Cooperative interpersonal communication and relevant information

Stéphanie Roussel, Laurence Cholvy
ONERA, Centre de Toulouse,
stephanie.roussel@onera.fr, laurence.cholvy@onera.fr

20 juillet 2009, ESSLLI
LMSC Workshop
Outline

1 Cooperativity
 - Example
 - Definition

2 Relevance
 - Formal definition
 - Properties
 - Hierarchy

3 Back to cooperativity

4 Conclusion and perspectives
Example

Agent *a*

\[\text{late?} \]
\[\text{incident } \rightarrow \text{late} \]

Agent *b*

\[\text{late?} \]
\[\neg \text{incident } \rightarrow \neg \text{late} \]

Agent *c*

\[\text{incident} \]
\[\text{rain} \]
Example

Agent a

Late?

incident → late

Agent b

Late?

¬incident → ¬late

Agent c

incident

rain
Example

Agent a
late?
incident → late

Agent b
late?
¬incident → ¬late

Agent c
incident
rain

Cooperative interpersonal communication and relevant information
Example

Agent a

late?

incident → late

Agent b

late?

¬incident → ¬late

Agent c

incident

rain
Example

Agent a

$late?$

$incident \rightarrow late$

Agent b

$late?$

$\neg incident \rightarrow \neg late$

Agent c

$incident$

$incident$

$rain$
Example

Agent a

late?
incident → late

Agent b

late?
¬incident → ¬late

Agent c

incident
rain

Cooperative interpersonal communication and relevant information
Example

Agent a

\[\text{late?} \quad \text{incident} \rightarrow \text{late}\]

Agent b

\[\text{late?} \quad \neg \text{incident} \rightarrow \neg \text{late}\]

Agent c

\[\text{incident} \quad \text{rain} \quad \text{rain} \]
Example

Agent a

late?

incident → late

Agent b

late?

¬incident → ¬late

Agent c

incident

rain

rain

Cooperative interpersonal communication and relevant information
Example

Agent a

late?

incident \rightarrow late

Agent b

late?

\negincident \rightarrow \neglate

Agent c

incident

rain

incident \land rain

Cooperative interpersonal communication and relevant information
Example

Agent a
\(\text{late?} \)
\(\text{incident} \rightarrow \text{late} \)

Agent c
\(\text{incident} \)
\(\text{rain} \)

Agent b
\(\text{late?} \)
\(\neg \text{incident} \rightarrow \neg \text{late} \)

Cooperative interpersonal communication and relevant information
Example

Agent a
late?
incident → late

Agent b
late?
¬incident → ¬late

Agent c
incident
rain
Example

Agent a

\(\text{late?} \)

\(\text{incident} \rightarrow \text{late} \)

Agent b

\(\text{late?} \)

\(\neg \text{incident} \rightarrow \neg \text{late} \)

Agent c

\(\text{incident} \)

\(\text{rain} \)
Example

Agent a

late?

incident \rightarrow late

Agent b

latest?

\negincident \rightarrow \neglate

Agent c

incident

rain
Example

Agent a

late?
incident → late

Agent b

late?
¬incident → ¬late

Agent c

incident
rain

Cooperative interpersonal communication and relevant information
Example

Agent a

late?

incident \rightarrow \text{late}

Agent b

late?

\neg \text{incident} \rightarrow \neg\text{late}

Agent c

\text{incident}

\text{rain}

\neg \text{incident}
Agent a

$late$?

$incident \rightarrow late$

Agent c

$incident$

$rain$

Agent b

$late$?

