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Abstract – first page

We describe the breadth-first traversal algorithm by Martin Hofmann
that uses a non-strictly positive data type and carry out a simple
verification in an extensional setting. Termination is shown by
implementing the algorithm in the strongly normalising extension of
system F by Mendler-style recursion.

We then analyze the same algorithm by alternative verifications

in an intensional setting,

in a setting with non-strictly positive inductive definitions (not just
non-strictly positive data types), and one

by algebraic reduction.
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Abstract – contd.

The verification approaches are compared in terms of notions of
simulation and should elucidate the somewhat mysterious algorithm and
thus make a case for other uses of non-strictly positive data types.

Except for the termination proof, which cannot be formalised in Coq, all
proofs were formalised in Coq.

The present talk is based on a paper in the forthcoming LIPIcs
post-proceedings of TYPES 2018 with Ulrich Berger and Anton Setzer
(both Swansea University) and should demonstrate how much progress
the three authors could make on understanding this old proposal of
Hofmann, made between 1993 and 1995, since the [intended] speaker
[R. M.] gave a tribute to him at TYPES 2018.
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Breadth-first traversal

Binary trees with leaf labels and node labels in N. Call this data type
Tree, with constructors Leaf : N → Tree and
Node : Tree → N → Tree → Tree.

(For simplicity and to avoid pseudo-generality, we restrict the type of
labels to be the natural numbers but any other type could be used
instead.)

The type of homogeneous lists with elements from type A is called
List A.

(We need parameter A, it will often be List N.)

The task: go through t : Tree in breadth-first order and collect the labels
in breadthfirst t : List N.
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Illustration: result [1, 2, . . . , 11]
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10 11
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The function is not compositional! (Does not only depend on its values
for the subtrees.)
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Less intuitive specification

Create the list of labels for every line, i. e., level-wise. This function is
called niv : Tree → List2N. (niv refers to the French word “niveaux” for
levels)
Result for our example: [[1], [2, 3], [4, 5], [6, 7, 8, 9], [10, 11]]
niv can be obtained by iteration over Tree: in the Node case, zip the
results for the sub-trees with list concatenation, vulgo append .
Define flatten : List2N → List N as concatenation of all those lists (the
monad multiplication of the list monad).
breadthfirst t has to evaluate to the result of flatten(niv t). The latter is
not the algorithm but an executable specification.

This is good for functional programmers. Imperative programming would
suggest to use a queue of binary trees. We type theoreticians want
language-based termination guarantees.
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Martin Hofmann’s 1993 proposal

A post to the TYPES mailing list, which is still in the TYPES archives
(checked on September 11, 2019).
Assumes a data type Rou with constructors

Over : Rou

Next : ((Rou → List N) → List N) → Rou

Martin viewed the elements as continuations, but I [R. M.] learned from
Olivier Danvy in 2002 that they are rather coroutines, but in 2018 we
came to the conclusion that they do not have specific coroutine features
but are just routines, hence the name Rou chosen here (Over and Next

suggested by Danvy). Over : nothing more to be done; Next : its
argument f takes a “continuation” argument k : Rou → List N and
computes a list.
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Working with routines

Specify unfold : Rou → (Rou → List N) → List N by distinguishing the
two cases (the second one is indeed an “unfolding”):

unfold Over ≃ λk. kOver

unfold (Next f) ≃ f

Relation ≃ is used for definitional equality, i. e., convertibility. This
spec. does not by itself constitute a definition.
Martin Hofmann (called unfold rather apply) recasts the breadth-first
traversal as a transformation on routines controlled by the input tree:

br : Tree → Rou → Rou

br (Leaf n) c = Next (λk . n :: unfold c k)
br (Node tl n tr) c = Next

(

λk . n :: unfold c (k ◦ br tl ◦ br tr)
)

(◦ denotes composition of functions)
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Extraction of the final result

br tOver is a routine, and we want breadthfirst t to be the list extracted
from it by the function extract : Rou → List N, specified as

extract Over ≃ []
extract(Next f) ≃ fextract

No problem with subject reduction—recall f : (Rou → List N) → List N.
In our view, extract is a “continuation”, and so the argument f to Next

can be naturally applied to it.

