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On the Representation, Measurement, and Discovery
of Fuzzy Associations

Didier Dubois, Member, IEEE, Henri Prade, and Thomas Sudkamp, Senior Member, IEEE

Abstract—The use of fuzzy sets to describe associations between
data extends the types of relationships that may be represented, fa-
cilitates the interpretation of rules in linguistic terms, and avoids
unnatural boundaries in the partitioning of the attribute domains.
In addition, the partial membership values provide a method for
incorporating the distribution of the data into the assessment of
a rule. This paper investigates techniques to identify and evaluate
associations in a relational database that are expressible by fuzzy
if-then rules. Extensions of the classical confidence measure based
on the -cut decompositions of the fuzzy sets are proposed to in-
corporate the distribution of the data into the assessment of a rela-
tionship and identify robustness in an association. A rule learning
strategy that discovers both the presence and the type of an asso-
ciation is presented.

Index Terms—Data mining, fuzzy association rules, generalized
implication, rule learning.

I. INTRODUCTION

THE proliferation of large databases provides both the im-
petus and the need for the development of algorithmic

techniques for the identification and evaluation of relationships
among data. This paper considers two distinct, but closely re-
lated issues: The measurement of the degree to which data sat-
isfy a relationship and the discovery of relationships among the
data in a relational database. Data associations will be described
by fuzzy rules, which extend the representational capabilities of
classical association rules, facilitate the construction and inter-
pretation of rules in natural linguistic terms, and avoid unnatural
boundaries in the partitioning of the attribute domains.

A classical (crisp) association between properties and is
frequently represented in the form of a rule indicating
that an element satisfying property also satisfies . The stan-
dard pair of indices used to measure the validity of an associa-
tion rule are the support and the confidence

(1)

where denotes the cardinality and is the set of tuples in
the database [1], [2]. The support measures the extent of the
simultaneous occurrence of properties and in elements of
the database while the confidence indicates the likelihood of an
element with property also having property .
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The additional representational capability afforded by fuzzy
rules introduces several difficulties into the measurement of the
satisfaction of a rule. These include the selection of appropriate
generalizations for the support and confidence, the effect of the
accumulation of small cardinalities, and the robustness of the
support for an association. The partial membership values in
the boundary regions of the fuzzy sets provide a method for
incorporating the distribution of the data into the assessment
of a rule, an issue that is frequently overlooked in the evalua-
tion of quantitative or interval-based association rules [15], [27],
[30]–[32]. The objective of this paper is to provide a unified
approach to the evaluation and discovery of association rules
that will be applicable to crisp as well as fuzzy associations. We
begin in Section II by considering association rules in terms of
multiple-valued implications, which provides a framework for
comparing crisp rules, certainty rules, and gradual rules [12], the
latter two being common types of relationships representable by
fuzzy associations.

There are two standard methods for extending crisp measures
to fuzzy sets and fuzzy rules. The first, and perhaps simplest,
is to directly replace the operators in the crisp measure with
appropriate fuzzy counterparts. An alternative approach is to
represent a fuzzy rule as a set of crisp rules. The confidence and
support for the fuzzy rule are then obtained by applying standard
techniques to the associated set of crisp rules and aggregating
the results. Section III compares generalizations of support and
confidence obtained following these strategies. The ability of
the resulting measures to discriminate between different types
and distributions of data is examined in Section IV.

The generalizations of the confidence measure considered in
Section III produce a scalar value by assessing either individual
data elements or -cuts and aggregating the results. Section V
reverses the order of the process; an initial step summarizes the
database in terms of the membership values of the tuples. The
summarization preserves the information necessary for com-
puting support and confidence measures and provides the ability
to evaluate associations based on the degree of relevance and the
distribution of the tuples. A combination of confidence and ro-
bustness, which avoids the anomalies presented in Section III, is
proposed as the criteria for supporting an association. The paper
concludes with the presentation of a rule learning algorithm that
discovers both the presence and the type of an association.

In addition to support and confidence, other measures have
been proposed to assess the validity of a crisp association. These
are frequently based upon the independence or correlation of at-
tributes [6], [7], [23]. The properties of fuzzy associations ad-
dressed in this paper, the accumulation of small cardinalities,
robustness of support, and the distribution of examples, would
be equally relevant to extensions of these measures to fuzzy sets.
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II. ASSOCIATIONS AND IMPLICATION RULES

The generalization from classical to fuzzy association rules
provides the ability to represent uncertainty and synergistic re-
lationships between attributes. In this section, we review the se-
mantics of the representation of association rules in terms of
multiple-valued implication, a representation that encompasses
both standard and fuzzy associations. We begin by introducing
the notation that will be used throughout this paper.

The tuples of a relational database are defined by at-
tributes with domains ,

, , respectively.
For the purposes of this paper, it is sufficient to consider tuples
consisting of two attributes and . The tuples will be denoted

, , where and are the
elements from domain and in tuple . When the index
is immaterial, a tuple will be written .

