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Abstract

We define ordered formulas of first order logic as formulas where the order of the arguments
of a predicate corresponds to that of the quantifiers governing this occurrence. We prove that
ordered formulas are decidable by translating them into propositional modal logic Q.

INTRODUCTION

There are several decidable fragments of first-order logic. Two of them are well-known in
literature. The first is monadic first-order logic ([Léwenheim 15], [Kleene 52]), i.e. only
one-place predicates are allowed. In [Kripke 62], S. Kripke gave a translation of modal logic
into monadic first-order logic plus one binary predicate expressing the properties of the
accessibility relation of the possible-world models. Thus the resulting fragment is decidable,
although monadic first-order logic together with one dyadic predicate is generally
undecidable. Just as we will proceed, he used a bijection between a decidable propositional
modal logic and the fragment. The second decidable fragment is due to Th. Skolem
([Skolem 20], [Kleene 52]) and consists of first order formulas without existential
quantifiers in the scope of universal quantifiers. This result can be viewed as a corollary of
the completeness of skolemization: In the case of this fragment, existentially quantified
variables are replaced by skolem constants, entailing a finite Herbrand domain of the formula
under concern.

The decidable fragment we present in this note neither contains one of these fragments, nor
is it contained in them. There is no restriction on the number of arguments of a predicate, but
the formula must be closed, and the ordering of the quantifiers must be that of the variables
in the predicates they govern. In other words, for every occurence of a predicate
p(xq,...,x,) and every i, 1<i<n, the existential or universal quantifier Q;x; binding x;

must be exactly in the scope of the quantifiers Qqxq, ..., Qj.1%i-1- A translation to -

propositional modal logic Q will ensure the decidability of the fragment. To achieve the
.. proof - we- introduce deterministic modal logic DQ and. define quantification over modal.....
operators. C :

- The note is divided into-5-sections. In section 1 we recall first-order logic and define the. - -
fragment of ordered formulas, and in section 2 we introduce thé deterministic modal logic
DQ. In section 3 we translate first-order logic to DQ. In section 4 we define a fragment of
DQ containing the translated fragment of first-order logic, and in section 5 we show the latter
to be decidable by translating it to propositional modal logic Q.
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1  FIRST ORDER LOGIC

A first-order language is built on the following basic symbols :

- aset of variables VAR = {x, v, z, ...}
- for every n 2 0, a set of n-ary predicate symbols PRED® = {p, q,r, ...}
- conjunction A, negation —, universal quantifier V, and parantheses (, )

First order formulas are defined recursively as the least set such that

- P(X{s...,Xy) is aformulaif p e PRED"

(— A) is a formulaif A is a formula

- (AAB) isaformulaif A and B are formulas

(Vx A) isaformulaif xe VAR and A isa formula

We introduce the existential quantifiers by defining3x A as an abbreviation for — Vx —A.
We suppose the usual conventions and notions of scope, free and bound variables,
subformula and closed formulas ((Andrews 86]). When we do not bother whether a

quantifier is existential or universal, we note Qx A both Vx A and Jx A .
A model of first-order logic is of the form N =(D,j), where

- D is a set called domain

- j is an valuation function mapping VAR into D and PRED" into DT, for
everyn 20

For a given first-order model N = (D,j),

N(x) = {N% N =(D,j), () = jp) forevery n 20 and p € PREDY,
j'(y) =j(y) forevery ye VAR - {x} }

is called the set of models agreeing with N off x.

Satisfaction is defined as usual, with

- Nsatp(xq,....xp) if (jxp)s...i(xp) ) € j(p)
- Nsat Vx A if forevery N'e N(x), N'sat A

A given formula A is satisfiable in first-order logic iff there is a first order model N
such that N sat A, and A is valid in first-order logic iff for every first order model N we
have N sat A.

'Now we define a patticular set of formulds of first-order logic as the set of closed fo;mdlas_

. in which every argument of an atom is exactly in the scope of the quantifiers binding the
arguments left of it. More-formally, a first-order formula A isordered iff ‘A 1is c}ose‘d‘ and -
for every atom p(xjy,...,X,) occurring in A and forevery-x;, 1 i<, the quantifier Qjx;.
binding x; is in the scope of some quantifier Qy iff Qy 1is binding some X; in
pP(X1,..»Xp)s and 1 Sj<i
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Examples of ordered formulas are

Vx (p(x) Ady q(x,y) ),
Vx Vx' Ju p(x,x,u) A Vy3dy' Vz —ply,y'z).