Why is this recursion scheme safe, i. e., why does it not present the risk
of non-termination?
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Termination of extract

For Martin Hofmann, this was the main motivation. One can see Rou as
least fixed point of the “functor” RouF that a Haskell programmer could
define as
data RouF rou = Over | Next ((rou -> List nat) -> List nat)

The variable rou for the datatype to be defined is twice to the left of ->,
hence at a positive position, even if not at a strictly positive position.
Martin argues that the specification of extract can be ensured by the
usual Church encoding of data types in system F; in categorical terms,
extract can be obtained as catamorphism for a certain RouF -algebra.
However, only weak initiality is obtained, unless one uses parametric
equality. In more computational terms, this means that extract is defined
by pure iteration.
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Pitfall concerning termination

The argument on extract is valid, even if Mendler-style iteration would
more directly allow to program extract precisely according to the
specification, and likewise with termination guarantee (as instance of
Mendler-style iteration).
However, the function unfold : Rou → (Rou → List N) → List N has to
be defined with the same ontology for Rou. To recall:

unfold Over ≃ λk. kOver

unfold (Next f) ≃ f

No recursion but the patterns are distinguished and the argument f
extracted. This is not compatible with weakly initial algebras, as obtained
with the Church encoding. Martin was satisfied with parametric equality
theory, but unfold should have constant execution time, if the proposed
algorithm is meant to have advantages over the executable specification.
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Solution

Use primitive recursion in Mendler’s style (invented by Nax Mendler for
his 1987 PhD thesis whose advisor was Bob Constable). In fact, the only
addition to system F that is really needed to preserve termination is
positive fixed-points µF with a retraction between µF and F (µF )—the
sequence from F (µF ) via µF back to F (µF ) has to be pointwise
definitionally equal to the identity. Termination of more complex schemes
can be obtained by simulation of reductions. (See my [R. M.] FICS’98
paper in RAIRO/ITA.)
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Functional correctness

Given that the termination question is already solved, how can one see
that the algorithm breadthfirst t := extract(br tOver) meets the
specification, i. e., computes the right list?

Martin Hofmann provided in 1995 a proof by simple induction on Tree,
by help of the routine transformer γ : List2N → Rou → Rou

γ [] c = c γ (l :: ls) c = Next
(

λk . l++
(

unfold c (k ◦ γ ls)
)

)

for which
(A) extract(γ lOver) = flatten l,
(B) composition of γ for two lists of lists is γ for the zipping with
append ,
which allows to prove that
(C) br t does the same as γ(niv t).
(A) and (C) then give correctness.
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(A) extract (γ l Over) = flatten l
(C) br t c = γ (niv t) c

breadthfirst t = extract (br t Over)
(C)
= extract (γ (niv t)Over)
(A)
= flatten (niv t)
= breadthfirstspec t
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Alternative verifications—why?

The proof by Martin Hofmann is a typical mathematical proof in that it
freely uses function extensionality: two functions are equal if they are
pointwise equal. This principle is problematic for computational
interpretations. E. g., when trying to represent the sketched proof in the
Coq system, one has to load explicitly an extensionality axiom—this is
not part of the core type theory.

Does γ reveal the “true nature” of this peculiar breadth-first traversal
algorithm? We do not think so. γ convinces the proof checker in us that
it is correct, but no more.

For at least these two reasons, we developed a variety of alternative
proofs. All those proofs can be compared in mathematical ways by a
notion of simulation—bear with me.
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Verification by a non-strictly positive inductive relation

An intriguing idea: reflect the non-strictly positive nature of the routines
in a likewise non-strictly positive inductive definition of a predicate that
relates routines and lists of lists of natural numbers (“double lists”)
representing results of their execution.

We do not have the time here to go into detailed explanations of the
concepts (cf. the forthcoming TYPES’18 post-proceedings paper). We
rather restrict our attention to the syntactic aspects of the definition of
representation.

Auxiliary step: we define when a continuation k is an extractor for a
binary relation R ⊆ Rou × List2N (seen as a candidate for a
representation relation) and an “initial” double list ls ′ (later set to []).

isextractor(R, ls ′, k) := ∀c, ls ′′ . R(c, ls ′′) → k c = flatten (zip ls ′ ls ′′) .

