
1

Knowledge Base Repair:

From Active Integrity Constraints

to Active TBoxes

Andreas Herzig
(joint work with Guillaume Feuillade and Christos Rantsoudis)

DL&NMR workshops, Rhodes & AoE

12 September 2020

2

Introduction

Outline

1 Introduction

2 Active Integrity Constraints: revisiting the basics

3 Active Integrity Constraints: existing semantics

4 A Dynamic Logic account of AICs

5 Extending the dynamic logic account to ECA rules

6 From databases to description logic KBs

3

Introduction

Databases and integrity constraints

Integrity constraints (IC): fundamental part of a database schema

ideally: DB |= C

in practice: DB 6|= C often happens

C = (∀x)[Bachelor(x) ∧ Married(x)→ ⊥]
DB0 = {Bachelor(John)}

⇓ +Married(John)

DB = {Bachelor(John), Married(John)}

•DB1

DB• C

•DB0+Married(John)

ee

4

Introduction

Repairs

Two solutions

1 make DB consistent again

repair (‘data cleaning’)

2 live with inconsistent DB

hypothetical repair: ‘consistent query answering’
consistent answer holds in all possible repairs

possible repairs of DB = {Bachelor(John), Married(John)}:

DB1 = {Bachelor(John)}
DB2 = {Married(John)}
DB3 = {Bachelor(John), Bachelor(Jim)}

. . .all do the job: DBi |= C

. . . but there are too many

. . . and some are not intended

5

Introduction

Repairs: minimal change

•DB1 •DB3

DB•
repair1 //

repair2 11

•DB2 C

•DB0+Married(John)

ee

Minimal repair = a DB′ closest to DB such that DB′ |= C

intuitively DB3 = {Bachelor(John), Bachelor(Jim)}
less close to DB than DB1 and DB2

which definition of closeness?

symmetric difference
cf. Possible Models Approach PMA [Winslett, AAAI 1988]
PMA repairs; bring about PMA updates

6

Introduction

Repairs: minimal change is not enough

number of PMA repairs can still be huge

typically some of them are unintended

PMA repairs of DB = {Bachelor(John), Married(John)}:

DB1 = {Bachelor(John)}
DB2 = {Married(John)}

both are set inclusion minimal
DB1 unintended

can we do better by making C more informative?

7

Introduction

More informed integrity constraints

Active Integrity Constraints (AIC) [Flesca et al., PPDP 2004]

active IC = static IC + update actions

Static : (∀x)[Bachelor(x) ∧ Married(x)→ ⊥]
Active : (∀x)[Bachelor(x) ∧ Married(x)→ ⊥, {−Bachelor(x)}]

Intuitions

“an extension of integrity constraints that allows to specify for
each constraint the actions to be performed to satisfy it”
[Flesca et al., PPDP 2004]

“an AIC encodes explicitly both an integrity constraint and
preferred basic actions to repair it, if it is violated”
[Caroprese&Truszczynski, TPLP 2011]

8

Introduction

Active Integrity Constraints: predecessors

History

1 active databases [Ceri&Widow, 1994]

More general ECA (event-condition-action) rules:

“if event occurs and condition holds then do action”

procedural

repair may not terminate

2 database repair constraints [Greco et al., TKDE 2003]

subsumed [Caroprese et al., 2006]

3 revision programs [Marek&Truszczyński, TCS 1998]

logic programs

semantics differ, but are close [Caroprese&Truszczyński, TPLP

2011]

9

Introduction

Aims of talk

1 Revisit intuitions and semantics
2 Dynamic Logic analysis of AICs

similar in spirit: Kiringa’s logical account of ECA rules in the
Sitcalc [Kiringa, LICS 2001; Kiringa&Reiter 2003]

3 Transfer to description logics

define active TBoxes
extend ALC by dynamic operators

10

Active Integrity Constraints: revisiting the basics

Outline

1 Introduction

2 Active Integrity Constraints: revisiting the basics

3 Active Integrity Constraints: existing semantics

4 A Dynamic Logic account of AICs

5 Extending the dynamic logic account to ECA rules

6 From databases to description logic KBs

11

Active Integrity Constraints: revisiting the basics

Basic notations

propositional logic

hypothesis: everything is grounded

propositional variables P={p, q . . .}

databases are sets of propositional variables DB ⊆ P

static integrity constraints are sets of literals (clauses) C

update actions are assignments α = +p and α = −p
consistent set of update actions U: not (+p ∈ U and −p ∈ U)

update of DB by U:

DB ◦ U =
(
DB \ {p : −p ∈ U}

)
∪ {p : +p ∈ U}

if U is consistent: order of application irrelevant

12

Active Integrity Constraints: revisiting the basics

Active Integrity Constraints: syntax

r = 〈C(r),R(r)〉

C(r) is a clause (a set of literals)

R(r) is a set of update actions making some literals of C(r)

true:

R(r) ⊆ {+p : p ∈ C(r)} ∪ {−p : ¬p ∈ C(r)}

〈¬Bachelor ∨ ¬Married, {−Bachelor}〉

database DB + finite sets of AICs η = {r1, . . . , rn}

13

Active Integrity Constraints: revisiting the basics

Active Integrity Constraints: which semantics?

Various semantics

repairs tout court, alias PMA repairs (v.s.)

founded repairs [Caroprese et al., ICLP 2006]

justified repairs [Caroprese&Truszczynski, TPLP 2011]

well-founded repairs [Cruz Felipe et al., TASE 2013]

dynamic repairs [Feuillade&Herzig, JELIA 2013]

grounded repairs [Bogaerts&Cruz Felipe, AIJ 2018]

. . . and each in several versions

drop minimality requirement =⇒ weak versions

for PMA repairs: makes updates drastic

minimise exceptions

preferred update actions are soft constraints, can be violated
if static part of η consistent then repair exists

14

Active Integrity Constraints: revisiting the basics

Active Integrity Constraints: different intuitions

Permission vs. obligation

when C(r) is violated:

1 permission that the repair contains some α ∈ R(r)
. . . but C(r) might as well be repaired by other AICs

“If DB 6|= C(r), then DB is inconsistent. It is allowed to repair
this inconsistency by executing one or more of the αi ∈ R(r).”
[Bogaerts&Cruz Felipe, AIJ 2018; notation adapted]

2 obligation that the repair contains some α ∈ R(r)

“If r ∈ η and, for every non-updatable literal in ` ∈ C(η) there
is an update action −` ∈ U then [. . .] the result of the update
DB ◦ U satisfies all nonupdatable literals in C(r). To guarantee
that DB ◦ U satisfies r, DB ◦ U must satisfy at least one literal in
C(r). To this end U must contain at least one update action
from R(r).” [Caroprese&Truszczynski, TPLP 2011; notation
adapted]

15

Active Integrity Constraints: revisiting the basics

Active Integrity Constraints: different intuitions, ctd.

Permission vs. obligation: consequences

when C(r) is violated . . .
1 ‘permission’ reading:

〈p ∨ q, {+p,+q}〉 equivalent to

{
〈p ∨ q, {+p}〉
〈p ∨ q, {+q}〉

=⇒ all R(r) singletons (“η normalised”)
2 ‘obligation’ reading:

η cannot be normalised
computation is a priori more local than ‘permission’ reading:
‘ if C(r) violated then repair via R(r) regardless of other AICs’

. . . but what does “C(r) is violated” mean? Just “DB 6|= C(r)”?

16

Active Integrity Constraints: revisiting the basics

Active Integrity Constraints: sharpening intuitions
by means of abstract examples (1)

Example: one violation, no interaction

DB = ∅ and η =
{
〈p ∨ q, {+p,+q}〉,
〈q ∨ ¬r, {+q}〉

}
repairs are U1 = {+p} and U2 = {+q}
if DB 6|= C(r) and for all other r′, DB |= C(r′) and C(r′) does
not interact with C(r), (resolution rule doesn’t apply)

then the repairs are just the update actions in R(r):

Ui = {αi} for αi ∈ R(r)

17

Active Integrity Constraints: revisiting the basics

Active Integrity Constraints: sharpening intuitions
by means of abstract examples (2)

