
Context
Contents

Dependent Type Theory with Parameterized
First-Order Data Types and Well-Founded

Recursion – Opponent’s Presentation of David
Wahlstedt’s PhD Thesis

Ralph Matthes

Institut de Recherche en Informatique de Toulouse (IRIT), CNRS

Équipe ACADIE
(Assistance à la Certification de Systèmes Distribués et Embarqués)

Department of Computer Science and Engineering
Chalmers University of Technology, Göteborg, Sweden

September 14, 2007

Ralph Matthes Opponent’s Presentation of David Wahlstedt’s Thesis 1/30



Context
Contents

Abstract

This is the presentation of David Wahlstedt’s PhD thesis, from
the point of view of the Faculty Opponent.

Ralph Matthes Opponent’s Presentation of David Wahlstedt’s Thesis 2/30



Context
Contents

Outline

1 Context
Breaking Down the Title
The Big Picture

2 Contents
Guide for Reading the Thesis
Key Concepts
Not To Miss!

Ralph Matthes Opponent’s Presentation of David Wahlstedt’s Thesis 3/30



Context
Contents

Outline

1 Context
Breaking Down the Title
The Big Picture

2 Contents
Guide for Reading the Thesis
Key Concepts
Not To Miss!

Ralph Matthes Opponent’s Presentation of David Wahlstedt’s Thesis 3/30



Context
Contents

Breaking Down the Title
The Big Picture

Outline

1 Context
Breaking Down the Title
The Big Picture

2 Contents
Guide for Reading the Thesis
Key Concepts
Not To Miss!

Ralph Matthes Opponent’s Presentation of David Wahlstedt’s Thesis 4/30



Context
Contents

Breaking Down the Title
The Big Picture

Recall the title:

Dependent Type Theory with Parameterized
First-Order Data Types and Well-Founded Recursion

Theory

Type Theory

Dependent Type Theory

Data Types

First-Order Data Types

Parameterized First-Order Data Types

Recursion

Wellfounded Recursion

Ralph Matthes Opponent’s Presentation of David Wahlstedt’s Thesis 5/30



Context
Contents

Breaking Down the Title
The Big Picture

Recall the title:

Dependent Type Theory with Parameterized
First-Order Data Types and Well-Founded Recursion

Theory

Type Theory

Dependent Type Theory

Data Types

First-Order Data Types

Parameterized First-Order Data Types

Recursion

Wellfounded Recursion

Ralph Matthes Opponent’s Presentation of David Wahlstedt’s Thesis 5/30



Context
Contents

Breaking Down the Title
The Big Picture

Theory

This is a thesis in theoretical computer science:

precise mathematical language

definitions are not the end product but the raw material

theorems play an important role

theorems come with elaborate proofs

examples do not abound but are an important means of
justifying the whole endeavour

this thesis: no prototypical implementation

Ralph Matthes Opponent’s Presentation of David Wahlstedt’s Thesis 6/30



Context
Contents

Breaking Down the Title
The Big Picture

Theory

This is a thesis in theoretical computer science:

precise mathematical language

definitions are not the end product but the raw material

theorems play an important role

theorems come with elaborate proofs

examples do not abound but are an important means of
justifying the whole endeavour

this thesis: no prototypical implementation

Ralph Matthes Opponent’s Presentation of David Wahlstedt’s Thesis 6/30



Context
Contents

Breaking Down the Title
The Big Picture

Theory

This is a thesis in theoretical computer science:

precise mathematical language

definitions are not the end product but the raw material

theorems play an important role

theorems come with elaborate proofs

examples do not abound but are an important means of
justifying the whole endeavour

this thesis: no prototypical implementation

Ralph Matthes Opponent’s Presentation of David Wahlstedt’s Thesis 6/30



Context
Contents

Breaking Down the Title
The Big Picture

Type Theory

This thesis contributes to Type Theory:

formal languages where expressions are being typed

assignment of types to raw expressions is a non-trivial activity

these formal languages have logical and more operational
readings

the lambda-calculus underlies most of those formalisms

therefore, these are (idealized) functional programming
languages

having a type may induce important general
(meta-theoretical) consequences:

termination
reducts have the same type (= subject reduction)

typing may have important general (meta-theoretical)
properties such as decidability

Ralph Matthes Opponent’s Presentation of David Wahlstedt’s Thesis 7/30



Context
Contents

Breaking Down the Title
The Big Picture

Type Theory

This thesis contributes to Type Theory:

formal languages where expressions are being typed

assignment of types to raw expressions is a non-trivial activity

these formal languages have logical and more operational
readings

the lambda-calculus underlies most of those formalisms

therefore, these are (idealized) functional programming
languages

having a type may induce important general
(meta-theoretical) consequences:

termination
reducts have the same type (= subject reduction)

typing may have important general (meta-theoretical)
properties such as decidability

Ralph Matthes Opponent’s Presentation of David Wahlstedt’s Thesis 7/30



Context
Contents

Breaking Down the Title
The Big Picture

Type Theory

This thesis contributes to Type Theory:

formal languages where expressions are being typed

assignment of types to raw expressions is a non-trivial activity

these formal languages have logical and more operational
readings

the lambda-calculus underlies most of those formalisms

therefore, these are (idealized) functional programming
languages

having a type may induce important general
(meta-theoretical) consequences:

termination
reducts have the same type (= subject reduction)

typing may have important general (meta-theoretical)
properties such as decidability

Ralph Matthes Opponent’s Presentation of David Wahlstedt’s Thesis 7/30



Context
Contents

Breaking Down the Title
The Big Picture

Type Theory

This thesis contributes to Type Theory:

formal languages where expressions are being typed

assignment of types to raw expressions is a non-trivial activity

these formal languages have logical and more operational
readings

the lambda-calculus underlies most of those formalisms

therefore, these are (idealized) functional programming
languages

having a type may induce important general
(meta-theoretical) consequences:

termination
reducts have the same type (= subject reduction)

typing may have important general (meta-theoretical)
properties such as decidability

Ralph Matthes Opponent’s Presentation of David Wahlstedt’s Thesis 7/30



Context
Contents

Breaking Down the Title
The Big Picture

Dependent Type Theory

Types may depend on inhabitants (“objects”) of types.

This occurs only too naturally with predicate logic if formulae are
seen as types: The statement “n is odd” is a type that depends on
the natural number n.