Examples of formulas which are not ordered are

VX p(x,x),

Vx 3y (p(y) Aax,y) ),

Vx Vy (p(x.y) A p(y.x) ).
Note that e.g. the non-ordered formula Qy Q'x p(x,y) can be transformed into an ordered
one by permuting the quantifiers Q and Q' if they are of the same type (i.e. Q=0Q’). We

may also permute the order of the arguments of a given predicate p in an appropriate
manner and introduce thus a new predicate p' replacing p everywhere. Sometimes it is

also possible to drop quantifiers in order to obtain ordered formulas. E.g. omitting Vy
from the non-ordered formula

Vx 3x' p(x,x) A Vy3dy' Vz-p(y',z),

we obtain the equivalent ordered formula

Vx 3x' p(x,x) A E]y“Vz —p(y',z).

Our aim is to show that ordered formulas of first-order logic are decidable.

2  DETERMINISTIC MODAL LOGIC DQ

In this section we introduce a particular multi-modal deterministic logic DQ which is similar
to dynamic logic for deterministic programs ([Harel 79]). Propositional modal logic Q is
contained in DQ. Moreover, we allow quantification over deterministic modal operators.

Alanguage of DQ is built on the following basic symbols:

- aset of variables VAR ={x,y,z, ...}
- a set of propositional variables PROP= (p,q,r, ...}
- conjunction A, negation —, and universal quantifier V

- parantheses (,) and brackets {,]
- Formulas of DQ are defined recursively as the least set such that

p-is a formula if pe PROP .. -~ -
(= A) is aformulaif A is a formula .
(AAB) isaformulaif A and B areformulas
(Vx A) is a formula if A is aformulaand xe VAR .~
([x] A) is a formula if A is'a formulaand x & VAR

h. 1 1

1

We employ the usual conventions and notations. For every xe VAR, [x] is called amodal
operator.
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A model of DQ is of the form M = (W,w(,5,i), where

W is a set called the set of worlds

wg € W is a world called the actual world

S is a set of total functions on W called the set of accessibility functions
i is an valuation function mapping VAR into S and PROP into oW,

Just as the accessibility relations of the Kripke models for Q are all deterministic and serial,

i.e. for every we W there is exactly one w'e W such that (w,w)e R ((Hughes &
Cresswell 86]), we may present the Kripke semantics in terms of total functions,

For a given DQ-model M = (W, wy,S,1),

M(x)= (M M' = (W, w,5,1), i'(p) = i(p) for every p € PROP, i'(y) = i(y)
forevery ye VAR - {x} }

is called the set of models agreeing with M off x.

Satisfaction is defined as usual for the classical connectors, plus:

- M,wsatp if we i(p)

- M,w sat Vx A if forevery M'e M(x), M'sat A
- M,wsat [x] A if M,i(x)(w) sat A

A given formula A is satisfiable in DQ iff there is a DQ-model M = (W,w,5,i) such
that M,w; sat A, and A is valid in DQ iff for every DQ-model M = (W,w),S,i) we have
M,w; sat A.

Normal-Form-Lemma. The following formulas of DQ are valid.

[xX]AA[x]IB & [x](AAB)

- [xX]A & [x]=A

Vx[y]A & [y]VxA ifxzy

AAVxB & Vx(AAB) ifxdoesnotoccurin A
AAJxB & Jx(AAB) ifxdoesnotoccurin A

Other deterministic logics are a recent subject of research. They can be defined by closure
conditions or other restrictions on the set of-accessibility functions S. It may be closed by
function composition, or contain the identity function ([Ohlbach 88], [Farifias & Herzig 88},
[Auffray & Enjalbert 88], [Auffray 89], [Herzig 89]): It has been shown"that powerful
“normal form theorems can be obtained for deterministic logics: by the above equivalences,
deterministic modal operators can ¢ross the classical connectors and may thus be shifted into
positions where there is-no more classical connector in their scope. Thus, at the end modal
operators only occur in what can be called modal literals, i.e. literals prefixed by sequences

‘of 'modal operators. Calling ‘clause’ a disjunction of modal literals, .every formula of -

deterministic logics can be rewritten as a conjunction of clauses. Now e.g. a resolption
principle can be defined ({Robinson 65]), using appropriated algorithms to find the unifiers
of two sequences of modal operators.
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3 EMBEDDING FIRST-ORDER LOGIC INTO DQ

In this section we shall translate first-order logic into DQ. The translation function transq is
defined as follows.