A subset of defines a subset over ; a tuple
is in if, and only if, . When is fuzzy, is a
fuzzy set over the tuples of . The membership value of the
tuple in is , the degree of membership of
the attribute value in the fuzzy set .

Using the preceding notation, the support and confidence for
an association given by tuples of a relational database
may be written as

(2)

Since our analysis will focus on the number of examples of an
association, the normalizing term is omitted from the defi-
nition of support given in (1). For crisp sets, is
the number of tuples that support (or are examples of) the rule

. When and are fuzzy, intersection is evaluated
by a -norm [21], [26], [29]. The identification of membership
in with being an example of an association
yields as the degree to which a tuple is
an example of the association. Consequently, the selection of a

-norm determines the size of the set of examples and, in turn,
the confidence.

For reasons of both efficiency and the robustness of the anal-
ysis, we restrict the possible membership values of tuples in
and to a finite scale. The scale is obtained by selecting a small
set of values that serve as representative membership values for
the fuzzy sets. We will let

and be the represen-
tative values for and , respectively.

An association rule is generally interpreted as an
implication “if is , then is .” For example, the rule “if
Age is Young, then Salary is Low” associates a set of ages with
a range of salaries. These sets may be defined by crisp sets,
but more natural interpretations of “young” and “low” would
suggest a fuzzy interpretation.

In either case, the underlying relationship can be described in
terms of a multiple-valued implication. An implication operator

on [0, 1] [0, 1] is a generalization of classical material im-
plication that satisfies

I1) for ;

I2) for ;
I3) if and only if ;
I4) , ;

for . That is, is nonincreasing in the first vari-
able and nondecreasing in the second. The boundary condi-
tions together with I1) ensure that reduces to material impli-
cation when restricted to {0, 1}. Implication is often required
to satisfy additional constraints such as the exchange property

, or neutrality , but the
less restrictive set of axioms suffices for our purposes. A com-
prehensive survey of axioms for fuzzy implication can be found
in [14].

An implication operator specifies the type of the relation be-
tween the attributes and its values may be used in the determi-
nation of the degree that tuples are examples of an association.
The classical binary equivalence

(3)

explicitly indicates the role of implication in the determination
of examples. Evaluating with a -norm, the right-hand side
of (3) produces the value

(4)

for a tuple . The term in the first argument of the
-norm ensures that irrelevant tuples are excluded from the set

of examples. By I3), a tuple that completely satisfies the an-
tecedent is considered to be an example of the rule to degree
1 only when the consequent is also completely satisfied. With
fuzzy association rules represented as implications, the deter-
mination of the examples and the confidence is dependent upon
the selection of the -norm and the implication operator.

When the domain is restricted to the finite scales and
, an implication operator defines an implication relation over

that may be represented by a matrix whose
th entry is

For a crisp association rule, 0 and 1 are the only -levels needed
in the assessment of the rule. The requirements for an implica-
tion operator produce the matrix

The values and are the implication degrees for
tuples that are irrelevant to the rule and consequently have no
effect on the measurement of the confidence and support.

In [12], Dubois and Prade identified two types of fuzzy rules,
certainty rules and gradual rules, that are distinguished intu-
itively by their semantics and formally by the type of implica-
tion operator that defines the relation. Certainty rules have the
interpretation “the more is , the more certainly is ” and
provide a natural extension of crisp association rules .
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Examples of implications for certainty rules include Dienes im-
plication, , and Reichenbach impli-
cation, , which produce the matrix

...

where the arrows indicate that the values of the implication are
nondecreasing in the designated direction. Moreover, the only
entries with value 1 are those indicated in the matrix.

The semantics of certainty rules are illustrated by the rela-
tionship “the nearer to noon, the more certain the shop will be
closed.” The vague concept in the antecedent “nearer to noon”
is well described by a fuzzy set over the domain of times. The
consequent is a binary valued attribute, either the shop is open
or not. The use of Dienes or Reichenbach implication indicates
that a relevant tuple completely supports the rule only
if and , in which case the consequent is
certain.

The interpretation of gradual rules is “the more is , the
more is .” Gradual rules indicate a synergistic relationship
between the values of the two attributes and are based on a
residuated or -implication. -implications are obtained from
a -norm by and in-
clude Goguen implication

if
otherwise

generated using the product -norm, Gödel implication

if
otherwise

generated using the minimum, and Lukasiewicz implication,
generated using

.
The matrix of an -implication for a continuous -norm and

has the form

. . .
...

...

The values below the diagonal are all less than 1 and nonde-
creasing in the directions of the arrows (see [21] for the proofs
of these properties).

The rule “the closer the time is to 4:00 pm, the hotter the tem-
perature” illustrates the relationship between the membership
values in a gradual rule. The relationship would be formalized
as a gradual rule using fuzzy sets to describe the terms “near
4:00 pm” and “hot.” The rule specifies an increasingly tight set
of constraints on the value of the consequent; a tuple with

completely satisfies the restriction if . As
increases, so does the constraint on .