Not as common with operational reading / in programming
languages, but with standard example: the type of lists of precisely
n elements taken from a given type A (“vectors”). The A is “just
a parameter”, but the n makes it a dependent type.

With a more uniform view, A is an object in a suitable “kind”, here
the kind of all “small” types. If all dependencies are as simple as
that, then we do not need the specific methods of dependent type
theory that show up throughout this thesis.

Ralph Matthes Opponent’s Presentation of David Wahlstedt’s Thesis 8/30



Context
Contents

Breaking Down the Title
The Big Picture

Dependent Type Theory

Types may depend on inhabitants (“objects”) of types.

This occurs only too naturally with predicate logic if formulae are
seen as types: The statement “n is odd” is a type that depends on
the natural number n.

Not as common with operational reading / in programming
languages, but with standard example: the type of lists of precisely
n elements taken from a given type A (“vectors”). The A is “just
a parameter”, but the n makes it a dependent type.

With a more uniform view, A is an object in a suitable “kind”, here
the kind of all “small” types. If all dependencies are as simple as
that, then we do not need the specific methods of dependent type
theory that show up throughout this thesis.

Ralph Matthes Opponent’s Presentation of David Wahlstedt’s Thesis 8/30



Context
Contents

Breaking Down the Title
The Big Picture

Dependent Type Theory

Types may depend on inhabitants (“objects”) of types.

This occurs only too naturally with predicate logic if formulae are
seen as types: The statement “n is odd” is a type that depends on
the natural number n.

Not as common with operational reading / in programming
languages, but with standard example: the type of lists of precisely
n elements taken from a given type A (“vectors”). The A is “just
a parameter”, but the n makes it a dependent type.

With a more uniform view, A is an object in a suitable “kind”, here
the kind of all “small” types. If all dependencies are as simple as
that, then we do not need the specific methods of dependent type
theory that show up throughout this thesis.

Ralph Matthes Opponent’s Presentation of David Wahlstedt’s Thesis 8/30



Context
Contents

Breaking Down the Title
The Big Picture

Data Types

Data types are sets whose elements are formed by following certain
construction rules. They are formalized by element constructors
such as nil and cons for lists.

In this thesis, all elements are well-founded, hence are not built by
infinitely piling up constructors. However, arguments of
constructors may be functions (also into the data type, for
infinitely branching trees), hence elements of data types may be
infinite in nature (although finitely described by a lambda term).

Operations on these data types are at the heart of this thesis:
“defined constants”. They may assign objects in data types but
also types themselves.

This is not algebraic specification in the equational sense, but
constant definitions come in the form of rewrite rules. Thus,
it is higher-order rewriting in addition to β.

Ralph Matthes Opponent’s Presentation of David Wahlstedt’s Thesis 9/30



Context
Contents

Breaking Down the Title
The Big Picture

Data Types

Data types are sets whose elements are formed by following certain
construction rules. They are formalized by element constructors
such as nil and cons for lists.

In this thesis, all elements are well-founded, hence are not built by
infinitely piling up constructors. However, arguments of
constructors may be functions (also into the data type, for
infinitely branching trees), hence elements of data types may be
infinite in nature (although finitely described by a lambda term).

Operations on these data types are at the heart of this thesis:
“defined constants”. They may assign objects in data types but
also types themselves.

This is not algebraic specification in the equational sense, but
constant definitions come in the form of rewrite rules. Thus,
it is higher-order rewriting in addition to β.

Ralph Matthes Opponent’s Presentation of David Wahlstedt’s Thesis 9/30



Context
Contents

Breaking Down the Title
The Big Picture

Data Types

Data types are sets whose elements are formed by following certain
construction rules. They are formalized by element constructors
such as nil and cons for lists.

In this thesis, all elements are well-founded, hence are not built by
infinitely piling up constructors. However, arguments of
constructors may be functions (also into the data type, for
infinitely branching trees), hence elements of data types may be
infinite in nature (although finitely described by a lambda term).

Operations on these data types are at the heart of this thesis:
“defined constants”. They may assign objects in data types but
also types themselves.

This is not algebraic specification in the equational sense, but
constant definitions come in the form of rewrite rules. Thus,
it is higher-order rewriting in addition to β.

Ralph Matthes Opponent’s Presentation of David Wahlstedt’s Thesis 9/30



Context
Contents

Breaking Down the Title
The Big Picture

Data Types

Data types are sets whose elements are formed by following certain
construction rules. They are formalized by element constructors
such as nil and cons for lists.

In this thesis, all elements are well-founded, hence are not built by
infinitely piling up constructors. However, arguments of
constructors may be functions (also into the data type, for
infinitely branching trees), hence elements of data types may be
infinite in nature (although finitely described by a lambda term).

Operations on these data types are at the heart of this thesis:
“defined constants”. They may assign objects in data types but
also types themselves.

This is not algebraic specification in the equational sense, but
constant definitions come in the form of rewrite rules. Thus,
it is higher-order rewriting in addition to β.

Ralph Matthes Opponent’s Presentation of David Wahlstedt’s Thesis 9/30



Context
Contents

Breaking Down the Title
The Big Picture

First-Order Data Types

This thesis is not just about adding pure algebraic types to a rich
framework.

The universe Set of data types already comes with a built-in
dependent function space: The constant Π of type

(x : Set,El x → Set)→ Set,

that is the paradigmatic higher-order data type constructor.

But the “user” can only supply new data types by means of a set
constructor of a type Setn → Set, i. e., Set → Set → . . .→ Set
with → associating to the right. Setn → Set is a first-order
signature on the framework level.

Ralph Matthes Opponent’s Presentation of David Wahlstedt’s Thesis 10/30



Context
Contents

Breaking Down the Title
The Big Picture

First-Order Data Types

This thesis is not just about adding pure algebraic types to a rich
framework.

The universe Set of data types already comes with a built-in
dependent function space: The constant Π of type

(x : Set,El x → Set)→ Set,

that is the paradigmatic higher-order data type constructor.

But the “user” can only supply new data types by means of a set
constructor of a type Setn → Set, i. e., Set → Set → . . .→ Set
with → associating to the right. Setn → Set is a first-order
signature on the framework level.

Ralph Matthes Opponent’s Presentation of David Wahlstedt’s Thesis 10/30



Context
Contents

Breaking Down the Title
The Big Picture

First-Order Data Types

This thesis is not just about adding pure algebraic types to a rich
framework.