(zip is the zipping function mentioned twice before; R only occurs
negatively – to the left of the implication)
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Non-strictly positive inductive definition of representation

isextractor(R, ls ′, k) := ∀c, ls ′′ . R(c, ls ′′) → k c = flatten (zip ls ′ ls ′′) is
used in the following inductive definition of rep ⊆ Rou × List2N:

(over)
rep(Over , [])

∀k, ls ′ . isextractor(rep, ls ′, k) → f k = l++flatten (zip ls ′ ls)
(next)

rep(Next f, l :: ls)

The premise of the rule (next) contains the predicate rep positively
(though not strictly positively) and therefore depends monotonically on
it. By Tarski’s fixed point theorem it follows that the smallest relation
rep closed under the rules (over) and (next) exists.

The non-trivial results towards the verification of our algorithm through
rep are: (A) isextractor(rep, [], extract), proven by exploiting minimality
of rep w. r. t. its defining clauses, and (B) that rep(c, ls) implies
rep(br t c, zip (niv t) ls), proven mostly by structural induction on tree t.
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By the axiom (over), we have

rep(Over, [])

Therefore,
rep(br t Over, zip (niv t) [])

rep(br t Over, niv t)

We have
isextractor(rep, [], extract)

therefore
extract (br t Over) = flatten (zip (niv t) [])

extract (br t Over) = flatten (niv t)

therefore
breadthfirst t = breadthfirstspec t
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Lifting of breadthfirst to Forests
Let

zip : List2N → List2N → List2N
zip [l1, . . . , ln] [l

′

1, . . . , l
′

n
] = [l1++ l ′1, . . . , ln ++ l ′

n
]

Let Forest := List Tree.
We lift niv : Tree → List N computing the niveaux of a tree to

nivf : Forest → List
2
N

nivf [] = []
nivf (t :: ts) = zip (niv t) (nivf ts)

Then we can define

breadthfirstf,spec : Forest → List N

breadthfirstf,spec t = flatten (nivf t)

and see
breadthfirstf,spec [t] = breadthfirstspec t
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roots, sub

List of roots of a tree:

roots : Forest → List N

roots [] = []
roots (Leaf n :: ts) = n :: roots ts
roots (Node tl n tr :: ts) = n :: roots ts

Immediate subtrees of a forest:

sub : Forest → Forest
sub [] = [],
sub (Leaf n :: ts) = sub ts

sub (Node tl n tr :: ts) = tl :: tr :: sub ts
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Observations on Routines occurring in Hofmann’s

Algorithm

Let
next : (List N → List N) → Rou → Rou
next g c = Next (λk . g (k c))

The only routines occurring in Hofmann’s algorithm are

Over
next g c for some g : List N → List N and c : Rou occurring

We see that these are recursive functions and extract executes them:

extractOver = []
extract (next g c) = g (extract c)
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c
We define now a function c which for every forest f computes a routine
which recursively computes breadthfirstf,spec f .

c : Forest → Rou
c [] = Over
c ts = next (addroots ts) (c (sub ts))

Indeed we can show

extract (c ts) = breadthfirstf,spec ts

It follows by induction on ts

br t (c ts) = c (t :: ts)

and therefore

br t Over = br t (c []) = c (t :: []) = c [t]
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Correctness Proof

breadthfirst t = extract (br t Over)
= extract (c [t])
= breadthfirstf,spec [t]
= breadthfirstspec t
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A Predicative Version of BreadthFirst

Routines Occurring in Hofmann’s Algorithm 2nd

Observation

◮ We have seen that the routines occurring in Hofmann’s Algorithm are

Over next f c

So they have the form next f1 (next f2 · · · (next fn Over))
These routines can be represented by the sequence

[f1, . . . , fn] : List(List N → ListN)

◮ So we can represent elements of Rou occurring as elements of

Rou′ := List(ListN → ListN)

and have the interpretation of elements of Rou into Rou′:

Φ : Rou′ → Rou
Φ [] = Over
Φ (g :: gs) = next g (Φ gs)
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Definition of br′

We define
br′ : Tree → Rou′ → Rou′

s.t.
Φ (br′ t gs) = br t (Φ gs)

by

br′ (Leaf n) [] = cons n :: []
br′ (Leaf n) (g :: gs) = (cons n ◦ g) :: gs
br′ (Node tl n tr) [] = cons n :: br′ tl (br′ tr [])
br′ (Node tl n tr) (g :: gs) = (cons n ◦ g) :: br′ tl (br′ tr gs)
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Definition of extract′

