
Programming with nested datatypes through
dependent types

Ralph Matthes

Institut de Recherche en Informatique de Toulouse (IRIT), CNRS

Équipe ACADIE
(Assistance à la Certification d’Applications Distribuées et Embarquées)

Workshop Dependently Typed Programming 2008
NCSL, Jubilee Campus

University of Nottingham, U. K.
February 19, 2008

with small changes on pages 2, 7, 14 (February 21)

Ralph Matthes Programming with nested datatypes 1/14



The Tentative Original Abstract

Nested datatypes are families of datatypes that are indexed over all
(small) types. They can be represented in intensional type theory,
and terminating recursion schemes can be developed in type
theory, with laws of program verification in the same system.
Following suggestions by several colleagues, I would like to take
dependent types more seriously already for programs that work on
nested datatypes. This can be done by indexing the nested
datatypes additionally over the natural numbers as with sized
nested datatypes (Andreas Abel’s PhD thesis) where the size
corresponds to the number of iterations of the datatype “functor”
over the constantly empty family.

Ralph Matthes Programming with nested datatypes 2/14



Abstract, Cont’d

But one can also try to define functions directly for all powers of
the nested datatype (suggested to me by Nils Anders Danielsson)
or even define all powers of it simultaneously (suggested by an
anonymous referee of a paper).
The author has presented preliminary results at the Seminar on
Dependently Typed Programming at Dagstuhl in 2004 and at the
TYPES 2004 meeting about yet another approach where the
indices are finite trees that branch according to the different
arguments that appear in the recursive equation for the nested
datatype (based on ideas by Anton Setzer and Peter Aczel). The
talk will try to shed a light on all these possibilities, by way of
examples that have been carried out in the Coq theorem prover.

Ralph Matthes Programming with nested datatypes 3/14



Bushes (Bird & Meertens 1998)

A family of types Bush A for any (small) type A, with recursive
equation

Bush A = 1 + A× Bush(Bush A)

The datatype constructors are

bnil : ∀A.Bush A
bcons : ∀A.A→ Bush(Bush A)→ Bush A

A truly nested datatype: An inductive family which has at least
one datatype constructor for which one of the argument types has
a nested call to the family name, i. e., the family name appears
somewhere inside the type argument of the family name
occurrence in the argument type of that datatype constructor.

Ralph Matthes Programming with nested datatypes 4/14



Bushes into Lists

BushF := λXλA. 1 + A× X (X A)

Mendler-style iteration (Mendler 1987) can be extended to nested
datatypes (joint work with Andreas Abel and Tarmo Uustalu,
2005).
We use the abbreviation X ⊆ G := ∀A.XA→ GA.

Define a function BtL : Bush ⊆ List by

BtL := MIt List
(
λXλitX⊆ListλAλtBushF X A.match t with inl 7→ []

| inr(aA, bX (X A)) 7→ a :: flat map (X A) A (it A)(it (XA) b)
)

BtL A (bnil A) −→+ []
BtL A (bcons A a b) −→+ a :: flat map (BtL A)(BtL (Bush A) b)

Ralph Matthes Programming with nested datatypes 5/14



Sized Nested Datatypes (Andreas Abel)

Bushes with height bounded by k :

bnilS : ∀k∀A.BushSk A
bconsS : ∀k∀A.A→ Bushk(Bushk A)→ BushSk A

The definition looks like a truly nested datatype but is only a
family of types that can be explicitly defined by recursion on
natural numbers k (with base case Bush0 A := ⊥).

A striking benefit is precise typing, such as for the map term

bushS : ∀k∀A∀B. (A→ B)→ Bushk A→ Bushk B,

to be defined by recursion on k .

Andreas’ original system has subtyping in order to pass from
Bushk A to BushSk A. We can do this by a function, defined by
recursion over k and using bushS .

Ralph Matthes Programming with nested datatypes 6/14



Bushes with Size into Lists

By recursion on k , one can define

BStL : ∀k∀A.Bushk A→ List A

such that

BStLSk A (bnilS k A) = []
BStLSk A (bconsS k a b) = a :: flat map(BStLk A)(BStLk (Bushk A) b)

It is an exercise to prove naturality of BStLk as transformation
from (Bushk , bushS k) to (List,map).

Ralph Matthes Programming with nested datatypes 7/14



Bush from Bushk?

Define
Bush A := {k : nat & Bushk A}

with the Coq notation for a strong Σ-type where the second
component is also computationally relevant.
bnil : ∀A.Bush A can be defined by taking 1 for k and using
bnilS 0 A.