Pure gradual rules are special class of implication rules in
which the relationship between the fuzzy sets and is spec-
ified by a nondecreasing function between the -cuts of and

. When restricted to finite scales and , the implication
relation defined by a nondecreasing function is

if
otherwise.

The pure gradual rule relating to defined by will be
denoted .

Each pure gradual rule is uniquely characterized
by its focal set . A family of pure
gradual rules , , is said to be consonant
if either or , for every pair . In
[11], Dubois et al. established the following representation of a
general implication rule by a set of pure gradual rules.

Theorem 1: Let be an implication relation on .
There is a unique set of consonant pure gradual rules

, , and values with such that

for all , .
Theorem 1 provides the ability to define the support and

confidence of an arbitrary implication rule using the crisp
constraints provided by the associated pure gradual rules.
This technique will be employed in Section III to produce a
scalar-valued measure for association rules.

III. SCALAR-VALUED MEASURES

The use of fuzzy sets to describe ranges of attributes and im-
plicative rules to express associations of data increases the types
of relationships that are expressible. However, these generaliza-
tions complicate the task of determining whether data supports
an association. In this section, we consider several techniques
that have been proposed for measuring the support and confi-
dence of a fuzzy association. The presentation will focus on de-
termining the number of examples of an association in a data-
base and exhibiting the effect of the selection of the operations
on the discriminability of the resulting measure.

A common approach to extending measures from crisp sets to
fuzzy sets is to replace the crisp operations in the measure with
their fuzzy counterparts [8], [19], [24]. Following this strategy,
support and confidence for fuzzy associations can be obtained
by replacing intersection with a -norm and cardinality with a
scalar-cardinality in (1). The simplest extension of cardinality to
fuzzy sets is the -count, which is the sum of the membership
values of the elements in a fuzzy set. The generalization from
crisp sets to fuzzy sets using the -count produces the confi-
dence measure

(5)

where is a -norm and the sum is taken over the set of tuples
in the database.
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A consequence of employing the -count is that the sum-
mation of a large number of tuples with small membership de-
grees makes the same contribution to the support and confi-
dence as a small number of tuples with that are highly rele-
vant. The accumulation of small cardinalities may produce con-
fidence values that are contrary to an intuitive assessment of the
data, as demonstrated in the following example from [25].

Example 1: In the table that follows, each row represents a
set of like tuples; the first column gives the number of tuples of
the type, columns two and three their membership values in
and , and the result of the intersection using the -norm
is in column four

Number

Measuring confidence with the -count yields
. Thus, a high measure of confidence in the associa-

tion is produced, even though the only tuple that significantly
satisfies minimally satisfies . The influence of small cardi-
nalities on the confidence measure is not limited to the

-norm . Changing the values from .01 to 1 in final 999
tuples produces a like result regardless of the -norm.

Example 2: While minimum is the most common -norm,
its noncompensatory nature contributes to a loss of information
when used for the intersection of fuzzy sets. This phenomena
can easily be exhibited by considering tuples whose and
values are identical. Although contrived for the example, the
presence of tuples with identical pairs of attributes is not unusual
since the tuples may be distinguished by other attributes

Number

a)

b)

Tuples in rows a) and b) differ only in the value of the
attribute. This change does not affect the membership values
of or . Consequently confidence measures
using min intersection produce the same values for these sets
of tuples, in this case for both a) and b). It is also
clear that the confidence measures will be independent of the
attributes whenever their membership values satisfy

for all tuples .
The same type of information loss occurs with minimum

when the membership values for the consequent variable are all
less than the minimum antecedent membership. These exam-
ples indicate the importance of the selection of the -norm in
the measurement of support and confidence.

A. Implication-Based Measures

Since the intuitive relationship represented by an association
is an IF–THEN condition, the presence of attribute in

an instance guarantees the presence of , it may seem advan-
tageous to base the measurement of such an association on the
degree of satisfaction of an implication rather than a conjunc-
tion. This was the motivation for conviction measure proposed

by Brin et al. [6] for crisp associations, which uses the equiv-
alence of with and measures the degree
of independence of and . For an assessment of implication
based on examples, the equivalence in (3) shows a way to deter-
mine the number of examples of using a -norm and
an implication operator . For crisp sets, a tuple is an example if

; the conjunction of the term ,
which is either 1 or 0, removes the irrelevant cases from consid-
eration.

The fundamental issue for assessing the confidence of the
rule when the sets and are fuzzy is to determine
which properties of the crisp measure to preserve. The measure

chose to maintain the ratio of set cardinalities and used
the -count to incorporate intermediate membership values into
the confidence assessment. The implication interpretation pro-
vides an alternative generalization of confidence to fuzzy asso-
ciations. In this case, the notion of relevant instance serves as
the basis for the extension to fuzzy sets. The following two mea-
sures differ in the degree to which a tuple is considered relevant
to an association.