We define
extract′ : Rou′ → List N

s.t.
extract′ gs = extract (Φ gs)

by
extract′ [] = []
extract′ (g :: gs) = g (extract′ gs)
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Define
breadthfirst′ : Tree → List N

breadthfirst′ t = extract′ (br′ t [])

and see
breadthfirst′ t = breadthfirst t

by
breadthfirst′ t = extract′ (br′ t [])

= extract (Φ (br′ t []))
= extract (br t (Φ []))
= extract (br t Over)
= breadthfirst t
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A Simplified Predicative Version of BreadthFirst

Routines Occurring in Hofmann’s Algorithm 2nd

Observation

◮ We have seen that the routines occurring in Hofmann’s Algorithm are

Over next f c

◮ We can see as well that the f are compositions of functions cons n.

◮ The compositions of these functions are append functions

λl . l ′++ l

for some l ′ : List N.

◮ So we can represent elements of Rou occurring as elements of

Rou′′ := List
2
N
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Routines Occurring in Hofmann’s Algorithm 2nd

Observation

◮ We have the interpretation of elements of Rou′′ into Rou′:

Ψ : Rou′′ → Rou′

Ψ [l1, . . . , ln] = [append l1, . . . , append ln]
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Definition of br′′

We define
br′′ : Tree → Rou′′ → Rou′′

s.t.
Ψ (br′′ t ls) = br t (Ψ ls)

by
br′′ (Leaf n) [] = [[n]]
br′′ (Leaf n) (l :: ls) = cons n l :: ls
br′′ (Node tl n tr) [] = [n] :: br′′ tl (br′′ tr [])
br′′ (Node tl n tr) (l :: ls) = cons n l :: br′′ tl (br′′ tr ls)

and
breadthfirst′′ : Tree → List N

breadthfirst′′ t = flatten (br′′ t [])
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br′′ t
ext

= zip (niv t)

flatten l = extract′ (Ψ l)

and we get
breadthfirst′′ t = flatten (br′′ t [])

= extract′ (Ψ (br′′ t []))
= extract′ (br′ t (Ψ []))
= extract′ (br′ t [])
= breadthfirst′ t
= breadthfirst t
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Verification by successive refinements—the end

The function br ′′ : Tree → List2N→ List2N thus obtained is easy to
grasp in terms of list operations:

br ′′ t l = zip (niv t) l

And extract(Φ(Ψ l)) = flatten l.

Modulo the exciting presentation in terms of the non-strictly positive
data type of routines, the outcome of this (predicative) analysis is that
br adopts an “accumulation trick” for computing the levels, and that the
extraction process takes care of flattening.
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Formal comparison of the obtained algorithms
and proofs

We have exposed four different ways to verify breadth-first traversal à la
Martin Hofmann. Can something interesting be said about the relations
between these proofs? Other than mere qualitative observations such as
that the proof with rep and the proof with c do not need the
extensionality axiom, that the proof with rep uses heavier meta-theory,
etc.

Yes, we identify four components in each of those proofs that play the
same role, and we can relate these 4-tuples in a systematic way.
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Systems and simulations between systems

Definition

A system is a quadruple S = (A,Nil, g, e) where A : Set, Nil : A,
g : Tree → A→ A, and e : A→ List N.

S is correct (for breadth-first traversal) if e (g tNil) = flatten(niv t)
for all trees t.

Let S′ = (A′,Nil′, g′, e′) be another system. A relation R on A×A′

is a simulation between S and S′, S
R
∼ S′, if (1) R(Nil,Nil′), and,

whenever R(a, a′), then (2) R(g t a, g′ t a′) for all trees t, and (3)
e a = e′ a′.

Let S, S′ be systems. S and S′ are similar, S ∼ S′, if there exists a
simulation between S and S′.

Lemma: If S ∼ S′ then S is correct if and only if S′ is correct.
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Functional simulations between systems

Recall that a relation R on A×A′ is a simulation between S and S′,

S
R
∼ S′, if (1) R(Nil,Nil′), and, whenever R(a, a′), then (2)

R(g t a, g′ t a′) for all trees t, and (3) e a = e′ a′.