$\neg incident \rightarrow \neg late$

$\neg incident$
Definition for cooperativity

Intuitively, agent c is **cooperative with regard to agent a** if and only if for all piece of information φ :
Definition for cooperativity

Intuitively, agent c is **cooperative with regard to agent** a if and only if for all piece of information φ:

If

- agent c believes that agent a has some information need Q
- agent c believes that agent a can deduce from φ something about Q
- agent c believes that φ does not contain elements disconnected with Q for agent a
- agent c believes that φ is true

Then agent c informs agent a about φ
Definition for cooperativity

Intuitively, agent c is **cooperative with regard to agent** a if and only if for all piece of information φ:

If

- agent c believes that agent a has some information need Q
- agent c believes that agent a can deduce from φ something about Q
- agent c believes that φ does not contain elements disconnected with Q for agent a
- agent c believes that φ is true

Then agent c informs agent a about φ

AND

agent c does not inform a about any φ that does not satisfy all those conditions.
Intuitively, agent c is **cooperative with regard to agent** a if and only if for all piece of information φ:

If

- agent c believes that agent a has some information need Q
- agent c believes that agent a can deduce from φ something about Q
- agent c believes that φ does not contain elements disconnected with Q for agent a
- agent c believes that φ is true

Then agent c informs agent a about φ

AND

agent c does not inform a about any φ that does not satisfy all those conditions.
Definition for cooperativity

Intuitively, agent \(c \) is \textbf{cooperative with regard to agent} \(a \) if and only if for all piece of information \(\varphi \):

If \textbf{agent} \(c \) \textbf{believes} that

- \(a \) has some information need \(Q \)
- \(a \) can deduce from \(\varphi \) something about \(Q \)
- \(\varphi \) does not contain elements disconnected with \(Q \) for \(a \)
- \(\varphi \) is true

Then \textbf{agent} \(c \) informs \textbf{agent} \(a \) about \(\varphi \)

AND

\(a \) does not inform \(c \) about any \(\varphi \) that does not satisfy all those conditions.
Definitions for cooperativity

Intuitively, agent c is **cooperative with regard to agent** a if and only if for all piece of information φ:
agent c believes that φ is relevant for a concerning some Q
AND
agent c does not inform a about any φ that does not satisfy this conditions.
Outline

1 Cooperativity

2 Relevance
 - Formal definition
 - Properties
 - Hierarchy

3 Back to cooperativity

4 Conclusion and perspectives
Let a be an agent, Q an objective formula, φ a formula. We say that φ is relevant for agent a concerning Q iff the following formula, denoted $R^Q_a \varphi$, is true:

$$I_a(B_a Q \lor B_a \neg Q) \land \varphi \land (B_a(\varphi \rightarrow Q) \otimes B_a(\varphi \rightarrow \neg Q))$$

- Information need: agent a wants to know whether Q or $\neg Q$
- Piece of information truth value: the piece of information φ must be true
- Agent’s beliefs base: agent a believes that $\varphi \rightarrow Q$ or that $\varphi \rightarrow \neg Q$
Let a be an agent, Q an objective formula, φ a formula. We say that φ is relevant for agent a concerning Q iff the following formula, denoted $R^Q_a \varphi$, is true:

$$l_a(B_a Q \lor B_a \neg Q) \land \varphi \land (B_a (\varphi \rightarrow Q) \otimes B_a (\varphi \rightarrow \neg Q))$$

- **Information need**: agent a wants to know whether Q or $\neg Q$
- **Piece of information truth value**: the piece of information φ must be true
- **Agent’s beliefs base**: agent a believes that $\varphi \rightarrow Q$ or that $\varphi \rightarrow \neg Q$
Let \(a \) be an agent, \(Q \) an objective formula, \(\varphi \) a formula. We say that \(\varphi \) is relevant for agent \(a \) concerning \(Q \) iff the following formula, denoted \(R_a^{Q} \varphi \), is true:

\[
I_a (B_a Q \lor B_a \neg Q) \land \varphi \land (B_a (\varphi \rightarrow Q) \otimes B_a (\varphi \rightarrow \neg Q))
\]

- **Information need**: agent \(a \) wants to know whether \(Q \) or \(\neg Q \)
- **Piece of information truth value**: the piece of information \(\varphi \) must be true
- **Agent’s beliefs base**: agent \(a \) believes that \(\varphi \rightarrow Q \) or that \(\varphi \rightarrow \neg Q \)
Relevance

Let a be an agent, Q an objective formula, φ a formula. We say that φ is relevant for agent a concerning Q iff the following formula, denoted $R^Q_a \varphi$, is true:

$$I_a(B_a Q \lor B_a \neg Q) \land \varphi \land (B_a(\varphi \rightarrow Q) \otimes B_a(\varphi \rightarrow \neg Q))$$

- **Information need**: agent a wants to know whether Q or $\neg Q$
- **Piece of information truth value**: the piece of information φ must be true
- **Agent’s beliefs base**: agent a believes that $\varphi \rightarrow Q$ or that $\varphi \rightarrow \neg Q$
A few properties

Proposition 1

\[R^Q_a \varphi \rightarrow \neg B_a \varphi \land B_a \neg \varphi \]

If \(\varphi \) is a relevant piece of information for agent \(a \), then she does not know neither \(\varphi \) nor \(\neg \varphi \).