The universe Set of data types already comes with a built-in
dependent function space: The constant Π of type

(x : Set,El x → Set)→ Set,

that is the paradigmatic higher-order data type constructor.

But the “user” can only supply new data types by means of a set
constructor of a type Setn → Set, i. e., Set → Set → . . .→ Set
with → associating to the right. Setn → Set is a first-order
signature on the framework level.

Ralph Matthes Opponent’s Presentation of David Wahlstedt’s Thesis 10/30



Context
Contents

Breaking Down the Title
The Big Picture

Parameterized First-Order Data Types

Why Setn → Set and not just Set? Because this allows n set
parameters to be given to the data type.

The most standard example: List : Set → Set, where the
parameter is the type from which the elements are taken.

The parameter may vary between input type and output type of
element constructors, thus covering also “nested data types” (see
the example on page 43 with powerlists).

Ralph Matthes Opponent’s Presentation of David Wahlstedt’s Thesis 11/30



Context
Contents

Breaking Down the Title
The Big Picture

Parameterized First-Order Data Types

Why Setn → Set and not just Set? Because this allows n set
parameters to be given to the data type.

The most standard example: List : Set → Set, where the
parameter is the type from which the elements are taken.

The parameter may vary between input type and output type of
element constructors, thus covering also “nested data types” (see
the example on page 43 with powerlists).

Ralph Matthes Opponent’s Presentation of David Wahlstedt’s Thesis 11/30



Context
Contents

Breaking Down the Title
The Big Picture

Recursion

The defined constants are ruled by descriptions how to calculate
the result from the arguments. One has several descriptions,
corresponding to the different element constructors that form the
arguments if they belong to user-defined data types.
For the factorial function, one would set

fact 0→ s 0, fact(s n)→ mult (s n) (fact n).

This uses two important concepts:

pattern matching

recursion

If fact gets an argument with a leading s, it chops off that s and
binds the remaining expression to the formal parameter n, and
then evaluates the expression to the right-hand side.

Ralph Matthes Opponent’s Presentation of David Wahlstedt’s Thesis 12/30



Context
Contents

Breaking Down the Title
The Big Picture

Recursion

The defined constants are ruled by descriptions how to calculate
the result from the arguments. One has several descriptions,
corresponding to the different element constructors that form the
arguments if they belong to user-defined data types.
For the factorial function, one would set

fact 0→ s 0, fact(s n)→ mult (s n) (fact n).

This uses two important concepts:

pattern matching

recursion

If fact gets an argument with a leading s, it chops off that s and
binds the remaining expression to the formal parameter n, and
then evaluates the expression to the right-hand side.

Ralph Matthes Opponent’s Presentation of David Wahlstedt’s Thesis 12/30



Context
Contents

Breaking Down the Title
The Big Picture

Wellfounded Recursion

Recursion is when the defined constant also appears on the
right-hand side.

A major question is that of termination of the execution of
recursive programs. In other words: Is the recursion wellfounded?

A binary relation > is called wellfounded if there is no infinite
sequence a1 > a2 > a3 > . . . For the execution of a program, one
can be satisfied if no infinite sequence of recursive calls is stringed
together, hence if the call relation is wellfounded.

In the end, one just wants that a good implementation of the
reduction process (executing the framework rules and the
user-defined rules) terminates on all inputs. Hence, the reduction
relation does not need to be wellfounded but just weakly
terminating to some normal form, and the implementor has to
provide a strategy that attains this normal form.

Ralph Matthes Opponent’s Presentation of David Wahlstedt’s Thesis 13/30



Context
Contents

Breaking Down the Title
The Big Picture

Wellfounded Recursion

Recursion is when the defined constant also appears on the
right-hand side.

A major question is that of termination of the execution of
recursive programs. In other words: Is the recursion wellfounded?

A binary relation > is called wellfounded if there is no infinite
sequence a1 > a2 > a3 > . . . For the execution of a program, one
can be satisfied if no infinite sequence of recursive calls is stringed
together, hence if the call relation is wellfounded.

In the end, one just wants that a good implementation of the
reduction process (executing the framework rules and the
user-defined rules) terminates on all inputs. Hence, the reduction
relation does not need to be wellfounded but just weakly
terminating to some normal form, and the implementor has to
provide a strategy that attains this normal form.

Ralph Matthes Opponent’s Presentation of David Wahlstedt’s Thesis 13/30



Context
Contents

Breaking Down the Title
The Big Picture

Wellfounded Recursion

Recursion is when the defined constant also appears on the
right-hand side.

A major question is that of termination of the execution of
recursive programs. In other words: Is the recursion wellfounded?

A binary relation > is called wellfounded if there is no infinite
sequence a1 > a2 > a3 > . . . For the execution of a program, one
can be satisfied if no infinite sequence of recursive calls is stringed
together, hence if the call relation is wellfounded.

In the end, one just wants that a good implementation of the
reduction process (executing the framework rules and the
user-defined rules) terminates on all inputs. Hence, the reduction
relation does not need to be wellfounded but just weakly
terminating to some normal form, and the implementor has to
provide a strategy that attains this normal form.

Ralph Matthes Opponent’s Presentation of David Wahlstedt’s Thesis 13/30



Context
Contents

Breaking Down the Title
The Big Picture

Wellfounded Recursion

Recursion is when the defined constant also appears on the
right-hand side.

A major question is that of termination of the execution of
recursive programs. In other words: Is the recursion wellfounded?

A binary relation > is called wellfounded if there is no infinite
sequence a1 > a2 > a3 > . . . For the execution of a program, one
can be satisfied if no infinite sequence of recursive calls is stringed
together, hence if the call relation is wellfounded.

In the end, one just wants that a good implementation of the
reduction process (executing the framework rules and the
user-defined rules) terminates on all inputs. Hence, the reduction
relation does not need to be wellfounded but just weakly
terminating to some normal form, and the implementor has to
provide a strategy that attains this normal form.