Note that if R is functional, i. e., defined as the graph of a function
φ : A′

→ A, by setting R(a, a′) iff a = φa′, then the simulation

conditions become (1) Nil = φNil
′, (2) g t ◦ φ

ext
= φ ◦ g′ t for all trees t,

and (3) e ◦ φ
ext
= e′. In this situation we write S

φ
← S′. All but one of the

simulations described below are functional.
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Review of the zoo of proofs (abridged)

The specification of breadth-first traversal corresponds to the correct

system Sspec
Def

≡ (List2N, [], zip ◦ niv ,flatten).

Hofmann’s algorithm is embodied by the system

SMH

Def

≡ (Rou,Over , br , extract) and its verification amounts to

showing that SMH
γOver

← Sspec where γOver ls
Def

≡ γ ls Over .

The verification by help of rep amounts to showing SMH
rep
∼ Sspec.

The spec. with forests gives rise to a system Sforest, and the
alternative verification in fact shows SMH

c
← Sforest.

The first refinement step yields system

Spred1

Def

≡ (Rou ′, [], br ′, extract ◦ Φ) and proves the simulation

SMH
Φ
← Spred1.

The second refinement step yields system

Spred2

Def

≡ (List2N, [], br ′′,flatten).
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Overview of the simulations

SMH

Sforest

traverse

c

✲

✲ Spred1

✛

Φ

Sspec
ext
= Spred2

rep γOver

✻

Ψ

✲

niv
f ✲

The functions in the diagram are fully commutative assuming

extensionality. In particular, the simulations SMH
Φ
← Spred1

Ψ
← Spred2

provide a splitting of Hofmann’s simulation SMH
γOver

← Sspec into simpler
components. (Function traverse is a recursive optimization.)
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SMH = (Rou,Over, br, extract)
Sforest = (Forest, [], cons, breadthfirstf,spec)
Spred1 = (Rou′ = List (ListN → ListN), [], br′, extract′)

Sspec = Spred2 = (Rou′′ = List2N, [], br′′ = zip ◦ niv, flatten)

traverse f = [append l1, . . . , append ln]
if nivf f = [l1, . . . , lm]
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Non-strictly positive datatypes to understand classical logic

For a given type A, the type ♯A := µX.(A+ ¬¬X) is “a bit bigger”
than ¬¬A: the second constructor ensures

¬¬♯A → ♯A ,

i. e., double negation elimination for ♯A. ¬¬A also has double negation
elimination, however, ♯A is freely constructed with this property—called
the “stabilization” of A. Being “bigger” (as target of an embedding) is
better since several proofs of strong normalization of variants of
λµ-calculus suffered from erasure problems. Second-order λµ-calculus
can be simulated inside system F with these types ♯A and their iteration
principle, see my [R. M.] TLCA’01 paper and subsequent work.
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Another case for verification by successive refinement?

In 2002, Danvy communicated to me [R. M.] a coroutine solution (again,
according to his conceptual analysis) to the same fringe problem.

Example

*

*

1 2

3

*

1 *

2 3

They have the same fringe. For this problem, inner nodes are unlabeled.
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Same fringe with routines—preparation

Let B := {t, f} and Rou now have the constructors Over : Rou and
Next : N → ((Rou → B) → B) → Rou. Variable convention:
k : Rou → B “continuations”, and f : (Rou → B) → B.

The critical function that needs elimination principles for Rou is
skim : Rou → Rou → B with skim Over Over ≃ t, result f for two
arguments with different constructor and

skim(Next n1 f1)(Next n2 f2) ≃ if n1 6= n2thenfelsef1(λc
Rou .f2(skim c))

This is an instance of Mendler-style iteration, but needs the same
addition we needed before for unfold . It also nicely type-checks with
sized types, as developed in the PhD thesis of Andreas Abel.
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Same fringe program

Define walk : Tree → (Rou → B) → ((Rou → B) → B) → B by

walk (Leaf n) k f ≃ k(Next n f)
walk (Node l r) k f ≃ walk l k (λk1.walk r k1 f)

Define canf := λk.kOver and init : Tree → (Rou → B) → B by
init t k := walk t k canf . Finally, the function to detect if the trees have
the same fringe, smf : Tree → Tree → B, is defined by

smf t1 t2 := init t1 (λc1. init t2(skim c1))

Is there a verification by successive refinement to demystify these
operations?
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Implementation in Coq

In a message to the Coq club—https://sympa.inria.fr/sympa/arc/

coq-club/2018-06/msg00096.html—on the day following my [R. M.]
TYPES 2018 talk, Simon Boulier, who attended the conference,
announced the availability of a Coq plugin to deactivate the checks for
strict positivity. He had already tested it with Martin Hofmann’s
program on the day of that talk.