How to obtain bcons : ∀A.A→ Bush(Bush A)→ Bush A?
Assume a : A and b : Bush(Bush A). Thus, there is a k and
b0 : Bushk(Bush A). In order to apply bconsS , we need an element
b′ of Bushk ′(Bushk ′ A) for some k ′.
We may go through the list BStL k b0 and dermine all the indices
and finally set k ′ to the maximum of all those indices and k . Then,
we have to transform b0 into the desired b′.
A complicated and non-generic procedure for a constructor!

Ralph Matthes Programming with nested datatypes 8/14



More Perspicuous Behaviour Through All Powers of Bush

This approach follows a suggestion by Nils Anders Danielsson. We
are in an easier situation since we already have BtL : Bush ⊆ List.
Define BtLk : Bushk ⊆ List by recursion on k such that

BtL0 A a = [a]

BtLSk A t = flat map (BtLk A) (BtL (Bushk A) t)

Using properties of flat map, one easily obtains

BtLSk A (bnil (Bushk A)) = []
BtLSk A (bcons a b) = BtLk A a + BtLS(Sk) A b

Here, + stands for list concatenation (append).

Starting with the final equations as a definition constitutes the
proposal “by Chalmers”.

Ralph Matthes Programming with nested datatypes 9/14



How This Looks Like for Non-canonical Terms

My system LNMIt allows to prove naturality of the original
definition of BtL. This works by passing to bigger types Bush A.
Their datatype constructors are

bnil : ∀A∀X∀ef E X∀jX⊆Bush. j ∈ N (m ef , bush)→ BushA

and

bcons : ∀A∀X∀ef E X∀jX⊆Bush. j ∈ N (m ef , bush)
→ A→ X (XA)→ BushA

Here, E X states that X has a map term that satisfied the functor
laws and only depends on the extension of its function argument.
The only requirement in LNMIt for a datatype “functor” F is that
it preserves extensional functors in that sense. No monotonicity of
F in its type transformer argument X is needed!

Ralph Matthes Programming with nested datatypes 10/14



BtLk for Non-canonical Bushes

Also for non-canonical empty bushes, the result is the empty list.
The interesting case is

∀k∀A∀X∀ef E X∀jX⊆Bush∀nj∈N (m ef , bush)∀aBushk A∀bX (X (Bushk A)).
BtLSk A (bcons ef j n a b) =

BtLk A a + BtLS(Sk) A (bush (jBushk A)(jX (Bushk A) b))

It is proven by naturality of BtL.

Who knows how to argue about termination of such a recursive
equation (if it were used to define BtLk)?

Ralph Matthes Programming with nested datatypes 11/14



Introducing All Powers Simultaneously

One might also directly give an inductive definition of all powers of
Bush:

bnilP : ∀k∀A.BushSk A

bconsP : ∀k∀A.Bushk A→ BushS(Sk) A→ BushSk A
bstartP : ∀A.A→ Bush0 A

In Coq with impredicative Set, this is supported directly (after
changing k and A as parameters). The “Chalmers definition” of
BtL is then nearly dictated by this representation.
We want to get back Bush A as Bush1 A. Clearly, bnil can be
defined from bnilP 0, but for bcons, we need Bush1(Bush1 A)
instead of Bush2 A that is the second argument to bconsP 0.
The solution: Define “Aczel application” of type
∀k1∀k2∀A.Bushk1(Bushk2 A)→ Bushk1+k2 A.

Ralph Matthes Programming with nested datatypes 12/14



Background For This Approach

This all is just an instance of the more general observation by
Anton Setzer (March 2003) made for lambda terms with explicit
flattening: One should index the nested datatype by a finite tree
that indicates how A has been transformed in order to get the type
argument to the nested datatype. For bushes, there is only one
operation on these type arguments A, namely taking Bush A in
order to have the type argument in Bush (Bush A). Therefore,
natural numbers suffice to trace the transformation.
For lambda terms with explicit flattening, a mathematical
development has been done by Peter Aczel, and algorithms
programmed for the Dagstuhl seminar on Dependently Typed
Programming in September 2004 by myself.

Ralph Matthes Programming with nested datatypes 13/14



How can these loose ends be put together?

System LNMIt has the power of Mendler iteration, is generic
in the nested datatype, can prove naturality of iteratively
defined functions, but bothers the user with non-canonical
elements. (One can relativize to hereditarily canonical
elements, but this is not fully generic.)

Sized nested datatypes (in the form presented here without
the limit Bush∞) have a simple ontology, give precise typings
for map terms but do not easily allow to translate the results
back into the original formulation without sizes. It is not clear
what should be verified about that “absolute formulation”,
since there does not seem to be a useful induction principle
(unless one reintroduces non-canonical terms).

Going straight to powers can clarify certain relations but is
technically more demanding and also suffers from verification
problems (and needs properties that capture all powers).

Thank you for listening.
Ralph Matthes Programming with nested datatypes 14/14