Ralph Matthes Opponent’s Presentation of David Wahlstedt’s Thesis 13/30



Context
Contents

Breaking Down the Title
The Big Picture

Outline

1 Context
Breaking Down the Title
The Big Picture

2 Contents
Guide for Reading the Thesis
Key Concepts
Not To Miss!

Ralph Matthes Opponent’s Presentation of David Wahlstedt’s Thesis 14/30



Context
Contents

Breaking Down the Title
The Big Picture

Overall Goal, Generally

Programming of and reasoning about technical reality in a
mathematically precise way. For this, we need

programming languages

logics

program logics

Programming languages may be too liberal so that safety-critical
applications become hazardous - even with a lot of testing.
Run-time type systems ensure that senseless commands are not
executed.
Static analysis allows to exclude run-time type errors already by
inspection of the source code. Program logics often ensure partial
correctness: computed results are correct, but such specifications
have to be validated individually against the “requirements
baseline”.

Ralph Matthes Opponent’s Presentation of David Wahlstedt’s Thesis 15/30



Context
Contents

Breaking Down the Title
The Big Picture

Overall Goal, Generally

Programming of and reasoning about technical reality in a
mathematically precise way. For this, we need

programming languages

logics

program logics

Programming languages may be too liberal so that safety-critical
applications become hazardous - even with a lot of testing.
Run-time type systems ensure that senseless commands are not
executed.
Static analysis allows to exclude run-time type errors already by
inspection of the source code. Program logics often ensure partial
correctness: computed results are correct, but such specifications
have to be validated individually against the “requirements
baseline”.

Ralph Matthes Opponent’s Presentation of David Wahlstedt’s Thesis 15/30



Context
Contents

Breaking Down the Title
The Big Picture

Overall Goal, Generally

Programming of and reasoning about technical reality in a
mathematically precise way. For this, we need

programming languages

logics

program logics

Programming languages may be too liberal so that safety-critical
applications become hazardous - even with a lot of testing.
Run-time type systems ensure that senseless commands are not
executed.
Static analysis allows to exclude run-time type errors already by
inspection of the source code. Program logics often ensure partial
correctness: computed results are correct, but such specifications
have to be validated individually against the “requirements
baseline”.

Ralph Matthes Opponent’s Presentation of David Wahlstedt’s Thesis 15/30



Context
Contents

Breaking Down the Title
The Big Picture

Overall Goal, More Specifically

In type theory, totality is a major issue that does not depend on
the specific program under investigation: it is the “non-functional
requirement” that results are obtained in finite time (mostly not
taking into account time and space consumption quantitatively).

This thesis is about guaranteeing that the process of repeated
simplification of all typable expressions of the language is finite.
And simplification is done by replacing formal parameters with
actual arguments (β-reduction) and by unfolding user-defined
recursive definitions of functions in terms and in types.

In a dependently typed system, this has important consequences
on the type-checking itself (decidability). It also provides logical
consistency.

Ralph Matthes Opponent’s Presentation of David Wahlstedt’s Thesis 16/30



Context
Contents

Breaking Down the Title
The Big Picture

Overall Goal, More Specifically

In type theory, totality is a major issue that does not depend on
the specific program under investigation: it is the “non-functional
requirement” that results are obtained in finite time (mostly not
taking into account time and space consumption quantitatively).

This thesis is about guaranteeing that the process of repeated
simplification of all typable expressions of the language is finite.
And simplification is done by replacing formal parameters with
actual arguments (β-reduction) and by unfolding user-defined
recursive definitions of functions in terms and in types.

In a dependently typed system, this has important consequences
on the type-checking itself (decidability). It also provides logical
consistency.

Ralph Matthes Opponent’s Presentation of David Wahlstedt’s Thesis 16/30



Context
Contents

Breaking Down the Title
The Big Picture

Overall Goal, More Specifically

In type theory, totality is a major issue that does not depend on
the specific program under investigation: it is the “non-functional
requirement” that results are obtained in finite time (mostly not
taking into account time and space consumption quantitatively).

This thesis is about guaranteeing that the process of repeated
simplification of all typable expressions of the language is finite.
And simplification is done by replacing formal parameters with
actual arguments (β-reduction) and by unfolding user-defined
recursive definitions of functions in terms and in types.

In a dependently typed system, this has important consequences
on the type-checking itself (decidability). It also provides logical
consistency.

Ralph Matthes Opponent’s Presentation of David Wahlstedt’s Thesis 16/30



Context
Contents

Breaking Down the Title
The Big Picture

Overall Goal, This Thesis

A precise definition of a variant of Martin-Löf’s type theory
that does not come with standard recursors but allows an
important freedom in specifying defined constants, using
pattern matching.

Proving the important meta-theoretic properties of confluence
and subject reduction, by factoring out results for pattern
matching.

Characterizing the typing of normal forms in an
implementation-oriented manner.

Giving a semantics of the language that allows to deduce
normalization if all defined constants are reducible (a
reducible signature).

Ralph Matthes Opponent’s Presentation of David Wahlstedt’s Thesis 17/30



Context
Contents

Breaking Down the Title
The Big Picture

Overall Goal, This Thesis

A precise definition of a variant of Martin-Löf’s type theory
that does not come with standard recursors but allows an
important freedom in specifying defined constants, using
pattern matching.

Proving the important meta-theoretic properties of confluence
and subject reduction, by factoring out results for pattern
matching.

Characterizing the typing of normal forms in an
implementation-oriented manner.

Giving a semantics of the language that allows to deduce
normalization if all defined constants are reducible (a
reducible signature).

Ralph Matthes Opponent’s Presentation of David Wahlstedt’s Thesis 17/30



Context
Contents

Breaking Down the Title
The Big Picture

Overall Goal, This Thesis

A precise definition of a variant of Martin-Löf’s type theory
that does not come with standard recursors but allows an
important freedom in specifying defined constants, using
pattern matching.

Proving the important meta-theoretic properties of confluence
and subject reduction, by factoring out results for pattern
matching.

Characterizing the typing of normal forms in an
implementation-oriented manner.

Giving a semantics of the language that allows to deduce
normalization if all defined constants are reducible (a
reducible signature).

Ralph Matthes Opponent’s Presentation of David Wahlstedt’s Thesis 17/30



Context
Contents

Breaking Down the Title
The Big Picture

Overall Goal, This Thesis

A precise definition of a variant of Martin-Löf’s type theory
that does not come with standard recursors but allows an
important freedom in specifying defined constants, using
pattern matching.

Proving the important meta-theoretic properties of confluence
and subject reduction, by factoring out results for pattern
matching.

Characterizing the typing of normal forms in an
implementation-oriented manner.

Giving a semantics of the language that allows to deduce
normalization if all defined constants are reducible (a
reducible signature).