The first generalization considers a tuple fully relevant
to the association if . With this interpretation,
a tuple is an example to degree
where is the indicator function

if
otherwise.

The confidence, which is the ratio of the examples to the relevant
cases, becomes

With this interpretation of relevance, the irrelevant cases remain
the same as in the crisp case (i.e., ). The normalization
factor also remains the number of positive instances.

An alternative interpretation of relevance considers a tuple
relevant only to the degree . In this case, both the nu-

merator and the denominator are weighted by the membership
degree of the antecedent of a relevant instance

(6)

The subscript indicates that tuples are considered partially
relevant based on the degree of satisfaction of the antecedent.

B. Reduction to Crisp Sets

As seen in Examples 1 and 2, the selection of the intersection
operator and method of determination of the cardinality of fuzzy
sets may have a significant effect on the generalization of crisp
measures to fuzzy sets. A common approach used to avoid these
complications is to transform the measurement of a property of
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fuzzy sets into that of a family of crisp sets. Such a transfor-
mation permits the use of the standard crisp set operators and
avoids the subtle variations associated with the selection of a
particular -norm or implication operator. The tradeoff, how-
ever, is the need to aggregate the values produced by the crisp
analyzes. In this section, we examine two methods used to trans-
form the measurement of fuzzy associations to an assessment of
crisp sets.

The -cut decomposition of a fuzzy set is frequently used to
reduce the measurement of a property of fuzzy sets into that of a
nested sequence of crisp sets. In [10], Delgado et al. introduced
a scalar cardinality of fuzzy sets based on the weighted sum-
mation of the cardinalities of its -cuts. The motivation behind
the weighting was to accentuate the contribution of elements
with high membership values. Martín-Bautista et al. [25] pro-
posed the use of the weighted cardinality to mitigate the impact
of small cardinalities in the assessment of an association.

The confidence measure using weighted cardinality is defined
as

(7)

where is an ordered listing of the union
of the -levels of and . The summation
over the -cuts places a greater emphasis on the elements with
higher membership values, since a tuple with membership
occurs in each of the summands . Variations of
this measure have been presented [3], [9] and their performance
compared on a database of information from the U.S. Census
Bureau.

Another method for the evaluating association rules using a
reduction to crisp sets, proposed by Hüllermeier [20], is based
on the decomposition of a generalized implication into a se-
quence of pure gradual rules described in Theorem 1. The objec-
tive is to determine the degree to which tuples are examples of
an implication based on their satisfaction of the pure gradual
rules associated with .

Let be an implication relation on to with the
decomposition

for

into pure gradual rules and probabilities as specified by The-
orem 1. That is, each is a nondecreasing function from
to and . Let denote the sup-
port for the pure gradual rule given by the tuples
in the database. The support of the association can then
be obtained as the weighted sum of the support of each of the
gradual rules in the decomposition

What remains is to determine . A tuple
satisfies the constraint imposed by if, and

only if, . However, the determination of
whether a tuple is an example of an implication also incorpo-
rates the relevance of the tuple to the rule. Hüllermeier [20]
proposed two methods for incorporating the relevance into

support of a pure gradual rule: full and partial relevance. In the
measures that follow, the subscripts and indicate whether a
tuple with is considered either fully or partially
relevant.

In the first method, the support for the rule by
the tuple is

if and
otherwise.

Under this interpretation, a tuple is an example if it satisfies the
constraint imposed by the gradual rule and the attribute of
the tuple has a nonzero membership degree. That is, a tuple is
considered fully relevant whenever for . The support
for the rule is the sum over all the tuples in .

In the preceding approach, a tuple was deemed either com-
pletely relevant or irrelevant. The second method assigns inter-
mediate degrees of relevance based on the membership of in

if
otherwise.

Thus, a tuple that satisfies the constraint is considered to com-
pletely support the rule when and it gives partial
support to the rule when . As before, the support for

is the sum of the support of each tuple in the data-
base.

The confidence may be obtained directly from the definitions
of support. For consistency, the same definition of support (in-
terpretation of relevancy) should be used in both the terms of
the confidence measure. Thus

(8)

where is the entire domain of the attribute .
The preceding measures may also be obtained directly from

the evaluation of an association that determines the degree
to which a tuple is an example of an implication using

. When the product is used as the
-norm in and , and

providing a justification for the implication measures based
on the satisfaction of the crisp constraints provided by the
corresponding pure gradual rules.

C. Properties of Scalar-Valued Measures

The preceding sections reviewed approaches that have been
proposed for generalizing the support and confidence measures
to fuzzy associations. We now examine the ability of these mea-
sures to avoid the problem of the accumulation of small cardi-
nalities and to discriminate between data. In addition to ,
we will consider the following measures:

weighted -cuts;
full relevance and Dienes implication;
partial relevance and Dienes implication;
full relevance and Goguen implication;
partial relevance and Goguen implication.
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The product is used for the -norm because of the resulting
equalities and that relate pure
gradual rules and the implication interpretation of confidence.
Dienes and Goguen implications were chosen to demonstrate
the difference in evaluation obtained by a certainty and a gradual
interpretation of an association.

