreasing persistence (Dupin
de Saint-Cyr & Lang 1997): the more the time has gone
by the less it is certain that a fluent has kept its value. A
decreasing persistence rule is generally of the form (m t �

mt+n, f(m,n)) where the level attached to the rule depends
on the fluent quality (highly persistent or dynamic) and of
the length of the time interval.

Related Works
There has been very few works handling both defeasibility
and uncertainty, up to the noticeable exception of system
Z+(Goldszmidt & Pearl 1996) that handles default rules
having strengths modeled in the setting of Spohn ordinal
condition functions, and their exploitation by maximum en-
tropy principle, taking advantage of the probabilistic inter-
pretation of Spohn functions (Bourne & Parsons 2003). In
system Z+, a default rule (a � b) is extended with a pa-
rameter representing the degree of strength or firmness of
the rule and denoted by (a →δ b). This is interpreted as a
constraint of the form κ(a ∧ b) < κ(a ∧ ¬b) + δ where
κ is a Spohn kappa function associating any set of inter-
pretations with an integer value that expresses impossibility
(thus 0 means full possibility and ∞ means full impossi-
bility). Translated in possibilistic terms, it amounts to deal
with constraints of the form Π(a ∧ b) > k.Π(a ∧ ¬b) with
k ≥ 1, using the standard transformation between kappa
functions and possibility measures (Dubois & Prade 1991).
Thus, the k’s are like uncertainty odds. In Z+, the ranking
of defaults is obtained by comparing sums of strength de-
grees, somewhat mixing the ideas of specificity and strength.
Separate scales for specificity and certainty are not used is
this approach, so certainty levels are introduced in the com-
putation of the levels reflecting specificity ordering. This
leads to an interaction between the two notions. For in-
stance, encoding our example 1 in a Z+ formalism, we get:
r1 : b→δ1 f
r2 : b ∧ y →δ2 ¬f , where δ1 and δ2 are non negative

integers. System Z+ generates the following ranking on the
two interpretations {b, y, f} and {b, y,¬f}: κ({b, y, f}) =
Z+(r2) = δ1 + δ2 + 1 and κ({b, y,¬f}) = Z+(r1) = δ1.
Thus in Z+, the strengths of the defaults are combined for
determining their respective specificity level, and paradoxi-
cally, not really for computing the certainty levels of the con-
clusions. The approach presented here distinguishes more
carefully between specificity and certainty.

As shown on the following example, the way system Z+

handles defeasibility and certainty in a mixed way may not
yield the expected conclusion always.

Example 10 Consider the following default base stating
that birds generally fly, birds generally have not webbed feet,
young birds generally do not fly, and that duck birds gener-
ally have webbed feet.
ϕ1 : b→δ1 f
ϕ2 : b→δ2 ¬wf
ϕ3 : b ∧ y →δ3 ¬f
ϕ4 : b ∧ d→δ4 wf

System Z+ associates to these defaults the following respec-
tive ranks δ1, δ2, δ1 + δ3 + 1, δ2 + δ4 + 1. Assume that the
values of the δi’s are such that δ1 < δ1 + δ3 + 1 < δ2 <
δ2 + δ4 + 1 (which does not correspond to a refinement of
the Z ordering!). Then, from a young duck bird, System Z +

concludes that it has webbed feet but cannot conclude that it
cannot fly as System Z will do.

Another interesting approach handling both defeasibility
and uncertainty has been proposed in (Lukasiewicz 2005)



in a setting where probabilistic logic is combined with de-
fault reasoning. Lukasiewicz proposes a framework which
can handle simultaneously strict propositional rules, prob-
abilistic formulas and default formulas. A basic difference
with our proposal is that default formulas are classical de-
fault rules, meanwhile in this paper a new kind of default
rules that are also pervaded with uncertainty is considered.

Nicolas, Garcia and Stéphan (Nicolas, Garcia, & Stéphan
2005) also present an approach that deals with defeasibility
and uncertainty in a possibilistic framework. But, they com-
bine possibilistic logic with Answer Set Programming rather
than using the same setting for default and uncertainty han-
dling. Certainty levels are used in order to help to restore
consistency of a logic program by removing rules that are
below a level of inconsistency. As our first method, this ap-
proach does not avoid the drowning problem, while our two
other methods do. Besides, our third method where defaults
are rewritten by mentioning explicit exceptions is close to
techniques used in circumscription.

Using an uncertain framework in order to describe an
evolving system has been done by many authors, for in-
stance in a probabilistic setting. But reasoning in this set-
ting implies to dispose of many a priori probabilities, this is
why using defeasibility may help to reduce the size of in-
formation for representing the system. Besides, it is a com-
mon idea to define a frame axiom in terms of default rules
(see (Lang, Lin, & Marquis 2003) for an overview). But,
as far as we know, frame rules are either considered as de-
fault rules (see (Giunchiglia et al. 2004; Baral & Lobo 1997)
for instance), or are associated with low priority levels (see
(Kakas, Miller, & Toni 2001)), but do not involve both de-
fault and uncertainty feature.