Proposition 2

- \(I_a (B_a Q \lor B_a \neg Q) \rightarrow R^Q_a Q \lor R^Q_a \neg Q \)
- \((Q_1 \leftrightarrow Q_2) \rightarrow (R^Q_{a_1} \varphi \leftrightarrow R^Q_{a_2} \varphi) \)
- \(R^Q_a \varphi \rightarrow \neg R^Q_a \neg \varphi \)
- \(\neg (\varphi_1 \land \varphi_2) \rightarrow \neg (R^Q_{a_1} \varphi_1 \land R^Q_{a_2} \varphi_2) \)
A few properties

Proposition 1

\[R_a^Q \varphi \rightarrow \neg B_a \varphi \land B_a \neg \varphi \]

If φ is a relevant piece of information for agent a, then she does not know neither φ nor $\neg \varphi$.

Proposition 2

1. $l_a(B_a Q \lor B_a \neg Q) \rightarrow R_a^Q Q \mathrm{ xor } R_a^Q \neg Q$
2. $(Q_1 \leftrightarrow Q_2) \rightarrow (R_a^{Q_1} \varphi \leftrightarrow R_a^{Q_2} \varphi)$
3. $R_a^Q \varphi \rightarrow \neg R_a^Q \neg \varphi$
4. $\neg (\varphi_1 \land \varphi_2) \rightarrow \neg (R_a^{Q_1} \varphi_1 \land R_a^{Q_2} \varphi_2)$
A few properties

Proposition 4

\[R_a^Q \varphi \rightarrow \neg B_a R_a^Q \varphi \]

If \(\varphi \) is a relevant piece of information, then agent \(a \) does not believe it.

Proposition 5

\[B_a(\varphi_1, \varphi_2/Q) \rightarrow (\varphi_2 \land R_a^Q \varphi_1 \rightarrow R_a^Q (\varphi_1 \land \varphi_2)) \]

et

\[B_a(\varphi_1, \varphi_2/Q) \rightarrow (R_a^Q \varphi_1 \land R_a^Q \varphi_2 \rightarrow R_a^Q (\varphi_1 \lor \varphi_2)) \]

Too many pieces of information are relevant \(\Rightarrow \) We can define a hierarchy on relevant pieces of information, that means a characterization of most relevant pieces of information.
A few properties

Proposition 4

\[R_Q^a \varphi \rightarrow \neg B_a R_Q^a \varphi \]

If \(\varphi \) is a relevant piece of information, then agent \(a \) does not believe it.

Proposition 5

\[B_a(\varphi_1, \varphi_2/Q) \rightarrow (\varphi_2 \land R_Q^a \varphi_1 \rightarrow R_Q^a (\varphi_1 \land \varphi_2)) \]

et

\[B_a(\varphi_1, \varphi_2/Q) \rightarrow (R_Q^a \varphi_1 \land R_Q^a \varphi_2 \rightarrow R_Q^a (\varphi_1 \lor \varphi_2)) \]

Too many pieces of information are relevant \(\Rightarrow \) We can define a hierarchy on relevant pieces of information, that means a characterization of most relevant pieces of information.
Minimal explanation

Definition: Explanation

Let Δ be a set of objective formulae and α and β two objective formulae.

β is an explanation of α if and only if $\vdash B\Delta \rightarrow B(\beta \rightarrow \alpha)$ and $\not\vdash B\Delta \rightarrow B(\neg \beta)$.