Example 3: The tuples from Example 1 are used to examine
the effect of the accumulation of small cardinalities on the
scalar-valued confidence measures introduced in the preceding
sections. With the weighted -cuts, the contribution of the 999
tuples with membership .01 is reduced by the weighting. The
result, , is more in accord with an intuitive
assessment of the validity of the rule.

For the fully relevant implication-based measures, all the
tuples are completely relevant and all but one are considered
examples (to either degree .99 or 1) producing confidence
values of approximately 1. The measures that reduce the degree
to which a tuple is an example by the relevance yield

and . In these
cases the number of examples of is small, approxi-
mately 10, but the number of examples of is also
small producing the high confidence.

Example 4: The tuples in Example 2 illustrated the inability
of to discriminate between intuitively different sorts of
data. Examining these tuples with the other scalar measures
produces

a)
b)

Like , measures based on the analysis of -cuts depend
solely on the term with the least membership value. When

for all tuples, the -cuts of are com-
pletely determined by the membership values of . The same
inequality ensures that Goguen implication is 1 for all tuples,
producing identical results for a) and b). However, Dienes
implication discriminates between these sets of tuples.

The previous example illustrates that different confidence
values may be obtained based on whether the association is
interpreted as representing a certainty or a gradual relationship.
The next example further illustrates this distinction.

Example 5: Consider the fuzzy sets and over nonnega-
tive integers that represent “about 5” and “about 10” defined by
the membership functions

if
otherwise.

if
otherwise.

Tuples of the form , for , completely
support the gradual relation “the more is about 5, the more
is about 10.” Consider the membership values produced by the

five tuples (1,6), (2,7), (3,8), (4,9), and (5,10), which produce
the following membership values:

Number

The confidence values

indicate complete support for the gradual relationship but
lesser support for the certainty of about 10 given a value that is
about 5.

The disparity between the results of the preceding examples
has repercussions for both the measurement and the discovery
of associations. In determining the degree to which a set of
data supports an association, it is necessary to specify the type
of hypothesized relationship between the variables to obtain
a proper assessment. Moreover, a successful knowledge dis-
covery strategy should not only identify the existence of a re-
lation, but also the type of relation supported by the data.

IV. DATA DISTRIBUTION AND ASSOCIATION ROBUSTNESS

The use of fuzzy sets in association rules facilitates smooth
transitions between subsets of attributes, provides a more nat-
ural interpretation to linguistic descriptions, but introduces the
problem of small cardinalities described in the preceding sec-
tion. In addition to these, the partial membership values provide
the ability to incorporate information about the distribution of
the data into the assessment of a rule. This, in turn, produces
a more accurate summarization of the support provided by the
data than can be obtained from a crisp partitioning of the do-
main. Moreover, the analysis of the distribution of the data pro-
vides information about the robustness of the support of a rule.
We begin the examination of the effect of the distribution of data
with several examples that illustrate the importance of the dis-
tribution on the measurement of rule confidence.

The relationship between age and salary will be used to
demonstrate the benefits of incorporating the distribution of
the data in the assessment of an association. For fuzzy rules,
the distribution is determined by the membership degrees of
the data in the antecedent of the rule. The terms “young” and
“middle-aged” are defined by the sets of ages in Table I.

For simplicity, we will define the terms “low” and “middle-in-
come” by the crisp sets [$20k, $40k) and [$40k, $70k), respec-
tively. Consider the two sets of age and salary data

a) age salary b) age salary
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TABLE I
CRISP AND FUZZY PARTITIONS

The sets differ only in the distribution of the ages in the tuples
with middle income salaries. In a), these are near the boundary
between Young and Middle-aged while in b) they are distributed
in the core of Young.

The confidence measures for the rule “if Age is Young, then
Salary is Low” using the crisp definitions is .5 for both sets of
tuples a) and b). The crisp partition does not differentiate be-
tween the locations of the data in the set Young.

All of the generalized measures produced a confidence of .5
for the tuples in b). The partial membership in the fuzzy set
Young of the tuples with middle-income salaries in a) decreases
their relevance to the assertion “if Age is Young, then Salary
is Low” resulting in an increased confidence in the measures

, , , ,
and , thereby distinguishing the support for the
association based on the distribution of the data within the fuzzy
sets.

Example 6 shows that disregarding the distribution the data
can prevent the acceptance of an intuitively supportable associ-
ation. A standard method of acceptance of an association is to
employ a user-defined value as a threshold; a confidence value
greater than indicates acceptance of the rule. In this example,
.9 will be considered as the threshold of acceptance.