Using Boulier’s plugin, all the developments of the presented work other
than the justification of termination by Mendler-style recursion can be
directly replayed in Coq (but not in vanilla Coq that already rejects Rou).

This includes the definition of smf , so one can play with it and try to
formulate and prove lemmas on it.
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Conclusion

From the published abstract of TYPES 2018, but still worth
remembering:
And this talk should remind the audience how much Martin’s scientific
insights were able to fascinate other researchers, even if they were not
considered as ready to be published by Martin. Sadly, we have to live
with these memories without further opportunities to get new notes from
Martin or to work with him. May he rest in peace.
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Verification by interpreting routines as recursive programs

It has been known for a long time that breadth-first traversal can be
profitably studied by extending the input type from trees to lists of trees:
Forest := List Tree. Its executable specification is
flatten ◦ nivf : Forest → List N where nivf zips all niv t for t in ts, i. e.

nivf : Forest → List
2
N

nivf [] = [] nivf (t :: ts) = zip (niv t) (nivf ts)

If the input forest consists of a single tree, the extended and the original
specification agree.

This opens the possibility of an alternative verification of Hofmann’s
algorithm via an embedding of forests into routines that explains the roles
of the functions br : Tree → Rou → Rou and extract : Rou → List N,
and it appears simpler thanks to the richer data structure of forests.
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Interpretation of routines as recursive programs

We define c : Forest → Rou by recursion on the depth—not detailed
here—of the input forest.

c ts =

{

Over if ts = [],
next (addroots ts) (c (sub ts)) otherwise.

Here, we use:

roots : Forest → List N with roots [] = [] and
roots (Leaf n :: ts) = roots (Node tl n tr :: ts) = n :: roots ts

addroots : Forest → List N → List N with
addroots ts = append (roots ts)

sub : Forest → Forest calculates the immediate subforest:
sub [] = [], sub (Leaf n :: ts) = sub ts, and
sub (Node tl n tr :: ts) = tl :: tr :: sub ts.

next : (List N → List N) → Rou → Rou with
next g c = Next (λk . g (k c)).
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Properties of this interpretation

We obviously obtain extract (next g c) = g (extract c) besides
extract Over = [].
Therefore, the c function provides routines whose extraction yields the
desired result: extract (c ts) = flatten (nivf ts). This is seen by induction
on depth, using the easy auxiliary nivf ts = roots ts :: nivf (sub ts) for
nonempty ts.

The main technical lemma states br t (c ts) = c (t :: ts), with proof by
induction on the depth of t.

The lemma elucidates the purpose of the routine transformer br : br t

transforms the routine so that t as first element of the input forest is
treated in addition—which obviously requires the forest view taken in this
approach.

Verification of Hofmann’s algorithm is by instantiating the main lemma
with empty ts and the lemma before with the singleton forest [t].
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Verification by successive refinements

First step: br : Tree → Rou → Rou can be shrunk down to a
structurally recursive definition of a function br ′ : Tree → Rou ′

→ Rou ′

with Rou ′ := List(List N → List N). The crucial definition is a purely
iterative function Φ : Rou ′

→ Rou, for which one tries to obtain

br t (Φ l) = Φ(br ′ t l)

This guides the definition process for br ′.

Second step: br ′ : Tree → Rou ′
→ Rou ′ can be further shrunk down to

a structurally recursive definition of a function
br ′′ : Tree → List2N → List2N. Crucial observation: for the mapping
over lists of the append function of type List N → (List N → List N),
let’s call it Ψ : List2N → Rou ′, one can obtain

br ′ t (Ψ l) = Ψ(br ′′ t l)
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Verification by successive refinements—the end

The function br ′′ : Tree → List2N → List2N thus obtained is easy to
grasp in terms of list operations:

br ′′ t l = zip (niv t) l

And extract(Φ(Ψ l)) = flatten l.

Modulo the exciting presentation in terms of the non-strictly positive
data type of routines, the outcome of this (predicative) analysis is that
br adopts an “accumulation trick” for computing the levels, and that the
extraction process takes care of flattening.
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