Intuition: Minimal explanation

- for cubes: α is a minimal explanation of β iff there is no other explanation α' of β such that $\alpha \rightarrow \alpha'$ and $\alpha \not\rightarrow \alpha'$ (prime implicants)
- for clauses: α is a minimal explanation of β iff there is no other explanation α' of β such that $\alpha' \rightarrow \alpha$ and $\alpha' \not\rightarrow \alpha$ (maxima for subsumption)
Definition: Explanation

Let Δ be a set of objective formulae and α and β two objective formulae.

β is an explanation of α if and only if $\vdash B\Delta \rightarrow B(\beta \rightarrow \alpha)$ and $\not\vdash B\Delta \rightarrow B(\neg \beta)$.

Intuition: Minimal explanation

- For cubes: α is a minimal explanation of β iff there is no other explanation α' of β such that $\alpha \rightarrow \alpha'$ and $\alpha \nrightarrow \alpha'$ (prime implicants).
- For clauses: α is a minimal explanation of β iff there is no other explanation α' of β such that $\alpha' \rightarrow \alpha$ and $\alpha' \nrightarrow \alpha$ (maxima for subsumption).
Most relevant formulae

Let \mathcal{R}_a^Q be the set of relevant formulae. For all φ in \mathcal{R}_a^Q, we have $B_a(\varphi \rightarrow Q)$ or $B_a(\varphi \rightarrow \neg Q)$ and $\neg B_a(\neg \varphi)$, that means that for all φ in \mathcal{R}_a^Q, φ is an explanation of Q or $\neg Q$.

Definition

Let $\mathcal{R}m_a^Q$ be the subset of \mathcal{R}_a^Q that contains the minimal explanations of Q and $\neg Q$. We will write $\mathcal{R}m_a^Q \varphi$ to express that the formula φ belongs to $\mathcal{R}m_a^Q$.

Example

Let us consider the following set of relevant pieces of information to agent a concerning her request Q:

$\mathcal{R}_a^Q = \{ inc \land rain, inc \lor strike, strike \}$. Then $\mathcal{R}m_a^Q = \{ strike, inc \land rain \}$.
Let \mathcal{R}^Q_a be the set of relevant formulae. For all φ in \mathcal{R}^Q_a, we have $B_a(\varphi \rightarrow Q)$ or $B_a(\varphi \rightarrow \neg Q)$ and $\neg B_a(\neg \varphi)$, that means that for all φ in \mathcal{R}^Q_a, φ is an explanation of Q or $\neg Q$.

Definition

Let $\mathcal{R}^Q_{m_a}$ be the subset of \mathcal{R}^Q_a that contains the minimal explanations of Q and $\neg Q$. We will write $\mathcal{R}^Q_{m_a} \varphi$ to express that the formula φ belongs to $\mathcal{R}^Q_{m_a}$.

Example

Let us consider the following set of relevant pieces of information to agent a concerning her request Q:
$\mathcal{R}^Q_a = \{ \text{inc} \land \text{rain}, \text{inc} \lor \text{strike}, \text{strike} \}$. Then $\mathcal{R}^Q_{m_a} = \{ \text{strike}, \text{inc} \land \text{rain} \}$.
Most relevant formulae

Let \mathcal{R}_a^Q be the set of relevant formulae. For all φ in \mathcal{R}_a^Q, we have $B_a(\varphi \rightarrow Q)$ or $B_a(\varphi \rightarrow \neg Q)$ and $\neg B_a(\neg \varphi)$, that means that for all φ in \mathcal{R}_a^Q, φ is an explanation of Q or $\neg Q$.

Definition

Let $\mathcal{R}_m_a^Q$ be the subset of \mathcal{R}_a^Q that contains the minimal explanations of Q and $\neg Q$. We will write $\mathcal{R}_m_a^Q \varphi$ to express that the formula φ belongs to $\mathcal{R}_m_a^Q$.