Example 6: The membership data

Number Young Low Middle income

are used to assess the validity of the rule “if Age is Young, then
Salary is Low.” This data strongly reflects that intent of the rule.
However the crisp partition produces a confidence of .8, which
does not surpass the threshold. The partial membership in the
transition between young and middle-aged reduces the impact
of the middle-income salaries producing confidence values for

, , , , and that all exceed .9 and
support the rule.

The following two examples show that disregarding the dis-
tribution of the data may cause the acceptance of associations of
dubious merit. This type of result can occur when the data sup-
porting an association is more highly concentrated in regions of
low membership in the antecedent. Intuitively the support for a
rule is robust if it is obtained from highly relevant data or from
data across all levels of relevance. The -cut decomposition of
the fuzzy set will be used to analyze the robustness of support
of a rule . The high confidence value for the association

in Example 1 is a result of the aggregation hiding the lack of ro-
bustness of the support. For those tuples, the -cut confidence
values are

level

indicating that there is no support prior to the .01 level.
Unfortunately, the lack of robustness may not always be as

obvious as in the preceding example. Example 7 shows that the
distribution of data may cause significant variations in the -cut
confidence.

Example 7: The -level evaluation of the tuples

Number

produces -cut confidence levels

that indicate a lack of robustness in the support for the asso-
ciation; -cuts .9 and .7 support the association while .8 does
not. Weighting the -cuts produces , which indicates
strong support for the association regardless of the lack of ro-
bustness indicated by the -cuts.

Example 8: The tuples in this example further show the in-
ability of assessment using aggregation or -cuts to distinguish
robust from nonrobust support for an association. The tuples in
a) and b)

Number

a)

b)

both produce the -cut confidence values
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In case a), the support for comes from tuples whose
membership values are distributed throughout the range [0,1].
This differs from b) in which only one tuple significantly sup-
ports the rule. However, neither the selection of a particular

-cut, , , , nor differentiates these sets
of tuples. When , the certainty rule interpretation based
on Dienes implication produces greater support from the data
in b) with little relevance, and ,
than from the evenly distributed data in a), and

. This is because a tuple with membership
values and is considered to be more in
agreement with (actually, less of a counterexample) of a cer-
tainty rule than one with and .

V. DATA DISTRIBUTION AND ROBUSTNESS

In the preceding section, the analysis of an association first
determined the intersection of the values and for
each tuple and then aggregated or normalized the
results. The latter step has the concomitant loss of information
about the distribution of the tuples that support the association.
In [5], Bosc et al. proposed the reversal of this procedure. The
first step consisted of summarizing the database using a fuzzy
cardinality. The information in the resulting fuzzy set was then
used to produce a confidence value. Moreover, the summariza-
tion permitted a more detailed analysis of relationships among
the data. In this section, we will adopt this strategy and initially
summarize the data in terms of its membership in and .

As before, let and
be the representative values for

and , respectively. A two-dimensional “membership map”
of the database is constructed over the set

that summarizes the distribution of the tuples in and . Each
tuple is associated with a pair based on the
proximity of to and to . The representative value

for an element is selected as follows:

if
if

if ,
for

if

That is, an element with is assigned to the nearest
nonzero . The value for is selected in a similar manner.
The entry is the number of tuples in the database that
are associated with the pair .

This first level of processing provides two types of summa-
rization. Organizing the tuples by their membership in the fuzzy
sets and extracts the information required for the assess-
ment of the association. The selection of the representative set of
membership values reduces the size of the resulting map. If the
fuzzy sets and have a small number of -levels, the

-levels may be used as the representative values and the sum-
marization has no resulting loss of membership information. In
the examples that follow, the representative values will be the

-levels of the fuzzy sets.
The benefit of the summarization of the membership values

is the ability to perform a more detailed analysis that considers

the distribution of the values. The membership map provides
the information needed to identify the types of tuples that con-
tribute to the confidence measure. An -cut evaluation suggests
a straightforward method for eliminating the adverse effects of
small cardinalities, augmenting the acceptance threshold with
an -cut requirement. That is, a rule is supported if the confi-
dence of the designated -cut exceeds . In [5], a threshold on
the convex hull formed from the -cut confidences was used in
the determination of the acceptance of an association.

Examples 7 and 8 showed that scalar-valued confidence mea-
sures are frequently unaffected by the distribution and the rel-
evance of the data. These examples also demonstrate that the
addition of an -cut criterion is insufficient to ensure that the
support for an association is primarily from relevant data.

To distinguish a confidence value produced by tuples that are
strongly relevant to a rule from one generated by tuples that
barely satisfy the antecedent, it is useful to consider the distri-
bution of the tuples. The value

if

if

if

where support , compares
the number of tuples in with the expected number from
a uniform distribution across -levels. A -level that contains
at least as many tuples as the expectation yields .
Requiring to be greater than the threshold , or another
threshold for tuple distribution, incorporates strength of support
into the confidence assessment.