Ralph Matthes Opponent’s Presentation of David Wahlstedt’s Thesis 17/30



Context
Contents

Breaking Down the Title
The Big Picture

Overall Goal, This Thesis, Cont’d

Showing that all defined constants are reducible if the call
relation is well-founded.

Showing that the call relation is well-founded in the case of
size-change termination.

Showing decidability of type checking for normal expressions
and for patterns and logical consistency, given a reducible
signature.

Giving a decision procedure for a stepwise extension of the
signature, keeping reducibility.

Ralph Matthes Opponent’s Presentation of David Wahlstedt’s Thesis 18/30



Context
Contents

Breaking Down the Title
The Big Picture

Overall Goal, This Thesis, Cont’d

Showing that all defined constants are reducible if the call
relation is well-founded.

Showing that the call relation is well-founded in the case of
size-change termination.

Showing decidability of type checking for normal expressions
and for patterns and logical consistency, given a reducible
signature.

Giving a decision procedure for a stepwise extension of the
signature, keeping reducibility.

Ralph Matthes Opponent’s Presentation of David Wahlstedt’s Thesis 18/30



Context
Contents

Breaking Down the Title
The Big Picture

Overall Goal, This Thesis, Cont’d

Showing that all defined constants are reducible if the call
relation is well-founded.

Showing that the call relation is well-founded in the case of
size-change termination.

Showing decidability of type checking for normal expressions
and for patterns and logical consistency, given a reducible
signature.

Giving a decision procedure for a stepwise extension of the
signature, keeping reducibility.

Ralph Matthes Opponent’s Presentation of David Wahlstedt’s Thesis 18/30



Context
Contents

Breaking Down the Title
The Big Picture

Important Other Approaches

Defining what is a smaller expression by using higher-order
versions of the recursive path ordering.

The analysis of recursive calls by means of ensuring that it is
done with arguments that are smaller does no longer work for
non-strictly positive fixed points. Even when structural
descent is possible, also the following are studied:

Recursion operators

Impredicative encodings

Recursion principles in the style of Mendler (1987) that use
universal quantification over types (this was the first system
with type-based termination)

Sized types (Lars Pareto 2000, . . . ): data types with size
annotations

Ralph Matthes Opponent’s Presentation of David Wahlstedt’s Thesis 19/30



Context
Contents

Breaking Down the Title
The Big Picture

Important Other Approaches

Defining what is a smaller expression by using higher-order
versions of the recursive path ordering.

The analysis of recursive calls by means of ensuring that it is
done with arguments that are smaller does no longer work for
non-strictly positive fixed points. Even when structural
descent is possible, also the following are studied:

Recursion operators

Impredicative encodings

Recursion principles in the style of Mendler (1987) that use
universal quantification over types (this was the first system
with type-based termination)

Sized types (Lars Pareto 2000, . . . ): data types with size
annotations

Ralph Matthes Opponent’s Presentation of David Wahlstedt’s Thesis 19/30



Context
Contents

Breaking Down the Title
The Big Picture

Important Other Approaches

Defining what is a smaller expression by using higher-order
versions of the recursive path ordering.

The analysis of recursive calls by means of ensuring that it is
done with arguments that are smaller does no longer work for
non-strictly positive fixed points. Even when structural
descent is possible, also the following are studied:

Recursion operators

Impredicative encodings

Recursion principles in the style of Mendler (1987) that use
universal quantification over types (this was the first system
with type-based termination)

Sized types (Lars Pareto 2000, . . . ): data types with size
annotations

Ralph Matthes Opponent’s Presentation of David Wahlstedt’s Thesis 19/30



Context
Contents

Guide for Reading the Thesis
Key Concepts
Not To Miss!

Outline

1 Context
Breaking Down the Title
The Big Picture

2 Contents
Guide for Reading the Thesis
Key Concepts
Not To Miss!

Ralph Matthes Opponent’s Presentation of David Wahlstedt’s Thesis 20/30



Context
Contents

Guide for Reading the Thesis
Key Concepts
Not To Miss!

Read the whole thesis. It is just 120 pages long and very well
written.

An introduction of 24 pages: Everything one wants to know
before really reading the technical part. And two illuminating
discussions about non-trivial examples: Berry’s majority
function (p. 16) and Vogel’s trick (pp. 21, 22).

The “syntax” chapter of 39 pages with the system definition,
the confluence proof (following the usual method), the
pattern-matching facility through atomic neighbourhood and
compound neighbourhood, some examples and the usual (and
technically still demanding) apparatus of meta-theory leading
through generation (for the system in Curry-style formulation!)
to subject reduction. The neighbourhoods play an important
role here. An implementation-oriented typing system for
β-normal forms with soundness and completeness proof
(thus a characterization of the restricted typing relation).

Ralph Matthes Opponent’s Presentation of David Wahlstedt’s Thesis 21/30



Context
Contents

Guide for Reading the Thesis
Key Concepts
Not To Miss!

Read the whole thesis. It is just 120 pages long and very well
written.

An introduction of 24 pages: Everything one wants to know
before really reading the technical part. And two illuminating
discussions about non-trivial examples: Berry’s majority
function (p. 16) and Vogel’s trick (pp. 21, 22).

The “syntax” chapter of 39 pages with the system definition,
the confluence proof (following the usual method), the
pattern-matching facility through atomic neighbourhood and
compound neighbourhood, some examples and the usual (and
technically still demanding) apparatus of meta-theory leading
through generation (for the system in Curry-style formulation!)
to subject reduction. The neighbourhoods play an important
role here. An implementation-oriented typing system for
β-normal forms with soundness and completeness proof
(thus a characterization of the restricted typing relation).

Ralph Matthes Opponent’s Presentation of David Wahlstedt’s Thesis 21/30



Context
Contents

Guide for Reading the Thesis
Key Concepts
Not To Miss!

Read the whole thesis. It is just 120 pages long and very well
written.

An introduction of 24 pages: Everything one wants to know
before really reading the technical part. And two illuminating
discussions about non-trivial examples: Berry’s majority
function (p. 16) and Vogel’s trick (pp. 21, 22).

The “syntax” chapter of 39 pages with the system definition,
the confluence proof (following the usual method), the
pattern-matching facility through atomic neighbourhood and
compound neighbourhood, some examples and the usual (and
technically still demanding) apparatus of meta-theory leading
through generation (for the system in Curry-style formulation!)
to subject reduction. The neighbourhoods play an important
role here. An implementation-oriented typing system for
β-normal forms with soundness and completeness proof
(thus a characterization of the restricted typing relation).