Example: one violation, with interaction

DB = ∅ and η =
{
〈p, {+p}〉,
〈¬p ∨ q ∨ r, {+q}〉

}
repair is U = {+p,+q} (and not: {+p,+r}

¬p ∨ q ∨ r is not violated by DB, but after update by +p!

hence DB 6|= C(r) not enough a criterion

in general: membership in U may have to be hypothesised

problem: circularity of support (v.i.)

up to now: no difference between permitted and obligatory reading

18

Active Integrity Constraints: revisiting the basics

Active Integrity Constraints: sharpening intuitions
by means of abstract examples (3)

Example: two violations, no interaction

DB = ∅ and η =
{
〈p ∨ q, {+p}〉,
〈p ∨ q, {+q}〉

}
different readings lead to different intuitions!

‘permission’: repairs are U1 = {+p} and U2 = {+q}
‘obligation”: repair is U = {+p,+q}

U is not minimal =⇒ not a PMA repair!
active part of η badly designed?

19

Active Integrity Constraints: revisiting the basics

Active Integrity Constraints: sharpening intuitions
by means of abstract examples (4)

Example: two violations, no interaction

DB = ∅ and η =
{
〈p, {+p}〉,
〈p ∨ q, {+q}〉

}
different readings lead to different intuitions!

1 ‘permission’: repair is U = {+p}
({+p,+q} not minimal)

2 ‘obligation”: repair is U′ = {+p,+q}
not a PMA repair!
active part of η badly designed?

20

Active Integrity Constraints: revisiting the basics

Active Integrity Constraints: sharpening intuitions
by means of abstract examples (5)

Example: one violation, with interaction

DB = ∅ and η =
{
〈p ∨ q, {+p}〉,
〈p ∨ ¬q, {+p}〉,
〈¬p ∨ q, {+q}〉

}
intuitions differ

1 “circularity of support” =⇒ should have no repair
[Caroprese&Truszczynski, TPLP 2011]

2 we: repair should be U = {+p,+q}
reason: extensionality principle applies to first two AICs

static part equivalent to p
dynamic parts identical

=⇒ first two AICs equivalent to 〈p, {+p}〉
=⇒ cf. previous example

21

Active Integrity Constraints: revisiting the basics

Active Integrity Constraints: summary of intuitions

1 permission reading and obligation reading come with different
intuitions

obligations more local =⇒ should lead to a simpler account

2 obligation reading often leads to non-minimal repairs

may indicate flawed choices of update actions for some AICs

3 a new principle: extensionality

more general identity criteria for sets of AICs?
other postulates? cf. belief revision&update literature

22

Active Integrity Constraints: existing semantics

Outline

1 Introduction

2 Active Integrity Constraints: revisiting the basics

3 Active Integrity Constraints: existing semantics

4 A Dynamic Logic account of AICs

5 Extending the dynamic logic account to ECA rules

6 From databases to description logic KBs

23

Active Integrity Constraints: existing semantics

Well-founded Repairs [Bogaerts&Cruz Felipe, AIJ 2018]

Idea

choose violated AIC r ∈ η (i.e., C(r) not satisfied)

update by one of the actions in the active part R(r)

iterate until no more violation

Definition

PMA repair U for DB w.r.t. η is well-founded if

U = {α1, . . . , αn} (for some ordering) such that

for every αi there is an AIC ri ∈ η with

DB ◦ {α1, . . . , αi−1} 6|= C(ri) (ri is violated)

αi ∈ R(ri)

compatible with permission reading and with obligation reading

24

Active Integrity Constraints: existing semantics

Founded Repairs [Caroprese et al., ICLP 2006]

Idea

update actions α ∈ U should be supported by some active

constraint r

r would be violated without α

Definition

PMA repair U for DB w.r.t. η is founded if

for every α ∈ U there is an AIC r ∈ η such that

α ∈ R(r) and

DB ◦ (U \ {α}) 6|= C(r)

permission reading (definition checks that every α ∈ U is

permitted)

25

Active Integrity Constraints: existing semantics

Founded Repairs: examples (ctd.)