Example 9: The computation of the distribution function
is demonstrated for a set of 100 tuples with membership
values distributed as follows:

The representative values of are , , ,
, and .

For , the interval of membership values associ-
ated with , the number of tuples in that interval, the expected
number of tuples in the interval from a random distribution 100
tuples, and the value are

interval expected tuples

A tuple is assigned to the nonzero that is nearest to
. Thus, consists of only the interval from

to 1 while is (0, 1].
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The addition of the distribution criterion prevents the accep-
tance of the association for each of the problematic cases in Ex-
amples 1, 7, and 8. The -level and the associated values
are given here with in Examples 7 and 8

Ex. 1
Ex. 7

Ex. 8 a)
Ex. 8 b)

The lack of tuples at high -levels in all Examples except 8 a)
would preclude the associations from receiving support.

VI. RULE DISCOVERY

Knowledge discovery [13] differs from assessing the degree
of satisfaction of a rule because the discovery process gener-
ally examines all, or a large number, of possible associations
to determine which are supported by the data. Thus, an im-
portant aspect of knowledge discovery is the development of
efficient algorithms to consider multiple associations simulta-
neously (see, for example, [6], [17], [18], and [33]) and the
selection of interesting associations from the resulting set [4],
[16], [22], [28], [31]. In this paper, we focus on the steps re-
quired to learn whether there is an association, and if so what
type, between two prescribed sets of attributes and . The
latter question, what type, is introduced by the representation of
an association by a generalized implication.

When and are crisp sets, the process of discovering an
association and checking the validity of one are essentially iden-
tical. In this case, there is only one -norm and implication op-
erator or, more precisely, all -norms and implication operators
are identical when restricted to the set {0,1}. The membership
map is a 2 2 matrix whose entries provide the number of
examples, , and counterexamples, , which com-
bine to yield the number of relevant tuples, .

The process of rule checking, and of learning, an association
is determining the degree to which the membership map of the
data matches the pattern of the implication matrix

If the vast majority of the data accumulates in the positions in-
dicated by 1 s in , the rule is supported.

When the attributes sets and are fuzzy, there are infin-
itely many implication operators that may be selected to assess
confidence. Thus, selecting a particular implication to check in-
troduces a bias into the learning process. To avoid the a priori
selection of an implication, we outline a learning procedure that
will construct an implication relation as it analyzes the data. The

technique proposed for discovering associations will focus on
determining the core of the most restrictive implication that sup-
ports an association to a specified threshold .

The core of an implication relation over is the set
of entries in the associated matrix that have value 1. The core
of the implication relations produced by Dienes and -implica-
tions are shown in Section II. There is a one-to-one correspon-
dence between cores of implication relations on and
nondecreasing functions that satisfy
and . Such a function can be obtained from the core
of an implication relation by

where

Conversely, a function defines a crisp implication relation

if
otherwise.

Using standard notation, matrix if
for all , . The preceding inequality is
satisfied if, and only if, for all .

For each set of dimensions , there is a greatest and a
least core generated by implication operators. The smallest gen-
erating function with the corresponding largest core matrix are

for
if

...
...

...
...

...

This represents the least restrictive crisp implication. The impli-
cation is completely satisfied by a tuple whenever

and represents the generalization of material implication to the
scale . is the core of the implication generated by
the drastic -norm by residuation on the discrete scale

if
otherwise.

The most restrictive crisp implication is that generated by Di-
enes implication

for
otherwise.

...
...

...
...

...

which is completely satisfied by relevant tuples only when the
consequent is true.
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The general form of the core of an implication is that of an
“inverted staircase.” The boundary and monotonicity conditions
for an implication operator produce a matrix of the form

...
...

...
...

...

Learning the core consists of identifying the location of the left-
most 1 in each row of the matrix . If the implication cannot
satisfy the “inverted staircase” pattern, the association will not
be supported. Subject to the monotonicity conditions, an impli-
cation matrix may have any values from [0, 1) in the noncore
entries. To efficiently evaluate potential implications, a protocol
must be specified for selecting these values in each row.

The learning process presented below iteratively produces
values for rows of . The entries in the th row will
be the representative values . The selection of these
initial values coincides with the satisfaction of by
the implication.

Subsequences of the values will be used in con-
structing the rows . The consequence of this
selection of values will be discussed after the presentation of the
algorithm. We begin with an example to illustrate the construc-
tion of an implication matrix from the membership map of a
database.

In order to determine confidence using implication, the user
must select one of the two interpretations of relevance of a tuple;
full or partial. The example and algorithm will use partial rele-
vance, which specifies a tuple to be an example of
to degree .