Ralph Matthes Opponent’s Presentation of David Wahlstedt’s Thesis 21/30



Context
Contents

Guide for Reading the Thesis
Key Concepts
Not To Miss!

The second last 20%

The “semantics” chapter of 20 pages. This is reducibility
semantics, a. k. a. “computability”, a strengthening
(cf. Prop. 3.3.3) of weak normalization that is closed under
well-typed application by definition. The reducibility predicate
is a one-place variant of a logical relation. It specifies which
types are reducible and which terms are reducible w. r. t. a
reducible type. This is done by a simultaneous
inductive-recursive definition, called “specification”, since its
set-theoretic justification is only sketched (pp. 70–73).

usual soundness theorem (Lemma 3.5.1): typable implies
reducible (under substitution) if defined constants are reducible
call relation formally defined
Key lemma: call relation wellfounded and types of the defined
constants reducible imply defined constants reducible

Ralph Matthes Opponent’s Presentation of David Wahlstedt’s Thesis 22/30



Context
Contents

Guide for Reading the Thesis
Key Concepts
Not To Miss!

The second last 20%

The “semantics” chapter of 20 pages. This is reducibility
semantics, a. k. a. “computability”, a strengthening
(cf. Prop. 3.3.3) of weak normalization that is closed under
well-typed application by definition. The reducibility predicate
is a one-place variant of a logical relation. It specifies which
types are reducible and which terms are reducible w. r. t. a
reducible type. This is done by a simultaneous
inductive-recursive definition, called “specification”, since its
set-theoretic justification is only sketched (pp. 70–73).

usual soundness theorem (Lemma 3.5.1): typable implies
reducible (under substitution) if defined constants are reducible
call relation formally defined
Key lemma: call relation wellfounded and types of the defined
constants reducible imply defined constants reducible

Ralph Matthes Opponent’s Presentation of David Wahlstedt’s Thesis 22/30



Context
Contents

Guide for Reading the Thesis
Key Concepts
Not To Miss!

The last 20%: 3 chapters

Chapter 4 (5 pages) explains the size-change principle and
shows that it implies wellfoundedness of the call relation

Chapter 5 (12 pages) puts everything together to obtain
decidability results for the type-checking problems mentioned
earlier and a decision procedure for a stratification of the
types and rules of the user-defined constants. Finally, logical
consistency given exhaustiveness of the pattern-matching
definitions.

Chapter 6 (4 pages) is the final discussion:

What has been obtained (in clear words)
What has been obtained since the Licentiate Thesis
The modularity aspect of the whole development is stressed
Future work that could follow naturally

Ralph Matthes Opponent’s Presentation of David Wahlstedt’s Thesis 23/30



Context
Contents

Guide for Reading the Thesis
Key Concepts
Not To Miss!

The last 20%: 3 chapters

Chapter 4 (5 pages) explains the size-change principle and
shows that it implies wellfoundedness of the call relation

Chapter 5 (12 pages) puts everything together to obtain
decidability results for the type-checking problems mentioned
earlier and a decision procedure for a stratification of the
types and rules of the user-defined constants. Finally, logical
consistency given exhaustiveness of the pattern-matching
definitions.

Chapter 6 (4 pages) is the final discussion:

What has been obtained (in clear words)
What has been obtained since the Licentiate Thesis
The modularity aspect of the whole development is stressed
Future work that could follow naturally

Ralph Matthes Opponent’s Presentation of David Wahlstedt’s Thesis 23/30



Context
Contents

Guide for Reading the Thesis
Key Concepts
Not To Miss!

The last 20%: 3 chapters

Chapter 4 (5 pages) explains the size-change principle and
shows that it implies wellfoundedness of the call relation

Chapter 5 (12 pages) puts everything together to obtain
decidability results for the type-checking problems mentioned
earlier and a decision procedure for a stratification of the
types and rules of the user-defined constants. Finally, logical
consistency given exhaustiveness of the pattern-matching
definitions.

Chapter 6 (4 pages) is the final discussion:

What has been obtained (in clear words)
What has been obtained since the Licentiate Thesis
The modularity aspect of the whole development is stressed
Future work that could follow naturally

Ralph Matthes Opponent’s Presentation of David Wahlstedt’s Thesis 23/30



Context
Contents

Guide for Reading the Thesis
Key Concepts
Not To Miss!

Outline

1 Context
Breaking Down the Title
The Big Picture

2 Contents
Guide for Reading the Thesis
Key Concepts
Not To Miss!

Ralph Matthes Opponent’s Presentation of David Wahlstedt’s Thesis 24/30



Context
Contents

Guide for Reading the Thesis
Key Concepts
Not To Miss!

Rough Sketch of the System

The types are Set (the universe of data types), the type El t of
elements of a type code, represented by a term t of type Set, and
the dependent function type (of the framework).
Elements of Set come from the Π (on the level of data types) and
from the user-defined parameterized data types d . Elements of Π
types are constructed by help of a primitive constant fun.
Elements of dx1 . . . xk are constructed by element constructors c
whose type must be of the form (El e1, . . . ,El en)→ El(dx1 . . . xk)
with ei set pattern, i. e., only generated from those variables and
arbitrary d ’s, but later the xi can be any element of Set.
Rules for defined constants f have to respect the arity that is
expressed by the prescribed type of f . They have the form f ~p = s
with s beta-normal and pi a constructor pattern: only built
from variables, fun and c ’s. All substitution instances rewrite!

Ralph Matthes Opponent’s Presentation of David Wahlstedt’s Thesis 25/30



Context
Contents

Guide for Reading the Thesis
Key Concepts
Not To Miss!

Rough Sketch of the System

The types are Set (the universe of data types), the type El t of
elements of a type code, represented by a term t of type Set, and
the dependent function type (of the framework).
Elements of Set come from the Π (on the level of data types) and
from the user-defined parameterized data types d . Elements of Π
types are constructed by help of a primitive constant fun.
Elements of dx1 . . . xk are constructed by element constructors c
whose type must be of the form (El e1, . . . ,El en)→ El(dx1 . . . xk)
with ei set pattern, i. e., only generated from those variables and
arbitrary d ’s, but later the xi can be any element of Set.
Rules for defined constants f have to respect the arity that is
expressed by the prescribed type of f . They have the form f ~p = s
with s beta-normal and pi a constructor pattern: only built
from variables, fun and c ’s. All substitution instances rewrite!