Conclusion
We propose a representation language which allows us to
handle rules which are both uncertain and by default. This
tool is useful in the context of dynamic systems since it helps
solving the “frame” and “qualification” problems, thanks to
default transition rules. The suggested use of the approach
for handling fuzzy default rules may also find applications
for handling default inheritance in fuzzy description logic
in a possibilistic logic setting (Dubois, Mengin, & Prade
2006). The proposed approach, specially the one based on
the rewriting algorithm, could be cast in a logic program-
ming setting to solve the drowning problem pointed out in
(Nicolas, Garcia, & Stéphan 2005).

Annex A: Background on possibility theory
Possibility theory (Dubois & Prade 1988) associates to a for-
mula f two measures, namely its possibility Π(f) which
measures how unsurprising the formula f is (Π(f) = 0
means that f is bound to be false) and its dual necessity
N(f) = 1 − Π(¬f) (N(f) = 1 means that f is bound
to be true). Necessity obeys to the characteristic axiom
N(f ∧ g) = min(N(f), N(g)). A possibilistic knowledge
base is a set K = {(ϕi, αi), i = 1 . . . n}, where ϕi is a
propositional formula of L and its certainty level (or weight)
αi is such that N(ϕi) ≥ αi, N being a necessity measure.

The resolution rule (Dubois, Lang, & Prade 1994) is valid in
possibilistic logic: (a∨b, α); (¬a∨c, β) � (b∨c,min(α, β)),
where � denotes the syntactic inference of possibilistic
logic. Classical resolution is retrieved when all weights are
equal to 1. The resolution rule allows us to compute the
maximal certainty level that can be attached to a formula ac-
cording to the constraints expressed by the base K . This
can be done by adding to K the clauses obtained by refut-
ing the proposition to evaluate, with a necessity level equal
to 1. Then it can be shown that any lower bound obtained
on ⊥, by resolution, is a lower bound of the necessity of the
proposition to evaluate. Let Inc(K) = max{α | Kα � ⊥}
with Kα = {f |(f, β) ∈ K and β ≥ α}, with the conven-
tion max(∅) = 0. In case of partial inconsistency of K
(Inc(K) > 0), a refutation carried out in a situation where
Inc(K ∪ {(¬f, 1)}) = α > Inc(K) yields the nontrivial
conclusion (f, α), only using formulas whose certainty lev-
els are strictly greater than the level of inconsistency of the
base. This is the syntactic possibilistic entailment, noted �π.

Annex B: Background on default rules
A default rule is an expression a � b where a and b are
propositional formulas of L and � is a new symbol. a � b
translates, in the possibility theory framework, into the con-
straint Π(a ∧ b) > Π(a ∧ ¬b) which expresses that having
b true is strictly more possible than having it false when a is
true (Benferhat, Dubois, & Prade 1992).

The use of default rules has two main interests. First, it
simplifies the writing: it allows us to express a rule without
mentioning every exceptions to it. Second, it allows us to
reason with incomplete descriptions of the world: if nothing
is known about the exceptional character of the situation, it
is assumed to be normal, and reasoning can be completed.

(Kraus, Lehmann, & Magidor 1990; Gärdenfors &
Makinson 1994) have developed an approach for handling
reasoning with default rules based on postulates stating the
characteristic properties of a non-monotonic consequence
relations. In this setting, two inferences are defined: a cau-
tious one named “preferential” and a more adventurous one
named “rational closure inference”.

Pearl (Pearl 1990) provides an algorithm which gives a
stratification of a set of default rules in a way that reflects the
specificity of the rules. Roughly speaking, the first stratum
contains the most specific rules i.e., which do not admit ex-
ceptions (at least, expressed in the considered default base),
the second stratum has exceptions only in the first stratum
and so on.

Definition 8 (System Z stratification) A default rule a �

b is tolerated by a set of default rules ∆ if it exists an in-
terpretation ω such that ω |= a ∧ b and ∀ai � bi ∈ ∆,
ω |= ¬ai ∨ bi. This definition allows us to stratify ∆ into
(∆0,∆1, . . . ,∆n) such that ∆0 contains the set of rules of
∆ tolerated by ∆, ∆1 contains the set of rules of ∆\∆0 tol-
erated by ∆ \ ∆0 and so on. The number Z(r) corresponds
to the rank of the stratum in which the rule r is.

It has been shown (Benferhat, Dubois, & Prade 1992) that
each default rule r = a � b of a default base ∆, can be as-
sociated with a possibilistic formula (a → b, σ), where σ



represents its specificity level σ = Z(r)+1
n+2 , n being the in-

dex of the last stratum in the system Z stratification of ∆.
Applying possibilistic inference to the possibilistic base as-
sociated with a default base in this sense is equivalent to
compute the rational closure inference (Kraus, Lehmann, &
Magidor 1990; Gärdenfors & Makinson 1994) of the origi-
nal default base (Benferhat, Dubois, & Prade 1992).
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Mailhé, B., and Prade, H. 2004. Updating of a possibilistic
knowledge base by crisp or fuzzy transition rules. Proc. of
the 9th KR 338–346.
Nicolas, P.; Garcia, L.; and Stéphan, I. 2005. A possibilis-
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