Example 10: The objective of this example is to determine
if there is an association between fuzzy sets and
and, if so, of what type based on a comparison of the number of
examples and relevant cases in a database. The membership map
will be constructed using the representative values ,

, and . Thus the membership map
and the implication matrix will be 3 3 matrices. Assume that
the analysis of the data in fuzzy sets and produces the
membership map

The first row has been left uninstantiated since it represents tu-
ples that are irrelevant to the association. The tuples that are
recorded in the second row are those with membership values
in and those recorded in the third row have mem-
bership in . As discussed in Section VI, a distribution
that contains a significant proportion of highly relevant data
is desired for the acceptance of an association. For this data,

and conditions requiring a representative
data distribution are satisfied.

The initial implication matrix has the form

The objective of the data analysis is to determine the most re-
strictive implication relation, if there is one at all, for which the
confidence exceeds a predetermined threshold . For purposes
of this example, is .8.

The default values for row 3 are the original values; 0, .5,
and 1. The confidence measure for the -cut using is

and the confidence threshold is exceeded. If the confidence re-
quirement were not met, the process would halt and reject the
association.

At this point, the implication matrix has the form

and the construction of row 2 is initiated. By the monotonicity
conditions of an implication matrix, the minimal values permis-
sible in row 2 are [0, .5, 1]. This provides the first condition to
be checked. The analysis is on -cuts, so the confidence for the

-cut includes elements in the rows 2 and 3. Computing the
confidence associated with [0, .5, 1] in the second row produces

Since this failed, core of the matrix is increased by “shifting” the
second row to the left producing [.5, 1,1]. Testing for confidence
with this row produces

Thus, the final matrix produced is

which shows that a gradual association between the fuzzy sets
and is supported by this data.
Now, assume that the data creates the membership map

which differs from only in the distribution of the data in the
second row. Computing the -cut confidence with row 2 of the
implication matrix [0,.5, 1] produces
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and this row is accepted. The resulting implication matrix

indicates a certainty type relationship between and .
Following the strategy presented in the preceding example,

we outline a general approach to identifying the presence and
type of an association from summarized membership data. The
algorithm will use the following:

membership map;
implication matrix;

acceptance threshold;
support from previous cut;
relevance from previous cut;
confidence value in association.

The implication matrix is initialized to

...
...

...
...

...

and the process begins by checking if the -cut exceeds the
confidence threshold. The -cut confidence is the ratio of the
support and relevance at that level. These values are
maintained separately so that they may be used in the determi-
nation of the subsequent -cut confidence.

1. {initialization}
2. {check th row}

3. If , {exit: the association
not supported}
4. For to 2 {loop on the remaining
rows}
4.1.

4.2. For to ,
4.3. Repeat
4.3.1.
4.3.2.
4.3.3. if , then {shift}
for to ,
until

4.

After the satisfaction of the confidence condition for row
in step 3, the algorithm will always produce an implication re-
lation. In the extreme case, the relation will be , the least
restrictive implication. Such a result would be produced by an-
alyzing a membership map of the form

It is doubtful whether associations supported by such a weak
implication should be accepted. To prevent the generation of

such implications, the user may specify a greatest core (or least
) that will be considered. The algorithm can be modified to

terminate whenever this condition is violated. This is precisely
the situation that occurs in row , where the core is not permitted
to extend to the left of column .

The loop in step 4 produces an implication matrix and
measure of confidence for the association represented by .
We now show that the resulting confidence can be used to imply
the presence of certain types of certainty and gradual rules as
described in [12].

Theorem 2: If the core of is , then .
Proof: Since the core of is , no shifts have been re-

quired and . Combining this with
yields

Theorem 3: Assume that . If
the core of is upper triangular, then
where is the confidence obtained using Lukasiewicz
implication.

Proof: For , Lukasiewicz implication produces

The initial vector is shifted times
to obtain row . Thus, the value in position is

and the two matrices are identical.
The import of the preceding results is that data mining can

used to hypothesize not only the presence of an association sup-
ported but also the type. If an implication matrix with minimal
core is generated, the data supports a certainty rule. If a diagonal
core is produced, the data supports a Lukasiewicz implication.
Moreover, the generation of a core between these shows the con-
straints imposed on the consequent by the antecedent.

Protocols other than the “vector shift” for selecting potential
partial membership values of may be implemented and incor-
porated into step 4.3.3. A requisite property, however, is that any
such strategy be efficiently computable and that the results can
be related to well known implication operators.

VII. CONCLUSION

A fuzzy association defines a set of increasingly restrictive
constraints on the consequent based upon the satisfaction of the
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antecedent and may be represented by a generalized implica-
tion. This paper has exhibited the dependence of the methods
for assessing the support for an association on the underlying
implication and upon both the relevance and distribution of the
data. In addition to the satisfaction of a confidence threshold, a
distribution criterion is proposed to ensure the robustness of the
support for an association and mitigate the anomalies that can
result from the accumulation of small cardinalities. The ability
to represent different types of associations with fuzzy sets re-
quires that data mining fuzzy associations identifies both the
presence and the type of a relationship between attributes. An al-
gorithm is presented that generates an implication matrix while
analyzing the data. The core of the resulting matrix may be used
to identify the type of the association.
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