Example

Let us consider the following set of relevant pieces of information to agent a concerning her request Q:

$\mathcal{R}_a^Q = \{ inc \land rain, inc \lor strike, strike \}$. Then $\mathcal{R}_m_a^Q = \{ strike, inc \land rain \}$.
Outline

1. Cooperativity
2. Relevance
3. Back to cooperativity
4. Conclusion and perspectives
Intuitively, agent c is **cooperative with regard to agent** a if and only if for all piece of information φ:

- If agent c believes that
 - agent a has some information need Q
 - agent a can deduce from φ something about Q
 - φ does not contain elements disconnected with Q for agent a
 - φ is true

Then agent c informs agent a about φ

AND agent c does not inform a about any φ that does not satisfy all those conditions.
Intuitively, agent c is **cooperative with regard to agent a** if and only if for all piece of information φ:
agent c believes that φ is relevant for a concerning some Q AND agent c does not inform a about any φ that does not satisfy this conditions.
A more formal definition

Let a and c be two agents. The agent c is cooperative with regard to a iff for all formula φ, c informs a about φ if and only if there is a request Q such that c believes that φ is maximal relevant for a concerning Q. This is represented by:

$$Coop(c, a) \equiv \forall \varphi Inf_{c, a} \varphi \leftrightarrow \exists Q, B_c(Rm^Q_a \varphi)$$
Cooperative interpersonal communication and relevant information
Conclusion and perspectives

Conclusion

- A first formal definition to agent-oriented relevance
- Characterization of most relevant pieces of information for an agent
- Characterization of cooperativity between two agents
- Comparison to other definitions of cooperativity

Perspectives

- Relevance for other needs that information need
- Introduction of time
Conclusion and perspectives

Conclusion

- A first formal definition to agent-oriented relevance
- Characterization of most relevant pieces of information for an agent
- Characterization of cooperativity between two agents
- Comparison to other definitions of cooperativity

Perspectives

- Relevance for other needs that information need
- Introduction of time
Conclusion and perspectives

Conclusion

- A first formal definition to agent-oriented relevance
- Characterization of most relevant pieces of information for an agent
- Characterization of cooperativity between two agents
- Comparison to other definitions of cooperativity

Perspectives

- Relevance for other needs that information need
- Introduction of time
Conclusion and perspectives

Conclusion

- A first formal definition to agent-oriented relevance
- Characterization of most relevant pieces of information for an agent
- Characterization of cooperativity between two agents
- Comparison to other definitions of cooperativity

Perspectives

- Relevance for other needs that information need
- Introduction of time
Conclusion and perspectives

Conclusion

- A first formal definition to agent-oriented relevance
- Characterization of most relevant pieces of information for an agent
- Characterization of cooperativity between two agents
- Comparison to other definitions of cooperativity

Perspectives

- Relevance for other needs that information need
- Introduction of time
Conclusion and perspectives

Conclusion

- A first formal definition to agent-oriented relevance
- Characterization of most relevant pieces of information for an agent
- Characterization of cooperativity between two agents
- Comparison to other definitions of cooperativity

Perspectives

- Relevance for other needs that information need
- Introduction of time
Conclusion and perspectives

Conclusion

- A first formal definition to agent-oriented relevance
- Characterization of most relevant pieces of information for an agent
- Characterization of cooperativity between two agents
- Comparison to other definitions of cooperativity

Perspectives

- Relevance for other needs that information need
- Introduction of time
Axiomatics

- Propositional tautologies and propositional inference rules;

- KD45 for B_a,

 (K) $\vdash B_a(\varphi \rightarrow \psi) \land B_a\varphi \rightarrow B_a\psi$

 (D) $\vdash B_a\varphi \rightarrow \neg B_a\neg\varphi$

 (4) $\vdash B_a\varphi \rightarrow B_aB_a\varphi$

 (5) $\vdash \neg B\varphi \rightarrow B_a\neg B_a\varphi$

- (Nec) Necessitation for B_a, $\vdash \varphi$ $\vdash B_a\varphi$

- (UE) Unit exclusion for I_a, $\vdash \neg I_a(\top)$

- BI Introspection,

 (BI1) $\vdash I_a\varphi \rightarrow B_aI_a\varphi$

 (BI2) $\vdash \neg I_a\varphi \rightarrow B_a\neg I_a\varphi$

 (BI3) $\vdash B_a(\varphi \leftrightarrow \psi) \rightarrow (I_a\varphi \leftrightarrow I_a\psi)$