Ralph Matthes Opponent’s Presentation of David Wahlstedt’s Thesis 25/30



Context
Contents

Guide for Reading the Thesis
Key Concepts
Not To Miss!

Rough Sketch of the System

The types are Set (the universe of data types), the type El t of
elements of a type code, represented by a term t of type Set, and
the dependent function type (of the framework).
Elements of Set come from the Π (on the level of data types) and
from the user-defined parameterized data types d . Elements of Π
types are constructed by help of a primitive constant fun.
Elements of dx1 . . . xk are constructed by element constructors c
whose type must be of the form (El e1, . . . ,El en)→ El(dx1 . . . xk)
with ei set pattern, i. e., only generated from those variables and
arbitrary d ’s, but later the xi can be any element of Set.
Rules for defined constants f have to respect the arity that is
expressed by the prescribed type of f . They have the form f ~p = s
with s beta-normal and pi a constructor pattern: only built
from variables, fun and c ’s. All substitution instances rewrite!

Ralph Matthes Opponent’s Presentation of David Wahlstedt’s Thesis 25/30



Context
Contents

Guide for Reading the Thesis
Key Concepts
Not To Miss!

Rough Sketch of the System

The types are Set (the universe of data types), the type El t of
elements of a type code, represented by a term t of type Set, and
the dependent function type (of the framework).
Elements of Set come from the Π (on the level of data types) and
from the user-defined parameterized data types d . Elements of Π
types are constructed by help of a primitive constant fun.
Elements of dx1 . . . xk are constructed by element constructors c
whose type must be of the form (El e1, . . . ,El en)→ El(dx1 . . . xk)
with ei set pattern, i. e., only generated from those variables and
arbitrary d ’s, but later the xi can be any element of Set.
Rules for defined constants f have to respect the arity that is
expressed by the prescribed type of f . They have the form f ~p = s
with s beta-normal and pi a constructor pattern: only built
from variables, fun and c ’s. All substitution instances rewrite!

Ralph Matthes Opponent’s Presentation of David Wahlstedt’s Thesis 25/30



Context
Contents

Guide for Reading the Thesis
Key Concepts
Not To Miss!

Neighbourhoods

Atomic neighbourhood (p. 40): ∆
[p/x]−→ Γ is written if x : A is

declared in Γ and ∆ contains instead the type declarations of the
variables that occur free in p so that p would receive the type A.

Compound neighbourhood: do this for several patterns.

The requirement on rules in order to have subject reduction is
natural: Take the argument types of the type of f , form a context
out of it, find the ∆ of the compound neighbourhood w. r. t. ~p. In
∆, the term s must have the target type of f , instantiated on ~p.

Despite the natural idea, establishing subject reduction is quite
some work and also needs a “strong generation lemma”: If
Γ ` λx .v : T then T ≡ (x : U)→ V and Γ, x : U ` v : V .

Ralph Matthes Opponent’s Presentation of David Wahlstedt’s Thesis 26/30



Context
Contents

Guide for Reading the Thesis
Key Concepts
Not To Miss!

Neighbourhoods

Atomic neighbourhood (p. 40): ∆
[p/x]−→ Γ is written if x : A is

declared in Γ and ∆ contains instead the type declarations of the
variables that occur free in p so that p would receive the type A.

Compound neighbourhood: do this for several patterns.

The requirement on rules in order to have subject reduction is
natural: Take the argument types of the type of f , form a context
out of it, find the ∆ of the compound neighbourhood w. r. t. ~p. In
∆, the term s must have the target type of f , instantiated on ~p.

Despite the natural idea, establishing subject reduction is quite
some work and also needs a “strong generation lemma”: If
Γ ` λx .v : T then T ≡ (x : U)→ V and Γ, x : U ` v : V .

Ralph Matthes Opponent’s Presentation of David Wahlstedt’s Thesis 26/30



Context
Contents

Guide for Reading the Thesis
Key Concepts
Not To Miss!

Neighbourhoods

Atomic neighbourhood (p. 40): ∆
[p/x]−→ Γ is written if x : A is

declared in Γ and ∆ contains instead the type declarations of the
variables that occur free in p so that p would receive the type A.

Compound neighbourhood: do this for several patterns.

The requirement on rules in order to have subject reduction is
natural: Take the argument types of the type of f , form a context
out of it, find the ∆ of the compound neighbourhood w. r. t. ~p. In
∆, the term s must have the target type of f , instantiated on ~p.

Despite the natural idea, establishing subject reduction is quite
some work and also needs a “strong generation lemma”: If
Γ ` λx .v : T then T ≡ (x : U)→ V and Γ, x : U ` v : V .

Ralph Matthes Opponent’s Presentation of David Wahlstedt’s Thesis 26/30



Context
Contents

Guide for Reading the Thesis
Key Concepts
Not To Miss!

A remark on the reducibility predicate

There is an inductive definition when REDSet(t) holds. It has a
finitely branching case when t reduces to a d~t and an infinitely
branching case when t reduces to a Π-type Πt1t2. When
REDSet(t) holds, an inductive definition is given when REDEl t(u)
holds. In the second case above, the branching is over the whole
extension of REDEl t1 .

The definition of REDEl t(u) is “introduction-based” and therefore
enforces that if fun v is reducible in its Π-type, then v is reducible
in the respective function type of the framework (Lemma 3.4.7)
and if c~u is reducible in d~t, then the ui are reducible in their
respective argument types (Lemma 3.4.9). This is extended to the
notions of neighbourhood in Lemma 3.6.4 and Lemma 3.6.5.

Ralph Matthes Opponent’s Presentation of David Wahlstedt’s Thesis 27/30



Context
Contents

Guide for Reading the Thesis
Key Concepts
Not To Miss!

A remark on the reducibility predicate

There is an inductive definition when REDSet(t) holds. It has a
finitely branching case when t reduces to a d~t and an infinitely
branching case when t reduces to a Π-type Πt1t2. When
REDSet(t) holds, an inductive definition is given when REDEl t(u)
holds. In the second case above, the branching is over the whole
extension of REDEl t1 .