Example [Cruz Felipe et al., 2013]

DB = ∅ and η =
{
〈¬p ∨ q, {+p}〉,

〈p ∨ ¬q, {+q}〉,

〈¬p ∨ r, {+r}〉,

〈¬q ∨ r, {+r}〉
}

two founded repairs:

U1 = {+r}
U2 = {+p,+q} (“circularity of support”)

reason: there could be U′ ⊂ U \ {α} with DB ◦ U′ |= C(r)!

26

Active Integrity Constraints: existing semantics

Grounded Repairs [Bogaert&Cruz Felipe, AIJ 2018]

Idea

generalises negative condition of foundedness

DB ◦ (U \ {α}) 6|= C(r)

hypothesis: all R(r) are singletons (‘all AICs are normal’)

Definition

PMA repair U of DB w.r.t. η is grounded if

for every U′ ⊂ U there is a r ∈ η such that

R(r) ∩ (U \ U′) 6= ∅ and

DB ◦ U′ 6|= C(r)

Properties

all grounded repairs are well-founded, founded, minimal

27

Active Integrity Constraints: existing semantics

Justified repairs [Caroprese&Truszczynski, TPLP 2011]

Definitions

non-effect actions w.r.t. DB and U:

neffDB(U) = {α : DB ◦ α = DB and (DB ◦ U) ◦ α = DB ◦ U}

non-updatable literals of r:

nup(r) = {p ∈ C(r) : +p /∈ R(r)} ∪
{¬p ∈ C(r) : −p /∈ R(r)}

U is closed under η if for each r ∈ η,

if −p ∈ U for every p ∈ nup(r)
and +p ∈ U for every ¬p ∈ nup(r) (r must be triggered)

then R(r) ∩ U 6= ∅
U is a justified action set if it is a minimal superset of
neffDB(U) closed under η

PMA repair U of DB w.r.t. η is justified if
U ∪ neffDB(U) is a justified action set

28

Active Integrity Constraints: existing semantics

Justified repairs

Properties

no normalisation of active part
=⇒ indicates obligation reading

29

Active Integrity Constraints: existing semantics

Outline

1 Introduction

2 Active Integrity Constraints: revisiting the basics

3 Active Integrity Constraints: existing semantics

4 A Dynamic Logic account of AICs

5 Extending the dynamic logic account to ECA rules

6 From databases to description logic KBs

30

A Dynamic Logic account of AICs

Outline

1 Introduction

2 Active Integrity Constraints: revisiting the basics

3 Active Integrity Constraints: existing semantics

4 A Dynamic Logic account of AICs

5 Extending the dynamic logic account to ECA rules

6 From databases to description logic KBs

31

A Dynamic Logic account of AICs

Background: DL-PA

Dynamic Logic of Propositional Assignments [Balbiani et al., 2013]

PDL atomic programs =⇒ atomic assignments +p, −p
formulas:

〈π〉ϕ: “there is an execution of π after which ϕ”

programs:

+p, −p: assignments

π1;π2: sequential composition

π1 ∪ π2: nondeterministic composition

π∗: finite iteration (‘Kleene star’)

πc: converse

ϕ?: test

captures standard programming constructions:

while ϕ do π
def
= (ϕ?;π)∗;¬ϕ?

32

A Dynamic Logic account of AICs

Background: semantics and properties of DL-PA

Semantics

based on classical valuations DB

no Kripke models needed

Kleene star can be eliminated (not possible in PDL)

〈π∗〉ϕ↔ 〈π≤2card(Pπ)〉ϕ

consequence: all dynamic operators can be eliminated

PDL vs. DL-PA: complexity of decision problems

PDL DL-PA

Model checking PTIME-complete PSPACE-complete

Satisfiability EXPTIME-complete PSPACE-complete

33

A Dynamic Logic account of AICs

Repairs in DL-PA

AICs as programs

for active constraint r = 〈C(r),R(r)〉:

πr = ¬C(r) ? ;
⋃

α∈R(r)

α

Founded and justified repairs

encoded as DL-PA programs [Feuillade et al., FI 2019]

copy propositional variables when checking minimality

Definition [Feuillade et al., FI 2019]

PMA repair U of DB w.r.t. η is a dynamic repair if:

〈DB, DB ◦ U〉 ∈
∣∣∣∣∣∣while ¬

(∧
r∈η

C(r)

)
do
(⋃
r∈η

πr

)∣∣∣∣∣∣

34

A Dynamic Logic account of AICs

Dynamic repairs

Properties

obligation reading

generalises well-founded repairs

repairs more [Feuillade et al., FI 2019]

deciding the existence of a dynamic repair is

PSPACE-complete

Example

DB = ∅ and η =
{
〈p∨q, {+p}〉, 〈¬p∨q, {+q}〉

}
{+p,+q} is dynamic weak repair (also well-founded)

no dynamic repair: minimal repair is {+q}

bad design? (v.s.)

35

A Dynamic Logic account of AICs

Reasoning about repairs in DL-PA

Reasoning tasks

prove properties in the logic (instead of in the metalanguage)

Let ‘repair’ denote any of the repair programs

set of candidate repaired databases?

=⇒ interpretation of the formula 〈repairc〉ϕDB

is it possible at all to repair DB?

=⇒ model check: DB |= 〈repair〉>?

is there a unique repair of DB?

=⇒ model check: {DB′ : 〈DB, DB′〉 ∈ ||repair||} singleton?

can η repair any database?

=⇒ validity check: |= 〈repair〉>?

. . .

36

Extending the dynamic logic account to ECA rules

Outline

1 Introduction

2 Active Integrity Constraints: revisiting the basics

3 Active Integrity Constraints: existing semantics

4 A Dynamic Logic account of AICs

5 Extending the dynamic logic account to ECA rules

6 From databases to description logic KBs

37

Extending the dynamic logic account to ECA rules

Event-Condition-Action (ECA) rules

Event-condition-action (ECA) rules

when an event occurs

and the condition is satisfied

then some action is triggered

ECA rules too expressive for a logical analysis?

much studied in databases [Ceri et al., ACM TDS 1994;
Widom&Ceri, 1996; Chomicki&Marcinkowski, IC 2005,. . .]

termination problems

procedural semantics only; no declarative semantics

“their lack of declarative semantics makes it difficult to
understand the behavior of multiple ECAs acting together and
to evaluate rule-processing algorithms in a principled way”
[Cruz Filipe, 2016]

AIC = ECA minus events

38

Extending the dynamic logic account to ECA rules

Adding event conditions to AICs: syntax

Event-condition-action rules

r = 〈E(r),C(r),R(r)〉

〈C(r),R(r)〉 is an AIC

E(r) is a boolean formula built from assignments

partial description of last update actions

Example: functionality constraint & priority to the input

ηemp =
{
〈+empe,d1 ,¬empe,d1 ∨ ¬empe,d2 , {−empe,d2}〉,
〈+empe,d2 ,¬empe,d1 ∨ ¬empe,d2 , {−empe,d1}〉

}

39

Extending the dynamic logic account to ECA rules

Adding event conditions to AICs: syntax (ctd.)

Example, ctd.

every manager of a project carried out by a department must

be an employee of that department

if e just became manager of project p or if p was just assigned

to d1 then e should become a member of d1

if e has just been removed from d1 then the project should

either be removed from d1, too, or should get a new manager

η = ηemp ∪{
〈+mgre,p ∨+prjp,d1 ,¬mgre,p ∨ ¬prjp,d1 ∨ empe,d1 , {+empe,d1}〉,

〈−empe,d1 , ¬mgre,p ∨ ¬prjp,d1 ∨ empe,d1 , {−mgre,p,−prjp,d1}〉
}

when last update +mgre,p then repair by {+empe,d1 ,−empe,d1}

40

Extending the dynamic logic account to ECA rules

Adding event conditions to AICs: models

Adding immediate past events

model M = 〈DB,E〉

DB ⊆ P database

E ⊆ {+p : p ∈ P} ∪ {−p : p ∈ P} set of update actions

consistent with DB:

if +p ∈ E then p ∈ DB

if −p ∈ E then p /∈ DB

semantics

〈DB,E〉 |= p if p ∈ DB

〈DB,E〉 |= +p if +p ∈ E

〈DB,E〉 |= −p if −p ∈ E

41

Extending the dynamic logic account to ECA rules

Well-founded repairs with immediate past

Definition

PMA repair U for 〈DB,E〉 w.r.t. η is well-founded if

U = {α1, . . . , αn} (for some ordering) such that

for every αi there is an ECA rule ri ∈ η with

〈DB ◦ {α1, . . . , αi−1},E ∪ {α1, . . . , αi−1}〉 |= E(ri)