- trans( p(x{,....xp) ) = [x1]...Ix4]p

- trans|(AAB) = trans;(A) Atrans((B)
- ransy(—A) = — transj(A)

- trans{( Vx A) = Vxtransj(A)

trans j-Lemma. A a first-order formula A is first-order-satisfiable iff trans{(A) is DQ-

satisfiable,
Proof. First we augment the language of DQ in order to englobe first-order-language by the
following basic symbols:

- for every n 2 0, a set of n-ary predicate symbols PRED", PRED" = PROP

The formulas of the extended language are constructed as before, plus
- p(xq,...,x,) isaformulaif p e PRED?

Given a model M =(W,w,S,i) we extend the valuation function i such that

i:PREDP — S0
ip) = [ (s1, ... ,8y) ! sp)o... d(sp)(wp) € i(p) } for pe PRED!

Then the equivalences
trans  ( p(X1,....Xp) ) € x1l...Ixylp © P(X1see5Xp)

are DQ-valid, and hence A <> trans|(A) forevery first-order formula A, too.

1t remains to show that for every first-order formula A, A is first-order-satisfiable iff A is
DQQ-satisfiable.
Given a DQ-model M = (W, w5, i) satisfying A, it is easy to show that N =(§,j) isa

first-order model satisfying A iff j is i restricted to PRED and VAR,
In the opposite sense, to a given first-order model N = (D,j) we associate a DQ-model M =
(D*, nil,D,i) such that

. D¥= {D": n'> 0} is the set of lists over D.
- nil is the empty list

- every d € D is considered to be an apphcauon from D* into D* such that
- d({dy,.... dp) = @ps - dped) |
“- The Testriction of i to VAR and 'PRED -is j, and for every pe PROPn
i(p) = (], -+ dp): (@p oo ) €7CD) )

M is a DQ-model, and M,nil sat p{xq,...,x) iff N sat p(Xq,....Xp) for every atom
p(xq,...,Xp). Consequently M,nil sat A iff N sat A for every first-order formula A.
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4 ORDERED AND STRONGLY ORDERED DQ-FORMULAS

In the first section we have defined ordered formulas of first-order logic. In this section we
shall define the corresponding property in DQ, and we show that ordered formulas of DQ
can be transformed into formulas having a more restricted form, close to the traditional
modal language. First, we need an auxiliary definition.

We introduce a relation balances between variable lists and formulas. It is defined
recursively as the least relation such that

(x1,...,Xy) balances p if pe PROP and n=9_

(X15+000Xp) balances B A C if (xq,...,x,) balances B and (x{,...,Xp)

balances C
(X1,...,Xy) balances =B if (xy,...,xp) balances B

(X150005Xp) balances Qy B if (xl,. ..»X,y) balances B
(X,...,Xp) balances [y] B if y=xj and (xy,...,xp) balances B

Now a DQ-formula A is ordered iff A is closed, and the empty list (noted "nil")
balances A.

Examples of ordered DQ-formulas are
Vx ([x1p A3y x] [yl @)

Vx([xlpalxldylylaq)
Vx[x]1(pAdylylq)

Fact.Let A afirst-order formula. If A is ordered then trans{(A) is ordered.

Let A aDQ-formula. A isstrongly ordered iff A is closed, and for every subformula of
A of the form Qx B, B is of the form [x] C and x does not occurin C.

E.g. the last formula of the preceeding examples is strongly ordered, whereas the first two
are not.

Fact. Strongly ordered DQ-formulas are ordered.

In the rest of the section we shall define a translation from ordered DQ-formulas into
strongly ordered DQ-formulas and prove their equivalence. First we need an auxiliary
definition.

We define recursively a function factor mapping a variable list and a formula into strongly
ordered formula as follows:

factor( (xl,..,,xn) ,p) =pif pe PROP and n=0

factor( (X1,....Xp), BAC) = Tfactor( (x1,.+..%p)s B) A factor((xq,...,xp), €)
factor( (x{,...,Xx,), =B) = = factor( (xq,...,xp), B)

factor( (X1,...,Xp), Qy B) = factor( (X1se--:%Xps¥)s B)

factor( (xl,...,xn), [yl B) = factor( (xz,...,xn), B) if y=x1
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Now we define a function trans, translating ordered DQ-formulas into strongly ordered
DQ-formulas by:

transy(A) = factor(nil,A)

transy-Lemma. Let A an ordered DQ-formula. Then transy(A) is strongly ordered and

equivalent to A.
Proof. By induction on the structure of A it is possible to establish that for every variable
list (x{,...,Xp) balancing A we have that

- factor( (xq,...,Xp), A) is strongly ordered
- [xq]...Ix,] factor( (xq,...,Xp), A & A

by induction on the structure of A, using for each of the cases in the induction step one of
the corresponding equivalences of the Normal-Form-Lemma.