The definition of REDEl t(u) is “introduction-based” and therefore
enforces that if fun v is reducible in its Π-type, then v is reducible
in the respective function type of the framework (Lemma 3.4.7)
and if c~u is reducible in d~t, then the ui are reducible in their
respective argument types (Lemma 3.4.9). This is extended to the
notions of neighbourhood in Lemma 3.6.4 and Lemma 3.6.5.

Ralph Matthes Opponent’s Presentation of David Wahlstedt’s Thesis 27/30



Context
Contents

Guide for Reading the Thesis
Key Concepts
Not To Miss!

Call relation

(f ,~t) calls (g , ~v) means ti reduces in finitely many steps to piγ
(with the same substitution γ), ti has a normal form and there is a
rule f ~p = s and g~u is a subterm of s and vj = ujγ.

The crucial condition is that the “calls” relation is wellfounded.
The Key lemma 3.6.6 on page 82 has the most complicated proof
of the whole thesis: It requires in addition that the types of the
defined constants f are reducible and shows then that the f ’s
themselves are reducible. This is done by wellfounded induction on
the call relation. It heavily profits from the characterization of
typing for normal terms (the right-hand sides) that allows to prove
inductively a suitable generalization (3.18 on page 83) and so
treats variables that are set free by the subterm operation .

Ralph Matthes Opponent’s Presentation of David Wahlstedt’s Thesis 28/30



Context
Contents

Guide for Reading the Thesis
Key Concepts
Not To Miss!

Call relation

(f ,~t) calls (g , ~v) means ti reduces in finitely many steps to piγ
(with the same substitution γ), ti has a normal form and there is a
rule f ~p = s and g~u is a subterm of s and vj = ujγ.

The crucial condition is that the “calls” relation is wellfounded.
The Key lemma 3.6.6 on page 82 has the most complicated proof
of the whole thesis: It requires in addition that the types of the
defined constants f are reducible and shows then that the f ’s
themselves are reducible. This is done by wellfounded induction on
the call relation. It heavily profits from the characterization of
typing for normal terms (the right-hand sides) that allows to prove
inductively a suitable generalization (3.18 on page 83) and so
treats variables that are set free by the subterm operation .

Ralph Matthes Opponent’s Presentation of David Wahlstedt’s Thesis 28/30



Context
Contents

Guide for Reading the Thesis
Key Concepts
Not To Miss!

Outline

1 Context
Breaking Down the Title
The Big Picture

2 Contents
Guide for Reading the Thesis
Key Concepts
Not To Miss!

Ralph Matthes Opponent’s Presentation of David Wahlstedt’s Thesis 29/30



Context
Contents

Guide for Reading the Thesis
Key Concepts
Not To Miss!

The Key lemma is the deepest single element of the thesis.

Theorem 4.2.1 (p. 91) that size-change termination implies
wellfoundedness of the call relation is not very technical but
rewarding since it shows how well prepared the situation is for
this result.

Theorem 5.2.2 assumes wellfoundedness of the call relation
and gives a procedure to subsequently add two sets of defined
constants and rules. The rules must not work on the
respective other constants. The second set of constants must
not be mentioned by the first sets of constants/rules. Then, if
the procedure succeeds, one obtains a reducible system.
The proof is broken down into more than 50 small steps, with
references to results scattered throughout the thesis – a
veritable invitation to read the thesis. The big challenge to
extend this result is described on p. 103 (always under the
assumption that the call relation is wellfounded!).

Ralph Matthes Opponent’s Presentation of David Wahlstedt’s Thesis 30/30



Context
Contents

Guide for Reading the Thesis
Key Concepts
Not To Miss!

The Key lemma is the deepest single element of the thesis.

Theorem 4.2.1 (p. 91) that size-change termination implies
wellfoundedness of the call relation is not very technical but
rewarding since it shows how well prepared the situation is for
this result.

Theorem 5.2.2 assumes wellfoundedness of the call relation
and gives a procedure to subsequently add two sets of defined
constants and rules. The rules must not work on the
respective other constants. The second set of constants must
not be mentioned by the first sets of constants/rules. Then, if
the procedure succeeds, one obtains a reducible system.
The proof is broken down into more than 50 small steps, with
references to results scattered throughout the thesis – a
veritable invitation to read the thesis. The big challenge to
extend this result is described on p. 103 (always under the
assumption that the call relation is wellfounded!).

Ralph Matthes Opponent’s Presentation of David Wahlstedt’s Thesis 30/30



Context
Contents

Guide for Reading the Thesis
Key Concepts
Not To Miss!

The Key lemma is the deepest single element of the thesis.

Theorem 4.2.1 (p. 91) that size-change termination implies
wellfoundedness of the call relation is not very technical but
rewarding since it shows how well prepared the situation is for
this result.

Theorem 5.2.2 assumes wellfoundedness of the call relation
and gives a procedure to subsequently add two sets of defined
constants and rules. The rules must not work on the
respective other constants. The second set of constants must
not be mentioned by the first sets of constants/rules. Then, if
the procedure succeeds, one obtains a reducible system.
The proof is broken down into more than 50 small steps, with
references to results scattered throughout the thesis – a
veritable invitation to read the thesis. The big challenge to
extend this result is described on p. 103 (always under the
assumption that the call relation is wellfounded!).

Ralph Matthes Opponent’s Presentation of David Wahlstedt’s Thesis 30/30



Context
Contents

Guide for Reading the Thesis
Key Concepts
Not To Miss!

The Key lemma is the deepest single element of the thesis.

Theorem 4.2.1 (p. 91) that size-change termination implies
wellfoundedness of the call relation is not very technical but
rewarding since it shows how well prepared the situation is for
this result.

Theorem 5.2.2 assumes wellfoundedness of the call relation
and gives a procedure to subsequently add two sets of defined
constants and rules. The rules must not work on the
respective other constants. The second set of constants must
not be mentioned by the first sets of constants/rules. Then, if
the procedure succeeds, one obtains a reducible system.
The proof is broken down into more than 50 small steps, with
references to results scattered throughout the thesis – a
veritable invitation to read the thesis. The big challenge to
extend this result is described on p. 103 (always under the
assumption that the call relation is wellfounded!).

Ralph Matthes Opponent’s Presentation of David Wahlstedt’s Thesis 30/30


	Context
	Breaking Down the Title
	The Big Picture

	Contents
	Guide for Reading the Thesis
	Key Concepts
	Not To Miss!