〈DB ◦ {α1, . . . , αi−1},E ∪ {α1, . . . , αi−1}〉 6|= C(ri)

αi ∈ R(ri)

Example, ctd.

well-founded repair of 〈{prjp,d1 , empe,d2}, {+mgre,p}〉:

U = {+empe,d2 ,−empe,d1}

can be captured in DL-PA

42

From databases to description logic KBs

Outline

1 Introduction

2 Active Integrity Constraints: revisiting the basics

3 Active Integrity Constraints: existing semantics

4 A Dynamic Logic account of AICs

5 Extending the dynamic logic account to ECA rules

6 From databases to description logic KBs

43

From databases to description logic KBs

From DBs to description logic KBs

DL knowledge bases

knowledge base KB = TBox ∪ ABox

TBox: non-contingent =⇒ typically stable in time

ABox: contingent =⇒ typically changes more frequently

ideally: TBox ∪ ABox 6|= ⊥
(and not: ABox |= TBox as in databases)

typically caused by changes to ABox

active TBoxes should play the role of AICs

44

From databases to description logic KBs

From DBs to description logic KBs

Repairs of inconsistent KBs in the DL literature

remove axioms [Schlobach&Cornet, 2003]

weaken axioms [Troquard et al., 2018]

main methods: axiom pinpointing, justifications, hitting set,
weakening of axioms

usually no preference between possible repairs considered

Can we import the idea of active constraints?

45

From databases to description logic KBs

A simple example

Example TBox

T = {Father v Male u Parent,

OnlyChild v ∀hasSibling.⊥}

An ABox inconsistent with T

A = {John :Male u Father u ¬Parent,
Mary :OnlyChild,

hasSibling(Mary, John)}

46

From databases to description logic KBs

A simple example

An enhanced TBox extending T

aT1 =
{
〈Father v Male u Parent, {+Male,+Parent}〉,
〈OnlyChild v ∀hasSibling.⊥, {−OnlyChild}〉

}
A repaired ABox consistent with aT

A1 = {John :Male u Father u Parent,

Mary :¬OnlyChild,
hasSibling(Mary, John)}

47

From databases to description logic KBs

A simple example

An enhanced TBox extending T

aT2 =
{
〈Father v Male u Parent, {−Father}〉,
〈OnlyChild v ∀hasSibling.⊥, {−hasSibling.>}〉

}
A repaired ABox consistent with aT

A2 = {John :Male u ¬Father u ¬Parent,
Mary : OnlyChild}

48

From databases to description logic KBs

Repairs based on dynamic TBoxes

Challenges

1 ABoxes have concept constructors & complex concepts
=⇒ ‘atomic’ update actions usually insufficient

2 closed world semantics vs. open world semantics
=⇒ satisfiability checking instead of model checking

3 removing vs. forgetting concepts
=⇒ choice

Proposals

[Rantsoudis et al., DL 2017]: syntactic approach

[Feuillade et al., DL 2018]: semantic approach

logic dynALCO
[Rantsoudis, PhD 2018]

49

From databases to description logic KBs

In summary

reexamined intuitions behind active integrity constraints

permission vs. obligation to choose update action

obligation reading deserves more investigation

principle of extensionality

surveyed AICs via dynamic logic

introduction of dynamic repairs

captured trigger events =⇒ ECA rules

sketched repairs based on active TBoxes

Looking ahead

good postulates for database repair?

better complexity results for repairs based on active TBoxes?

application to defeasible DLs

50

From databases to description logic KBs

Thank You!

	Introduction
	Active Integrity Constraints: revisiting the basics
	Active Integrity Constraints: existing semantics
	A Dynamic Logic account of AICs
	Extending the dynamic logic account to ECA rules
	From databases to description logic KBs