5 FROM STRONGLY ORDERED FORMULAS OF DQ TO
MODAL LOGIC Q

Traditionally, modalities are expressed by means of the well-known operators [] and <>.
We are going to show that the propositional modal logic Q corresponds to the fragment of
strongly ordered formulas of DQ. The operators [| and <> can be expressed in DQ by

replacing [] A by Vx[x] A and <>A by 3x [x] A. Now there is an immediate way to
establish a semantical correspondency: It suffices to consider the traditional Kripkean
accessibility relation to be expressed in terms of a set of accessibility functions, and it is easy

to see that [] A and Vx|[x] A are interpreted in the same manner.

First, we add [] as a basic symbol to the language of DQ. Formulas of the extended
language are defined as before, plus

- {1A isaformulaif A isaformula
As usual, <> A is defined as an abbreviation for — [} —A. Thus, the formulas of

propositional Q are just those where neither deterministic modal operators nor quantifiers
occur. Now the set of accessibility functions S of a DQ-model M can be interpreted as a

relation in the sense that (w,w')e S iff thereis se S such that s(w) =w'"

Hence we are able to define satisfaction as

- M,wsat[] A if forevery w'e W such that (w,w)e S, M,w'sat A
- M,wsat <> A if thereis w'e W such that (w,w)e S and M,w'sat A
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Fact. The formulas

DA & Vx[x]A
<>A & dx[x]A

are valid in extended DQ-models.

An accessibility relation R of a Kripke model of Q must be serial, i.e. for every we W

there is some w'e W such that w R w' ([Hughes & Cresswell 86]). Hence there can be
defined a set of total functions S forming a partition of R, in the sense that

R = {(w,w’):thereis se S such that w’ =s(w) },

and converse, and there is equivalence with respect to satisfaction between the traditional
Kripke models of Q and the models of DQ. Consequently we have the following fact,

Fact. Let A a formula of propositional modal logic Q. A is satisfiable in a Kripke model
with serial accessibility relation iff A is DQ-satisfiable.

Now we may define a translation transg of strictly ordered formulas of DQ to formulas of
propositional Q as follows.

- trans3(p) = p forevery pe PROP

- transz(— A) = - trans3(A)

- trans3(AAB) = trans3( A) A trans3(B)
- transg( VX [X] A) =[] trans3( A)

- transy (Ix{x] A) = <>trans3(A)

Thus, the translation transz consists inreplacing ¥x[x] by [] and 3Ix [x] by <.

trans3-Lemma. Let A astrongly ordered formula of DQ. Then A > trans3(A) is valid in

extended DQ-models.
Proof. The proof is obtained by induction on the number of steps done in the translation,

using the fact that [JA & Vx[x] A and <> A <« Ix[x] A are valid.

For example, ¥x [x] (p A 3y [y]q) istranslatedto [](pA<>q).

Decidability Theorem. Let A an ordered formula of first-order logic. Then A can be
translated into a formula D of propositional modal logic Q such that A is satisfiable in
first-order logic iff D is satisfiable in Q.

Proof.1et A an ordered first-order formula. Let B = trans{(A). By the trans;-Lemma of

section 3 and the fact of section 4, B is an ordered DQ-formula such that A is satisfiable in
first-order logic iff B is satisfiable in DQ. Let C = transy(B). By the wansy-Lemma of

section 4, C is a strongly ordered formula of DQ such that B is equivalent to C. Now by
the previous trans3-Lemma, C is is satisfiable in DQ iff trans3(C) is is satisfiable in Q.
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CONCLUSION

In this note, we have proven the decidability of ordered formulas of first-order logic. Our
method to decide whether a given ordered formula A is satisfiable can be summarized as
follows: First translate A into a formula B of deterministic modal logic DQ. Second,
transform B into a strongly ordered formula C of DQ. Third, translate C into a formula
D of propositional modal logic Q. Finally, apply to D some decision procedure for Q.
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